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• Jim Moody (paraphrased): “I’ve been accused of 
turning everything into a network.”

• PJM (in response): “I’m accused of turning everything 
into a network and a graph partitioning problem.”

• “Structure �� Function” but we’ve only had tools for 
identifying structures in limited settings

Philosophical Disclaimer

How to extend the notion of modularity in networks 
to multiple networks between the same actors/units, 
i.e. how to properly use identity in modularity?
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“Structure �� Function/Process”

Images by Aaron Clauset
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Community Detection Preliminaries

• Computational sledgehammer for large data

• “Hard/rigid” v. “soft/overlapping” clusters

• A community should describe a “cohesive group,” and there 
are varying formulations and algorithms
– Linkage clustering (average, single), local clustering coefficients, 

betweeness (geodesic, random walk), spectral, conductance,…

• Classic approach in CS:  Spectral Graph Partitioning• Classic approach in CS:  Spectral Graph Partitioning
– Need to specify number of communities sought

• Modularity:  a good partition has more intra-community 
edges than one would expect at random

• But what does “at random” mean?!?

• Definitional identity arcs are fully expected

“Communities in Networks,” Porter, Onnela & Mucha,

Notices of the American Mathematical Society 56, 1082-97 & 1164-6 (2009).

“Community Detection in Graphs,” S. Fortunato, Physics Reports 486, 75-174 (2010).
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• Girvan & Newman (2002): “Community Structure”

– Building from biology, computer science, and sociology: 

spectral graph partitioning, hierarchical clustering, and 

cohesive social groups
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Community Detection:  Null Model & 

Computational Heuristics

• GOAL: Assign nodes to communities to maximize 
modularity (however, typically there may be many near-

•

modularity (however, typically there may be many near-
optimal configurations [Good, de Montjoye & Clauset])

• Cannot guarantee optimal modularity without full 
enumeration of possible partitions
– NP-complete problem

• Numerous packages developed/developing
– e.g. igraph library (R, python)

– Need to pick null model appropriate to problem

8



Modularity (Newman-Girvan)

• Independent edges, constrained to expected 
degree sequence same as observed.

• Requires Pij = f(ki)f(kj), then quickly yields

• γ resolution parameter ad hoc (default = 1) 
(Reichardt & Bornholdt, Lambiotte et al.)

• Modularity problems [that we will table for today]:
Resolution limit (Fortunato & Barthelemy), 
Degenerate landscape (Good, de Montjoye & Clauset)
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Community Detection:  Other Models

• Erdos-Renyi (Bernoulli) • Newman-Girvan*

• Leicht-Newman* (directed) • Barber* (bipartite)

Similar back-of-envelope calculation with

identity arcs fails because they are definitional
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Zachary Karate Club

The partition optimizes modularity, which measures the 

number of intra-community ties (relative to randomness)
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Metabolic Networks
(Guimera & Amaral, Nature 2005)
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Mobile Phones 
(Onnela et al., PNAS 2007)
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Facebook (Traud, Kelsic, PJM & MAP [arXiv])
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Congressional Committees
(MAP, PJM, Newman, Warmbrand & Friend 2005, 2006 & 2007)
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Congressional Cosponsorship
(Zhang, Friend, Traud, MAP, Fowler & PJM 2008)
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Congressional Roll Call
(Waugh, Pei, Fowler, PJM & MAP [arXiv])
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Congressional Roll Call (Moody & Mucha)
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2. Multislice Networks
• All of the examples above are on static networks, 

with a single kind of tie, partitioned at a single 
spatial resolution

• Real-world networks: dynamic, multiplex, and 
with communities at multiple scales!

• Easy Part: Glue together common individuals• Easy Part: Glue together common individuals

• Hard Part: Include identity arcs in null model
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What is the appropriate null model?

• Each slice is a network (static, single type) 

with a specified spatial resolution of interest

• Cross-slice ties are structurally defined, so 

they are always there “at random” and 

therefore do not contribute to modularity?!?
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A Way Out: Laplacian Dynamics

• Lambiotte, Delvenne & Barahona [arXiv:0812.1770] 

showed a way to derive modularity from normalized 

Laplacian dynamics, defining partition quality in 

terms of stability (autocovariance in Markov process)

Expansion of matrix exponential to first-order in t recovers 

Newman-Girvan modularity with resolution γ = 1/t.

So how do we apply this idea to multislice networks?
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Multislice Modularity Derivation

• Generalized Lambiotte et al. to rederive

standard null models for bipartite (Barber), 

directed (Leicht-Newman), and signed 

networks (Traag et al.).networks (Traag et al.).

(1) Conditional probabilities based on link type

(2) Multiple types of flows (direction/signs)

(3) Different time scales along different links
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Multislice Modularity Derivation

• Generalized Lambiotte et al. to rederive

standard null models for bipartite (Barber), 

directed (Leicht-Newman), and signed 

networks (Traag et al.).networks (Traag et al.).

• Resulting generalization applied to multislice:

within slices

adjacency data 

cross-slice

identity arcs 
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Examples

• Return of the Zachary Karate Club

• Tastes, Ties & Time

• Historical Congressional Roll Call

within slices

adjacency data 

cross-slice

identity arcs 

24



Zachary Karate Club
16 resolution slices by 34 nodes

Note presence of obviously non-optimal assignments

(value to making multislice-specific algorithms)
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Tastes, Ties & Time

• Lewis et al. 2008

• First wave of private 

northeastern school

• Facebook friends

• Picture friends

• Roommates

• Housing Groups
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Roll Call Networks

• Modularity as a measure of polarization

• Modularity as a predictor of majority turnover 

(the “partial polarization hypothesis”)
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Roll call as a network?

Scientific Coauthorship v.       Roll Call Similarities 
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Polarization in Roll Call Networks
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110 Senates (two-year Congresses)
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Generalized Dynamics

a) Calculate stability (to first-order-in-t) 

corresponding to independent probability of 

observing nodes i and j, conditional on the 

type of connection necessary to move j � i.type of connection necessary to move j � i.

b) Generalize dynamics to include motion along 

different types of edges.

c) Different spreading weights on different 

types (in stability definition, cf. in dynamics)

35



a) Bipartite Networks

• Recover Barber null model with resolution:
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b) Directed Networks

• Recover Leicht-Newman null model w/resolution:
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c) Signed Networks

• Recover null model of Traag et al. & Gomez et al.:
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Multislice Networks
(note extra indices explicitly denoting slices here)
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Summary

• Community structure provides a powerful tool to 
simplify the description of a network

• “Multislice” framework extends modularity to 
more complicated (and more interesting!) 
situations of dynamic data, multiplexed ties, and 
communities across multiple scalescommunities across multiple scales

• Applications: fMRI (Bassett et al.), international 
relations (w/Cranmer), finance (w/Blocher)

• Issues to address: Many local optima (see, e.g., 
Good, de Montjoye & Clauset) means we need a 
good statistical mechanics of partitions
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