First Science Results from the Large Underground Xenon (LUX) Dark Matter Experiment

Harry Nelson KITP October 30 , 2013 LUX@UCSB: HN, María del Carmen Carmona Benítez, Scott Haselschwardt, Susanne Kyre, Curt Nehrkorn, Dean White, Mike Witherell ^{HNN} Scientific Christening of the new Sanford Laboratory

10/30/2013

KITP

HNN

LUX

Curt Nehrkorn Helping Test Xenon Recovery Balloon

10/30/2013

HNM

The LUX

Collaboration SD School of Mines

Richard Gaitskell Simon Fiorucci Monica Pangilinan Jeremy Chapman David Malling James Verbus Samuel Chung Chan **Dongqing Huang**

PI, Professor

Postdoc

Research Associate

Thomas Shutt	PI, Professor
Dan Akerib	PI, Professor
Karen Gibson	Postdoc
Tomasz Biesiadzinski	Postdoc
Wing H To	Postdoc
Adam Bradley	Graduate Student
Patrick Phelps	Graduate Student
Chang Lee	Graduate Student
Kati Dach	Graduato Student

Imperial College Imperial College London London

Henrique Araujo	PI, Reader
Tim Sumner	Professor
Alastair Currie	Postdoc
Adam Bailey	Graduate Studer

Lawrence Berkeley + UC Berkeley

PI. Leader of Adv. Detectors Group

Mechanical Technician

Staff Physicist

Staff Physicist

PI. Professor

Postdoc

Postdoc

Postdoc

Postdoc

Assistant Professor

Senior Researcher

Engineer

Bob Jacobsen	PI, Professor
Murdock Gilchriese	Senior Scientist
Kevin Lesko	Senior Scientist
Carlos Hernandez Faham	Postdoc
Victor Gehman	Scientist
Mia Ihm	Graduate Student

Lawrence Livermore

Adam Bernstein Dennis Carr Kareem Kazkaz Peter Sorensen John Bower

10/30/2013

Isabel Lopes Jose Pinto da Cunha Vladimir Solovov Luiz de Viveiros Alexander Lindote Francisco Neves Claudio Silva

Doug Tiedt	
SDS"	TA

Xinhua Bai

Tyler Liebsch

David Taylor Mark Hanhardt

James V

Robert Rachel

Clemer

Vhite 🕇	PI, Professor
Webb	PI, Professor
Mannino	Graduate Student
it Sofka	Graduate Student

UC Davis

Care -	
Mani Tripathi	PI, Professor
Bob Svoboda	Professor
Richard Lander	Professor
Britt Holbrook	Senior Engineer
John Thomson	Senior Machinist
Ray Gerhard	Electronics Engineer
Aaron Manalaysay	Postdoc
Matthew Szydagis	Postdoc
Richard Ott	Postdoc
Jeremy Mock	Graduate Student
James Morad	Graduate Student
Nick Walsh	Graduate Student
Michael Woods	Graduate Student
Sergey Uvarov	Graduate Student
Brian Lenardo	Graduate Student

PI, Professor

Graduate Student

Graduate Student

Project Engineer Support Scientist

UC Santa Barbara

Harry Nelson	PI, Professor
Mike Witherell	Professor
Dean White	Engineer
Susanne Kyre	Engineer
Carmen Carmona	Postdoc
Curt Nehrkorn	Graduate Student
Scott Haselschwardt	Graduate Student

≜UC University College London

Chamkaur Ghag PI, Lecturer Lea Reichhart Postdoc

University of Edinburgh

PI, Reader

Postdoc

PI, Professor

Senior Scientist

Graduate Student

Graduate Student

Research Fellow

Alex Murphy Paolo Beltrame James Dobson

University of Maryland

Carter Hall

Attila Dobi

Jon Balaithy

KITP

PI. Professor Graduate Student **Richard Knoche** Graduate Student Graduate Student

80 University of Rochester 0

Frank Wolfs Wojtek Skutski Eryk Druszkiewicz Mongkol Moongweluwan

PI, Professor
Postdoc
Graduate Student
Graduate Student
*Now at SDSTA

Chao Zha

Angela Cl

Chris Chi Dana Byr

Brian Tennyson Ariana Hackenburg Elizabeth Boulton

Yale Lecturer/Research Scientist Graduate Student Graduate Student

Graduate Student

Graduate Student

Graduate Student

LUX Collaboration in Isla Vista 2012

10/30/2013

HNN

HNN Energy in Our Universe

HNN

Weak Interaction Diagrams

$\sigma_{nucleon} \approx 10^{-38} \text{ to } 10^{-50} \text{ cm}^2$

Experimental Method

10/30/2013

HNN

Milky Way: mainly a dark cloud

Sun: moves in plane of disk $v/c = \beta \cong 0.7 \times 10^{-3}$

Particles in `halo' : 3-d $\rho = mc^2 \times n \cong 1/3 \text{ GeV/cm}^3$ (1/2 of total mass density) Maxwellian/Gaussian (simple) $v/c = \beta \cong 0.7 \times 10^{-3}$

KITP

Disk

Bulge

 χ^0

Massive: $M_{\chi}c^2 \approx 100 \text{ GeV}$

`Weak Scale'

