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Quantum Field Theory (QFT) arises in the description 
of Elementary Particles, Statistical Mechanics, 
Condensed Matter, Stochastic Processes etc.  
 
It is a universal (albeit not rigorously defined) 
framework.



There are many possible QFTs and it is of interest to 
understand how they are related and what is the 
space of QFTs.  
 
One can start from a given QFT defined on a d-
dimensional space and deform it by some local 
operators  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The most fundamental and confusing observation is 
that the     are not really well defined. Their actual 
numerical value depends on the resolution of the 
experiment.  
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Satisfying an equation that tells us what happens if 
we change the resolution  
 
 
 
 
The functions      are in principle computable. They 
can be viewed as vector fields in the space of 
theories.
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As we decrease our resolution (i.e. decreasing   ), 
some couplings could be: 

• irrelevant: i.e. they go to zero    

• relevant: i.e. they increase  

• exactly marginal: i.e. they don’t change 
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If all the couplings are exactly marginal then the 
theory does not depend on the resolution and the 
symmetry is enhanced  
 
 
In this case we get a Conformal Field Theory (CFT) 

ISO(d) ! R⇥ ISO(d) ! SO(d+ 1, 1)



The general paradigm is 
that the couplings ‘’flow’’ 
as we change the scale 
but for very small (IR) 
and very large (UV) 
resolutions we approach 
some CFTs, where the 
couplings no longer flow.  
 



So we should imagine a very high-dimensional space 
with CFTs that are connected by flows that are 
triggered by relevant couplings. There are finitely 
many relevant couplings in each CFT.
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• Not much is known about this space except for 
some interesting crude features. 

• Many detailed results are however known about 
deformations of the CFT that do not break  
i.e. exactly marginal deformations,            .     

• It takes some sort of a miracle for            to happen.
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etc. 

One can argue that it only happens ‘’naturally’’ in 
d=2, c=1 models.  

hOi(0)Oj(1)Ok(1)i = 0
Z

ddzhOi(0)Oj(z)Ok(1)Ol(1)ic = 0



E.g. consider the c=1 compact boson (Luttinger Liquid). We 
have the exactly marginal operator  
 
 
 
and if the boson is complex we can also add a topological 
theta-angle term 
 
 
 
The space of exactly marginal deformations is  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But if           or          then one has to rely on various 
miracles in order to have exactly marginal operators.   
 
One “miracle” that can lead to exactly marginal 
operators is supersymmetry.  

Another “miracle” is infinite N.  

d 6= 2 c 6= 1



The space of exactly marginal deformations furnishes a 
Riemannian manifold,  
 
 
 
 
 
The exactly marginal couplings     provide coordinates on this 
space and the metric is given by  
 
 
 
The Ricci scalar formed from the metric is completely invariant 
under redefinitions of coupling constants etc.  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Going back to our complex boson, the metric on                       
                   can be calculated exactly. It is given by  H/SL(2, Z)
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• d=2, (2,2) Superconformal theories.      is Kahler. If  
our theory is a sigma model with Calabi-Yau target space, 
then      is the moduli space of complex structure and 
Kahler deformations. In string theory we identify the metric 
on      with the metric for the light fields in supergravity.  

• d=4,            theories.      is Kahler. For example, starting 
from             we have a      dimensional Kahler manifold of 
which only      preserves            . We know the metric in 
this specific direction                   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The information about the metric on these spaces is 
of interest. It cannot be extracted from standard 
results on SUSY field theories.  

The following idea appears to be very powerful. 
Given a CFT, one can place it in a canonical fashion 
on  Sd



Physically, these sphere partition functions can be 
related to the amount of entanglement in the vacuum.  
 
 
 
 
 
 
 

ZSd = �TrV (⇢V log ⇢V )
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Start from d=2n. The partition function       in CFTs does not 
have a preferred normalisation because of the counter-term  
 
 
 
 
With        the Gauss-Bonnet density. On the other hand, 
there is a trace anomaly that makes the partition function 
depend on the radius r as   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We have               ,                 in terms of the usual 
central charges. Other than these interesting 
coefficients, the partition function does not capture 
universal information. 

a2 = c/3 a4 = �4a



In d=2n+1 there is no counter-term. And there is also 
no trace anomaly. So we have, for instance,  
 
 
and     is independent of exactly marginal 
parameters.     is unambiguous. It is conjectured to 
be always positive. This assertion can be proven for 
topological QFTs. 
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A useful observation is that in supersymmetric 
theories such as d=2, (2,2) theories and           , d=4             
theories, the normalisation of the partition function 
becomes physical! One can prove: 
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The function                  is related to the metric on the space 
of exactly marginal operators by  
 
 
 
Therefore the function K is not intrinsically well defined 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• In general K is not globally defined. So it would 
seem like       is a section of            rather than a 
function. This leads to contradictions.  

• One therefore concludes that the Kahler class 
vanishes                                 . In particular,      
cannot be compact. 
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⇤
= 0 M



• This means that the moduli space of Calabi-Yau 
manifolds must have trivial Kahler class!  

• A simple check is that for            , the function    
 
 
is well defined in the fundamental domain.  

• The           partition functions can be computed 
using localisation. So there are rather explicit 
expressions for the metric on the moduli space of 
many interesting CFTs!  Weak coupling limits are 
typically infinitely far away.
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• In applications to string theory, it has already been 
expected that the Kahler class is integer because 
of considerations in 4d supergravity. We claim that 
actually it must vanish.  

• For the d=4,            case, AdS/CFT relates     with 
the vacuum manifold of  5d             supergravity. 
The known examples are consistent with the claim 
that the Kahler class vanishes.  
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Therefore it seems as if computing the sphere 
partition function in the space of theories produces 
interesting results. What happens if we allow for 
relevant perturbations that break the conformal 
symmetry?   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In general, the partition function now takes the form  

 
Such that for very small and very large radius we 
asymptote to the respective CFTs and then  
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• In all the known examples  
 
 
 
 
So the partition function on the spheres allows to 
foliate the space of theories — flows are irreversible.  

• Other than in d=2, we don’t know if the flows are 
gradient flows or maybe more complicated ones. 

• These inequalities appear to be related to a famous 
inequality in information theory  

cUV > cIR
fUV > fIR
aUV > aIR



Consider a tensor product space  

Define the density matrix (trace=1, semi-positive 
definite) to be        .  Then one can define       as a 
partial trace                          .  
One finds a nontrivial inequality  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• The space of theories has natural geometry on it. It 
is particularly rich in supersymmetric theories. 

• The space of QFTs has a natural foliation. Maybe 
even a gradient flow structure (remains to be 
proven/disproven). 

• The sphere partition function allows to probe these 
fascinating structures. 

• There seems to be some intriguing relation to 
information theory. 


