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Optimization and Physics

Combinatorial optimization

e Configurations :
8; € {0: 1})

N discrete variables (e.g. Boolean

o Energy (cost) function E(C); typically computable in
~ NY operations.

Optimization Pb: Find C* which minimizes F(C).
. Evaluation Pb: Find the cost E(C*).
Decision Pb: Is there a C with F(C)< Ey?

Examples:

Travelling Salesman Problem
Assignment

Spin glass

Eulerian circuit

Hamiltonian cycle

Colouring

Satisfiability

'Instance’ = 'Sample’

Optimization and Physics 1
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Examples

1)Travelling Salesman Problem

N points
C = tour; (N —1)1/2
E(C) = length

2)Assignment
Isabell Cleaning N persons, N jobs
C = assignment; N'!
Vincent Washing EC)=-— E affinities
Marc Supermarket
3) Spin glass

| * f . N spins

= spin configuration; 2V

f + E(C) = =) Jijoi04
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Classification: computational complexity

Worst case analysis of decision problems ;

Main Complexity Classes:

P = polynomial <> tractable, t < N*. Ex: Assignment,
Eulerian circuit, Spin glass in d = 2, RFIM, ...

NP = non-deterministic polynomial (A 'yes' solution can be
checked in polynomial time) <> many problems!

NP-complete: the hardest NP problems. Problem A is NPC
iff all problems in NP are polynomially reducible to it. (If A is
solvable in polynomial time, all problems in NP are solvable in
polynomial time).

Theorem (Cook, 1971): The SATISFIABILITY problem is
NP-complete.

Other NPC: 3SAT, TSP, Hamiltonian cycle, Spin glass in
e

P= NP}

Optimization and Physics 3
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Complexity map SATISFIABILITY
Conjectured (P # NP):
Example:
NP-complete 3.Colouring ..a theatrical director feels obligated to cast either his
SaT SSAT TSP (d) ingénue, Actress Alvarez, or his nephew, Actor Cohen, in a
Hamiltonian eycle production. But Miss Alvarez won’t be in a play with Cohen
(her former lover), and she demands that the cast include
NP her new flame, Actor Davenport. The producer, with her
own favors to repay, insists that Actor Branislavsky have a
2SAT P 5 colourt part. But Branislavsky won’t be in any play with Miss Al-
Bulerian cireuit o R varez or Davenport.[] Is it possible to satisfy the tangled web
of conflicting demands? ( from G. Johnson, The New York
Times 1999).
Possible (P = N P):
N Boolean variables: z; € {0,1} i=1,... ,N
i 3. Colouring M constraints =clauses like 1 V 27 V T3, Z11V Z2, ...
TSP (d)
. Foiiibei Pb: is there a choice of the Boolean variables such that all
constraints are satisfied (SAT)? Generic: conjunctive normal
NP = P = NP-complete form.
(.’L’l V xor V Cfg) A (.77..‘11 V £L'2) A ()
2SAT .
Eulerian circuit i
Assignment
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Worst-case vs. Typical-case

Computational complexity = worst case analysis.

Experimental complexity = typical case analysis: —» class
of samples (probability measure on instances).

Ex 1: CuMn at one percent Mn. Properties of the generic
sample with N > 1 variables?

Ex 2: Complexity of the random 3SAT problem. Three
variables per clause, chosen randomly in {z1,..,znx}, negated
randomly with probability 1/2:

(CL‘l VCL‘27V.’E3)/\(5311\/1:3\/1?2)/\.../\(.’139\/533\/.’330)

Control parameter: o = /= Constraints/Variables.
Numerically: Threshold phenomenon at a,. ~ 4.26.

Mitchell Selman Levesque Kirkpatrick Crawford Auton...;
Friedgut Kaporis Kirousis Lalas Dubois Boufkhad...

Optimization and Physics 6

Threshold phenomenon -3 Phase transition, complexity
much bigger near to the phase transition.

o | %SAT
Computer time
50 +
0 } L
a=M/N

e Easy, and generically SAT, for a < a,
e Hard, in the region a ~ a,
e Easy, and generically UNSAT, for a > a.
Optimization and Physics 7
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Typical-case complexity and Statistical Physics
Two types of questions:

e Properties of a generic sample: Phase diagram? (Theory +
experiment)

e Algorithms: improvement near phase transitions?

A first example of application: Simulated annealing

Boltzmann probabilities:

1 .
P(C) = e PEC)

Optimization = Find ground state (3 — oc). Particularly
difficult close to a 7" = 0 phase transition.

(3 finite: generalized problem, number of configuration at
a given energy; entropy, free-energy, phase transitions etc...
Useful from the algorithmic point of view (simulated anneal-
ing+...). Useful from an analytic point of view...

Optimization and Physics 8

Statistical physics of the random 3SAT problem

Monasson, Zecchina, Biroli, Weigt, ..... , MM, Parisi,
Zecchina: — Phase diagram + New algorithm.

1- Analytic result: Three phases, clustering phenomenon

SAT(E, =0) UNSAT (E />0)

noosa Lo

1 state Many states Many states
OQE=0 @E>0 @:E>0
/1
1/
— o=M/N
o 3921 o =4.267

2- A new class of algorithms

In the Hard-SAT phase ag < a < a.: how to handle the
proliferation of metastable states with E > 0: a new message
passing algorithm: “survey propagation”

Optimization and Physics 9
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States and complexity

Minimum Energy Cconfigurations: energy cannot be low-
ered by a finite numberof flips

State: { MEC connected by finite flips }. (Rigorous study
on “XORSAT": precise algorithmic definition of states).

