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Purpose of talk

• To find the elements characterizing the new science according to

S. Wolfram.
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Purpose of talk

• To find the elements characterizing the new science according to

S. Wolfram. (There are some new interesting features.)

• To analyze philosophical significance of these new elements. (I see

some interesting questions being raised, but I am bad in

philosophy.)

• To see if traditional science can help with the new one. (It

probably can.)

• To see implications of new science to traditional one (thus to

ours, as scientists, well-being). (Probably very few: New science is

not predictive).
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Not the purpose of the talk

• Criticize the citation and the presentation style.
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Not the purpose of the talk

• Criticize the citation and the presentation style.

• Criticize the (possible) immodesty of the text.

• Analyze social, ownership, and scientific conduct issues

connected to some results.

• Analyze other people reviews and opinions.
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Structure of the book and the talk

Chapters 1-6 Zoology of cellular automata and other simple

programs.
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Structure of the book and the talk

Chapters 1-6 Zoology of cellular automata and other simple

programs.(This is a complete and well developed part

that show some intriguing results.)

Chapters 7-9 Application to natural sciences.(Range from some

cute, but probably useless, to grand claims, which are

not supported by experiment, but are provocative and

not outright absurd.)

Chapter 10-12 The concept of computation.(Philosophical, but little

scientific value.)

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start
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Simplest cellular automata

= 30
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Looks random, at least partially
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Other examples

Evolves to a simple fixed point.
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Other examples

Moves points to the right.
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Other examples

Superposition of nested structures. Randomness with structure.
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Other examples

Semi-random behavior.
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Other examples

Intricate behavior – interacting structures.
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Other simple programs

• 2-d, 3-d cellular automata (cf. Game Of Life)

• Multicolor, long range or memory cellular automata

• Mobile automata and Turing machines

• Substitution, multiway, and symbolic systems

• Register machines (common computers)
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Other simple programs

• 2-d, 3-d cellular automata (cf. Game Of Life)

• Multicolor, long range or memory cellular automata

• Mobile automata and Turing machines

• Substitution, multiway, and symbolic systems

• Register machines (common computers)

• Numbers for generating structure, randomness, or complexity

? arithmetic operations in different bases (remember linear congruential random number

generators)

? recursive sequences, continued fractions (roots, etc.), networks

? primes and important constants (e is nested, π is not)

? iterated maps and chaos
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Observations
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• Different types of behavior are possible, from very simple to very

complex, or to very random (But what is complex or random?)

• This holds for random and regular initial conditions

• For constrained systems (time reversal, symmetry, etc.) more

complex rules are needed

• Simple programs may generate complex output

• Beyond some threshold, adding complexity to rules does not

increase complexity.

• Only for few programs details of the output can be easily

predicted. (But why do we need details? Remember stat. mech.)
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• Constraints that are possible to satisfy exactly are bad at

producing complex behavior
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• Constraints that are possible to satisfy exactly are bad at

producing complex behavior

• Nothing interesting happens for finite systems and in 0+1

dimensional systems (Smells like stat. mech.)

• Not a single example of continuous system shown (continuous CA

are not good)
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What have we learned about ANKOS?

• Exhaustive search and computer simulations
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What have we learned about ANKOS?

• Exhaustive search and computer simulations

• Complexity of the world may come from simple programs.
Intuition from traditional science . . . has always tended to suggest that unless one
adds all sorts of complications, most systems will never be able to exhibit any
relevant behavior.

• Threshold of non-short-cuttable complexity is low – traditional
science cannot study most systems and consciously limited itself.

With its strong emphasis on simple laws and measurements of numbers, physics has
normally tended to define itself to avoid complexity.

• Should focus on discrete simple systems and on evolution, rather

than constraints.

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start
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Did we really not know that?

• Computers are used

• Computer simulations needed for finding positions of gas

molecules in the room, but these features are not predictive, and

we do not study them because it does not make sense (though see

below)

• Nothing is simpler than a harmonic oscillator, but a lot of them

make QFT (and us). (The analogy with QFT can possibly be

made more precise – ordered, random, critical phases. Governed

by strength of couplings, and thus by predictability and

information transmission.)
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Classification
Done on the basis of behavior for random initial
conditions (But we don’t know what randomness is).

Class 1 Evolves to a stable state. Insensitive to initial condition.
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Classification
Done on the basis of behavior for random initial
conditions (But we don’t know what randomness is).

Class 1 Evolves to a stable state. Insensitive to initial condition.

Class 2 Evolves to a periodic state (or approximately nested

state). Somewhat insensitive to initial conditions.

Class 3 Behaves randomly. Initial condition changes propagate

linearly.

