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| will present:

o (from string theory)

o (in condensed matter)

o (mostly about string theory again)
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Central observation:



D-branes, briefly

D-branes are solitons (hypersurfaces 3,1 in spacetime?) on
which strings can end:

P
>

For stable supersymmetric D-branes, the tachyon T is projected
out.



Dp-branes couple to Ramond-Ramond (RR) fields C)1(z).

[Polchinski,. . . ]

e ()11 are higher-form analogs of electromagnetism, couple to

sources:
[ o
Zp+1

e Field strength G, ~ dCp 14

e Described by spacetime effective action

1
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Those RR fields are differential forms, right?



If RR fields were differential forms, charges of D-branes allowed
by Dirac quantization should be classified by H*(Y,Z): the
integral refinement of de Rham cohomology H*(Y,R).

Inside H*(Y,R), H*(Y,Z) would define a lattice of charges,
perhaps some torsion elements (such as Z,) would also exist)
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[Witten, . . . ]

D-branes are not just hypersurfaces X in spacetime.

They carry extra structure. Charges keep track of this, and as
a result, take values in a generalized cohomology theory of X,
known as K-theory of X.



[Sen, Witten, . . . ]

Branes are not just naive hypersurfaces .. They are places where
a U(N) gauge bundle E is supported.

Consider N branes and N antibranes, with gauge bundles £ and
F'. The brane-antibrane pairs can annihilate if their X's line up

... but only if they carry the same gauge bundle, E = F.

Classification of branes up to brane-antibrane annihilation

Define an equivalence relation:

(En, F1) ~ (Es, Fy) if bundles G, H exist along X such that



(B10G, 1 ®G)=(E:®H, IO H).

If the annihilation is incomplete — i.e., if (E, F') is a non-trivial
element of K (3) — a stable, lower-dimensional brane is left over
after annihilation.

Hence, charges of the lower-dimensional branes are classified
by equivalence classes of brane-antibrane configurations, or
equivalently, elements of K(X)! (X = X for spacetime-filling
branes)
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K-theory is a generalized cohomology theory, deeply connected
with the theory of Dirac operators, index theory, Riemannian

geometry, topology, . ..
Related to de Rham cohomology:

K(X)®R =) H"(X,R)

Hence, the naive expectation of D-brane charges being related
to conventional cohomology theory is true modulo:

e The precise Dirac quantization of charges,

e The torsion charges.
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D-branes as topological solitons

Consider spacetime-filling branes with bundle £ and antibranes
with F', such that they cannot completely annihilate. This should
be a brane along some hypersurfaces X..

Gauge symmetry: U(N) x U(N).
Tachyon Higgs field T/ (x).

Brane-antibrane annihilation = Higgs mechanism:

U(N) x U(N) — U(N)

When E # F', the annihilation leaves behind a defect in T'.
What is the profile of the defect?

12



Examples:

e Codimension 1 —a kink in a U(1) x U(1) theory;

e Codimension 3 — magnetic monopole in SU(2) x SU(2);
o ...

This construction (by Sen) can be recognized as a universal
construction in K-theory:
the Atiyah-Bott-Shapiro construction!

13



K-theory versus homotopy theory

Consider homotopy groups 7,(U(N)) of U(N) group manifolds.
Complicated for low N relative to k, but they simplify in the
stable regime of N > p/2,

KRM =m,_1(UN)) = m_1(UWN +1)) = . ..

This is another definition of K-theory groups!

14



Stable D-branes = defects in higher-dimensional unstable branes.

Charge measured by homotopy groups defining K-theory.

15



Bott periodicity and D-brane spectrum

One can calculate:
K(R*) = Z,
K(R**hH =0.

This periodicity by two in K-theory predicts a periodicity in the
D-brane spectrum.

This is rather boring, well-known in string theory before the
K-theory connection.

16



K-theory of real (instead of complex) bundles: KO-theory.
(Related to homotopy groups of O(N), in the universal regime.)

Bott periodicity: by eight!
k=0,4,8,.... KORF) =12,
k=1,2. KORF) =1Z,
Torsion-charged DO, D7, D8-branes!

17



Puzzle about RR fields

RR fields couple to D-branes . . .
Are RR fields then also subtle, K-theoretic objects??

If C,+1 are no longer differential forms, how do we describe them
in the Lagrangian framework of spacetime effective action?

Should we give up any Lagrangian formulation of supergravity
when charges are included?

Look for lessons in other areas of physics . . .

18



Puzzle about RR fields

RR fields couple to D-branes . . .
Are RR fields then also subtle, K-theoretic objects??

If C,+1 are no longer differential forms, how do we describe them
in the Lagrangian framework of spacetime effective action?

Should we give up any Lagrangian formulation of supergravity
when charges are included?

Look for lessons in other areas of physics . . .

18



here comes

the condensed matter part!



Microscopic field:
"7 (x,t), a complex fermion
Here o is the spinor index of SO(d), dimension 214/2].

i is the internal index, say i = 1,...n of SU(n).
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Microscopic field:
"7 (x,t), a complex fermion
Here o is the spinor index of SO(d), dimension 214/2].

i is the internal index, say i = 1,...n of SU(n).