Proliferation of states: At a > a4, exponentially large
number of states:

N(E) ~ exp (N3 (5))

Qualitative behaviour of the complexity 3:

z

0 <O

Optimization and Physics 10

Main steps
e Graphical representation: 3SAT as a random graph

e Elementary message passing procedure (Bethe approxima-
tion): an algorithm when there is a single state.

e The many states situation: cavity method — passing
surveys of elementary messages.

Optimization and Physics 11
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Graphical representation:

One clause a:
Boolean: z; V3 V Z3 [
:
1
. b — 1—81 1489 1—33 :
Ising Spins: B, = 5 52 = @

(Z1 V Fa V E4)\(T1 V T2)
A(za V x4 V 25)A (21 V 22 V Fs)

/'\(1131 VgV $5)

Optimization and Physics 12

Geometry: tree-like structure

— 3-spin interactions on a random hypergraph

'
\
.
‘% o Loops

O
i?u‘o
O

Locally tree-like, but loops of order log V.

k
Proba(var. with connectivity=k) = (3—;L6_3°.

— Possible to use iterative methods (Bethe lattice) to solve
the statistical physics problem.

— Possible to use iterative methods (message passing) as
an algorithm.

Optimization and Physics 13
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Simple message passing: belief propagation

Message= warning sent from a clause to a variable:

Converges and gives the correct answer on a tree: SAT iff
no contradictory message

Optimization and Physics 14

Statistical physics analogue
Bethe approximation:

-B|E 152, —h(a} —ple) —h(a)
P(81,32,83)(xe '6[ a(S] 52 33) 1 51 5 82 3 83]

e E ,59, _}5”.’ _h(a)
Pcav'i.t'y(sl) X § : € ﬁ[ i Ll 53]
82,83

= Peguity(81) e_ﬁ[u“—”(""ézu:'sh:(aa))sl]

Optimization and Physics
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Proliferation of states

Belief propagation (Bethe approximation) works if one can
neglect the correlations between the input fields (tree).

Random 3SAT “locally tree-like": generically, s2 and s3 are
very far away (distance O(log(NN))) — Uncorrelated if there is
a single pure state.

— OK for a < ag (Easy-SAT phase).

— Wrong in the Hard-SAT: Proliferation of local ground
states, stable to finite number of spin flips.

State proliferation hypothesis:

(B o (3 ()

Y(e): complexity.

Optimization and Physics 16

From belief propagation to survey propagation

Message with many states= Survey of the elementary
messages in the states of energy density e:

Qur1(u) = c*g 5 (ue,, —u) 6 (F _ e)

Propagate the surveys along the graph. Converges!

— Results on the phase diagram and the complexity (generic
sample), but also information on a single sample.

Qa—1(w) = (1 — Na—1) 6(u) + Mas10(u — 1)
parametrized by a single number 7,_,; = probability of a
warning being sent.

Optimization and Physics 17
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Survey propagation

Optimization and Physics
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Thermodynamics and complexity

Qualitative behaviour of the complexity as the function of
the number of constraints per variable:

E

o <0

E/N

0.03 | ' ' ’ ' ' A

0.02 -

™~

0.01

0 T —
3.8 4 4.2 4.4 46 4.8 5
Olp O o
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Single sample analysis

Order parameter= Survey of local magnetizations, in all
states — Algorithm for the Hard-SAT phase.

For each variable s;: fraction of SAT-states where s; = 1.

Check: compute many ground state with a stan-
dard algorithm, average the local spin in each state:
I T i ) f T T T ! . [}
0.8 -

0.6 .
0.4 .

m (SAT conf.)
=

I 08 06 -04 -02 0 02 04 06 08 I
m (SP)
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Survey Inspired Decimation

An algorithm to solve the Ksat problem: fix the spin
which is most biased, rerun the survey propagation, iterate...

200 +

150

100 |

50

Solves the ’large’ hard benchmarks of random 3sat at
a = 4.2 with N = 1000, 2000.

Solves typical random 3sat up to N = 107 at a = 4.2.
Complexity O(N log N).

Best known algorithm: “walksat35" stops around N = 10*

Local surveys of magnetic fields — a lot of information.
Probably possible to invent many new algorithms.

Optimization and Physics 21
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Digression: unsatisfied glasses

Glass formation in systems with short range repulsion (e.g.
hard spheres): geometric frustration. Local densest structure
(icosahedral) incompatible with long range crystalline order.

Lattice glass models (Biroli MM, Coniglio et al.,...): density
constraint

Many local constraints.

Bethe approximation:

Density constraint: £n_ < m

Many states

Liquid Few states dominate

0
Pd |3c p

Dynamical Static transition

transition

Summary

e Analytic result on the generic samples of random 3sat:
Phase diagram.

e Slowdown of algorithms near to o, = 4.267 due to the
existence of a Hard SAT phase at o € [3.921,4.267], with
exponentially many states.

e The whole construction can be checked versus rigorous
computations on the “random XORSAT" (or “3 spin glass”)
problem. (MM, Ricci-Tersenghi, Zecchina; Cocco, Dubois,
Mandler, Monasson).

e Single sample analysis: Survey propagation converges,
yields non trivial information on the sample (diversity of
sites) — Survey Inspired Decimation: a very efficient al-
gorithm for solving random 3sat problems. Also applicable
to many “constrained satisfaction problems”, e.g. graph
colouring (Mulet, Pagnani, Weigt, Zecchina).

e Similar mechanism is involved in the generation of long
relaxation times in glasses (mena field).
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