We use Xenon, A=131, mc²=122 GeV others: Si, S, I, Ge, W

 $v/c = \beta \cong 0.7 \times 10^{-3}$

 $E_{R} \approx \frac{1}{2} m_{Xe} c^{2} \beta^{2}$ $\approx (1/4) 122 \text{ GeV}/(10^{6})$ $\approx 30 \text{ keV}$ $\approx x \text{-ray energy ! Easy!}$

10/30/2013

Signal Shape

KITP

HNN

10/30/2013

The Attractions of Xenon

- Large atomic weight, A, about 131
- No long lived radioactive isotopes (not Ar, Kr) (!)
- Scintillates all by itself with no additives (!)
 - > Response different for electron vs. nuclear recoils (!!)
 - > UV easier than Kr, Ar, Ne, He glass, no wave shifter
- Boiling point (165K) above liquid nitrogen (77K)
- Liquid can be continuously Purified
 - > Heat, Clean, Condense... LUX Thermosyphon, Heat Ex.
- One big detector, self shields... aluminum floats
 - > 2-phase time projection chamber (TPC)

HNN

KITP

LUX

keVee

keVnr

HNN

Xenon 100 Separation (flattened)

10/30/2013

HNN

LUX being built

10/30/2013

In the tank and detailed cross section

HNN

KITP

HNN

The LUX Water Tank

1 mile underground near Mount Rushmore in SD (Lead, Homestake Mine)

25 foot diameter20 foot heightStainless/pickled

70,000 gallons of ultrapure water (>18 MegaOhm-cm)

Recirculated/cleaned once/week

10/30/2013

LUX Is Underwater (Fall 2012)

10/30/2013

HNN

No Swimming (Yet)

10/30/2013

HNN

KITP

HNN Dean & Susanne

10/30/2013

Typical Event in LUX

- Over 1 million Kr-83m events, giving over 10 events/cc
 - Kr-83m 1.8 h 1/2 life injected into the detector (like Radon), decaysFiducial volume determinationPosition-based S1 corrections

KITP

JIX

Calibration of LUX Response

33

Black circles show leakage from counting events from the dataset Red circles show projections of Gaussian fits below the nuclear recoil band mean

^HModel of Detector Response

- S2-only
- S1-only 0
- S1, S2 combined, before threshold cuts ∇
- S1, S2 combined, after threshold cuts +

LUX

HNN Gamma Ray Environment

Background Component	Source	10 ⁻³ x evts/keVee/kg/day
Gamma-rays	Internal Components including PMTS (80%), Cryostat, Teflon	$1.8\pm0.2_{stat}\pm0.3_{sys}$
¹²⁷ Xe (36.4 day half-life)	Cosmogenic 0.87 -> 0.28 during run	$0.5 \pm 0.02_{stat} \pm 0.1_{sys}$
²¹⁴ Pb	222Rn	0.11-0.22 _(90% CL)
⁸⁵ Kr	Reduced from 130 ppb to 3.5±1 ppt	0.13±0.07 _{sys}
Predicted	Total	$2.6\pm0.2_{stat}\pm0.4_{sys}$
Observed	Total	3.1±0.2 _{stat}

Event & Cuts Summary: 86 live days

Cut	Explanation	Events Remaining
All Triggers	S2 Trigger >99% for S2>200 phe	83,673,413
Detector Stability	Cut periods of excursion for Xe Gas Pressure, Xe Liquid Level, Grid Voltages	82,918,901
Single Scatter Events	Identification of S1 and S2. Single Scatter cut.	6,585,686
S1 energy	Accept 2-30 phe (low energy <5 keVee,<25 keVnr)	26,824
S2 energy	Accept 200-3300 phe	20,989
S2 Electron Trains	Cut if >100 phe outside S1+S2 identified. (0.8% drop in livetime.)	19,796
Drift Time Cut away from grids	Cutting away from cathode and gate regions, 60 < drift time < 324 us	8731
Fiducial Volume	Radius < 18 cm, 38 < drift time < 305 us, 118 kg fiducial	160

10/30/2013

HNN Fit Projections – All Bkgd Rejected at 66% CL

10/30/2013

WIMP Mass 7 GeV Limit (Higgs Technology)

HNN High Mass Limits

10/30/2013

KITP

Expand the Vertical

KITP

Low Mass Limits

10/30/2013

KITP

The Future

- LUX 300 day, blinded run, 4X sensitivity in 1 year
- Upgrade... LZ (LUX-ZEPLIN) to 7 tonnes
 - > Factor of 20 in mass
 - $\rangle\,$ Factor of 100 in sensitivity... $10^{\text{-}48}\,\text{cm}^2$
 - Background from atmospheric, solar neutrinos starts to creep in.
 - > 2017

KITP

The Future of Direct Detection (SI)

10/30/2013

KITP

HNN

10/30/2013

1000 GeV Signal a la Xenon-100

•Pick a mass of 1000 GeV and cross section at the existing XENON100 90% CL Sensitivity 1.9x10⁻⁴⁴ cm² - Would expect 9 WIMPs in LUX Search

10/30/2013

KITP

8.6 GeV Signal a la CDMS Si

•At a mass of 8.6 GeV and cross section favored CDMS II Si (2012) cross section 2.0x10-41 cm2 - Expect 1550 WIMPs in LUX Search

10/30/2013

KITP