Microscopic Lagrangian:

. 10 1 10 10
/ dt dx (wjaé‘tw + 5l AP — ppl,y +)
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Landau’s theory of Fermi liquids

Elementary example: Free fermions. Ground state:

kg

Lowest modes reside in the vicinity of the Fermi surface.
Example: 1 4+ 1 dimensions. Relativistic dispersion relation!

IR

21



Renormalization group analysis
RG scaling defined towards the Fermi surface:

great reviews: [Shankar, Polchinski, . . . |

= a submanifold ¥ in the (k,w) space
where gapless excitations are supported.

Infinite number of (naively) marginal couplings; angles 6 are like
an internal index; fascinating RG flows . . . ¢f. 2d sigma models!

22



Patterns of stability of Fermi surfaces

Stable Fermi surface — gapless excitations still there if system
slightly perturbed.

e Free fermions.
Stable, two-dimensional Fermi surface ( ~ S2).

e The A-phase of °He.
Interactions leave a stable Fermi point.

e Systems with a stable Fermi line?

23



e These are first signs of Bott periodicity,

e Stable Fermi surfaces are classified by K-theory!

24



Look at the inverse propagator (or the 1Pl two-point function).

Volovik, . ..

First define

Gy (k,w) = (17(0,0)8) ,(k,w))

and, introducing a collective index a = (¢,0), withi =1,... N =
2ld/2] . define / /

Go" = (G (k,w)
Stability of the Fermi surface: zeros of det G that cannot be
eliminated by a small perturbation.

25
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Hence, they must be protected by a topological “winding
number” :

e [V is always in the stable regime, mi_1 define K-theory!
o mp—1(GL(N)) = mp—1(U(N)).

Stable Fermi surfaces in Fermi liquids are classified
by K-theory.



For complex fermions, Fermi surfaces of codimension p + 1 in
the (k,w)-space are stable for p odd and unstable for p even.

Pattern of stability of Fermi surfaces is thus determined by Bott
periodicity of K-theory!

27



Dispersion relation at low energies

Given a stable, generalized Fermi surface X, we wish to know:

e \What are the lowest-lying modes y¢,

e What is their low-energy dispersion relation near ..

Recall from our discussion of D-branes that K-theory has

a universal construction of the non-trivial K-theory class in
K (R?"), the Atiyah-Bott-Shapiro construction.

The ABS construction will determine the universal features of
the dynamics of y“!

28
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Low-energy action for coarse-grained fermions:
S = /d,u(w,k, 6) (Xjﬂ)%xﬁ + .. )

The ABS construction implies that near the Fermi surface,

D=TI%"p,+...

At low energies, the dispersion relation of the
coarse-grained gapless fermions Y is governed by the ABS
construction.

x® exhibit an emergent relativistic dispersion
relation in the dimensions transverse to the Fermi surface. (Spin-
statistics nicely reproduced, . . .)



30

“I'- 2" versus “I" - p”

Traditionally, topology is important for solitons/instantons of
interacting field theories . . .

For Fermi liquids, topology of the momentum space classifies
free-field fixed points of RG.

Indeed, I' - p is just the Dirac operator . . .



More intricate, since now a real K-theory will be relevant.

Torsion classes in K-theory (Z5) will start appearing.
Naive guess: KO(R™) — incorrect.

A proper reality condition in the (k,w)-space leads to

31
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After the dust settles, one finds:

e Stable Fermi surfaces of codimension two, and more generally,
of codimension 2 + 4k;:

e Stable Fermi surfaces of codimension three and four (modulo
8), carrying a Zs charge in K-theory!

For example, in 2 + 1 dimensions, we now have a stable Fermi
point. Two such points can annihilate each other.



Only the tip of the iceberg.

One can impose extra symmetries.
Discrete, continuous, gauge.

Corresponding K-theories can be constructed, will classify stable
Fermi surfaces.

33



Topological defects in Fermi liquids

So far, we looked at the vacuum states, with space-time
translation invariance. K-theory will naturally extend to defects
and their stability.

Simplest case: Consider the semi-classical regime, h ~ 0.
Haldane, . . . : Fermi surface now a surface in (k,w, x,t).

Defects will be again classified by K-theory, low-energy dispersion
relations will be determined by the ABS construction.

(in progress © Berkeley)

The Fermi surface carries an effective tension.

[Fradkin et al., . . .]
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back to string theory . ..
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1 + 1 dimensional nonrelativistic fermions & strings:

e Old matrix models. Matrix quantum mechanics as
discretization of two-dimensional worldsheets propagating in
1 + 1 dimensions. The fermions emerge as eigenvalues, give
rise to the spatial dimension.



1 + 1 dimensional nonrelativistic fermions & strings:

e Old matrix models. Matrix quantum mechanics as
discretization of two-dimensional worldsheets propagating in
1 + 1 dimensions. The fermions emerge as eigenvalues, give
rise to the spatial dimension.

e New understanding of old matrix models. The fermions are
(unstable) DO-branes!
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e Half-BPS states in AdS/CFT. CFT reduces to a matrix model,
eigenvalues are fermions, correspond to the N original D3-
branes.

Supergravity solutions seeded by semiclassical Fermi droplets
in phase space.

[Jevicki et al., Berenstein, LLM, . . . ]
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Conclusions

Systematic classification of universality classes of stable Fermi
surfaces.
Possible applications to topological order

Topology is important even before solitons are introduced:;
in fact, topology classifies free-field RG fixed points!
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