

Searching for gravitational waves with LIGO detectors

Gabriela González Louisiana State University

On behalf of the LIGO Scientific Collaboration

KITP Colloquium, May 30 2007

Gravitational waves

Gravitational waves are quadrupolar distortions of distances between freely falling masses: "ripples in space-time"

Michelson-type interferometers can detect space-time distortions, measured in "strain" $h=\Delta L/L$.

Amplitude of GWs produced by binary neutron star systems in the Virgo cluster have $h=\Delta L/L\sim 10^{-21}$

The LIGO project

experiment and looking at the data:

LIGO Scientific Collaboration

www.ligo.org

GW Detection: a difficult and fun experiment

5/30/07

NASA, WMAP

Observational results in www.ligo.org

G070369-00-Z 5/30/07

GW searches: binary systems

Use calculated templates for inspiral phase ("chirp") with optimal filtering.

Waveform parameters: distance, orientation, position, m_1 , m_2 , t_0 , ϕ (+ spin, ending cycles ...)

We can translate the "noise" into distances surveyed. We monitor this in the control room for *binary neutron stars*:

If system is optimally located and oriented, we can see even further: we are surveying <u>hundreds of galaxies!</u>

Electronic logs are public! www.ligo.caltech.edu

2500 LIGO SD BINARY NEUTRON STAR MANGE, NOV US-APIT U/ (ST6 days) LI : 318 days of data H1 : 401 days of data H2 : 391 days of data 1500 - 1000 - 1

Science-mode statistics for S5 run (H1, H2, L1, G1)

Up to May 30 2007 18:31:04 UTC

Elapsed run time = 13730.5 hours = 573 days

----- Whole run so far -----

Sample	Hours	Duty factor
H1	10433.8	76.0 since Nov 4, 2005
H2	10673.4	77.7 since Nov 4, 2005
L1	8749.3	64.9 since Nov 14, 2005

H1+H2+L1 6911.8 51.2 since Nov 14, 2005 (H1orH2)+L1 7958.9 58.0 since Nov 4, 2005 One or more LIGO 12312.0 89.7 since Nov 4, 2005 One or more LSC 13029.1 94.9 since Nov 4, 2005

Since May 18, 2007: Joint data taking with Virgo.

GW searches: binary systems

- Use two or more detectors: search for double or triple coincident "triggers"
- Can infer masses and "effective" distance.
- Estimate false alarm probability of resulting candidates: detection?
- Compare with expected efficiency of detection and surveyed galaxies: upper limit

Searches for coalescing compact binary signals in S5

GW searches: spinning compact objects

Rotating stars produce GWs if they have asymmetries, if they wobble or through fluid oscillations.

- There are many known pulsars (rotating stars!) that would produce GWs in the LIGO frequency band (40 Hz-2 kHz).
 - @ Targeted searches for 97 known (radio and x-ray) systems in S5: isolated pulsars, binary systems, pulsars in globular clusters...
- There are likely to be many non-pulsar rotating stars producing GWs.
 - @ All-sky, unbiased searches; wide-area searches.
- GWs (or lack thereof) can be used to measure (or set up upper limits on) the ellipticities of the stars.
- Search for a sine wave, modulated by Earth's motion, and possibly spinning down: easy, but computationally expensive!

http://www.einsteinathome.org/

GW searches: pulsars

Lowest GW strain upper limit:

PSR J1623-2631 ($f_{gw} = 180.6 \text{ Hz}, r = 3.8 \text{ kpc}$) $h_0 < 4.8 \times 10^{-26}$

Lowest ellipticity upper limit:

PSR J2124-3358 $(f_{gw} = 405.6 \text{ Hz}, r = 0.25 \text{ kpc})$ $\epsilon < 1.1 \times 10^{-7}$

10⁻²² spin-down upper limit 2 10⁻²⁴ V LIGO upper limit 10⁻²⁵ V LIGO upper limit 10⁻²⁶ 55 60 65 frequency (Hz)

Upper limits on GWs from targeted pulsars:

GW searches: Stochastic Background

A primordial GW stochastic background is a prediction from most cosmological theories. It can also result from unresolved astrophysical sources.

Given an energy density spectrum $\Omega_{w}(f)$, there is a strain power spectrum:

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$

$$3H^2$$

$$S_{\text{gw}}(f) = \frac{3H_0^2}{10\pi^2} f^{-3}\Omega_{\text{gw}}(f)$$

$$h(f) = S_{\text{gw}}^{1/2}(f) = 5.6 \times 10^{-22} h_{100} \sqrt{\Omega_0} \left(\frac{100 \text{Hz}}{f}\right)^{3/2} \text{Hz}^{1/2}$$

The signal can be searched from *cross-correlations* in different pairs of detectors: L1-H1, H1-H2, L1-ALLEGRO, LIGO-VIRGO... the farther the detectors, the lower the frequencies that can be searched $(\lambda_{GW} \ge 2D)$

The signal can be searched assuming an isotropic, or using spatial resolution.

GW searches: Stochastic Background

S4, astro-ph 0703234

S4 (ApJ **659**, 618, 2007)

Predictions?

Cosmic strings (?) $\sim 10^{-8} - 10^{-5}$

Inflation $\sim 10^{-14}$ --? (10⁻¹⁰ in some models with "preheating")

GW searches: bursts

- Measure <u>false alarm probability</u>
- Compare with efficiency for detecting simple waveforms

S4, arXiv:0704.0943v1 [gr-qc]

For a 153 Hz, Q = 8.9 sine-Gaussian, S5 can see with 50% probability:

 $\sim 2 \times 10^{-8} \ \text{M}_{\odot} \, \text{c}^2$ at 10 kpc,

 $\sim 0.05~M_{\odot}\,c^2$ at 16 Mpc (Virgo cluster)

GW searches: triggered bursts

HETE GRB030329 (~800 Mpc SN): during S2, search resulted in no detection (**PRD** 72, 042002, 2005)

Soft Gamma Repeater 1806-20

- galactic neutron star
 with intense magnetic field (~10¹⁵ G)
- * Record γ-ray flare on Dec 27, 2004
- quasi-periodic oscillations found in RHESSI and RXTE x-ray data
- search S4 LIGO data for GW signal associated with quasi-periodic oscillations-- no GW signal found
- * astro-ph/0703419

Gamma-Ray Bursts

- search LIGO data surrounding GRB trigger using cross-correlation method
- no GW signal found associated with 39 GRBs in S2, S3, S4 runs
- set limits on GW signal amplitude
- 53 GRB triggers for the first five months of LIGO S5 run

When will we see something?

Predictions are difficult... especially about the future (Y. Berra)

- Rotating stars: we know the rates, but not the amplitudes: how lumpy are they?
- Supernovae, gamma ray bursts: again rates known, but not amplitudes...
- Cosmological background: optimistic predictions are very dependent on model...
- Binary black holes: amplitude is known, but rates and populations highly unknown... Some estimates promise S5 results will be interesting!
- Binary neutron stars: amplitude is known, and galactic rates and population can be estimated: For R~86/Myr, initial LIGO rate ~1/100 yrs.

LIGO detectors: future

Neutron Star Binaries:

Initial LIGO: ~15 Mpc →

Advanced LIGO: ~200-300 Mpc

Most likely rate ~ 40/year !

x10 better amplitude sensitivity

 \Rightarrow x1000 rate=(reach)³

⇒ 1 year of Initial LIGO
< 1 day of Advanced LIGO!</p>

NSF Funding in FY'08 presidential budget request. 5/30/07

A possible timeline?

LIGO detectors: future

We'll find out!

G070369-00-Z 5/30/07