Class 4 (Semi)-random structure on top of regular background.

Initial conditions changes propagate sublinearly. (Or on

top of a completely random background – see rule 18,

then the background is linearly sensitive to

perturbations, while foreground remain sublinear.)
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Problems

• The classification is purely visual

. . . I based my classification purely on the general visual appearance of the pattern. . .

. . . [T]here are rules . . . that show some features of one class and some of another.
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Problems

• The classification is purely visual

. . . I based my classification purely on the general visual appearance of the pattern. . .

. . . [T]here are rules . . . that show some features of one class and some of another.

• One must talk about ensembles of possible initial conditions –

complexity is a function of the rule and a typical set of initial

conditions. Example: usually random CA30 may behave like:
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Possible solution
There exists complexity classification scheme (Bialek, Nemenman,

Tishby, 2001) based on predictability – mutual information between

past and future.

Ipred = I(past, future)
|future|→∞→ Ssubextensive(past)
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Tishby, 2001) based on predictability – mutual information between

past and future.
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– zero vs. growing function)

• Predicting future is impossible in

CA30 – too fast information spread

• May be viewed as learning initial

conditions
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What is randomness?

Three types of randomness:

• from the environment (stochastic models)
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What is randomness?

Three types of randomness:

• from the environment (stochastic models)

• from sensitivity to initial conditions (chaos, shift map)

• intrinsic randomness generation from regular initial conditions (it

is unclear that regular i.c.’s are not just a typical example of a set

of random i.c.’s; definition of randomness is needed, and

Algorithmic Complexity is not an option)

Definition: Random sequences are those that look random if

analyzed by simple programs.

• This makes CA classification ambiguous
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• Is there really distinction between 2 and 3? (shifts with XOR)
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• Is there really distinction between 2 and 3? (shifts with XOR)

• It is possible that there are no truly random sequences (including

quantum mechanics) – everything is internally generated

• Random number generators – intrinsic generation of (bad)

randomness. Maybe the world is just like that.

• Relations to perception

• Resolves unattainability of Algorithmic Complexity

• Similar to: random in this particular model (Shannon’s

information theory), conditionally complex (individual randomness

in Algorithmic information theory)

• Mathematica’s Random[Integer] uses CA30
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How to distinguish cases?
• Look for seemingly random but repeatable behavior with careful

initial condition specification.
. . . i have seen evidence of repeatable randomness as a function of time in published
experimental data. . .

Example: simulating turbulence with CA
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How to distinguish cases?
• Look for seemingly random but repeatable behavior with careful

initial condition specification.
. . . i have seen evidence of repeatable randomness as a function of time in published
experimental data. . .

Example: simulating turbulence with CA

(How does this help?)

• There’s probably not enough randomness to case type 1 behavior

(But electron moving 1cm at the nearby star is felt 10−5 sec later.)

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start
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What is complexity?

• “In the traditional science it has been assumed that any result that is not essentially

independent of the process of perception and analysis used to obtain it cannot be definite

or objective enough to be of much scientific value.”
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What is complexity?

• “In the traditional science it has been assumed that any result that is not essentially

independent of the process of perception and analysis used to obtain it cannot be definite

or objective enough to be of much scientific value.” (Like in learning: priors are

important.)

• All of our sensory systems and analysis tools can pick up structure

only in limited cases. (Relations to unattainability of AC.)

• “Just as one does not need a formal definition of life . . . to study biology, so also it [is]

. . . not necessary. . . to have a formal definition of complexity.”

• Not rigorous definition

. . . [T]he greatest complexity lies . . . in systems that neither stabilize. . . , nor exhibit
close to uniform randomness forever.
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. . . determine complexity . . . by using our eyes and powers of visual perception.
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. . . determine complexity . . . by using our eyes and powers of visual perception.

• Complexity with respect to what? (But what about predictive

complexity?)

• How can such definitions be argued against, be tested, be used?

• Logical depth – the number of computations; CA’s are complex in

this measure.
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• Intrinsic randomness generation; and there may be no other kind

• Do not assume equilibrium

• Do not solve equations (constraints); simulate evolution rules
. . . [W]henever the behavior is of significant complexity its most plausible explanation
tends to be some explicit process of evolution, not the explicit satisfaction of
constraints.

• Programs as models – as good as equations as models
. . . [T]raditional matematic[s] . . . say[s] that the motion of a planet is governed by
. . . differential equations. But one does not imagine that this means that the planet
itself contains a device that explicitly solves [them].
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Is this really new?

• We are developing nonequilibrium stat. mech.

• Constraints are implicit evolution rules – I don’t see a difference

here (note also evolution operator)

• In traditional science we try to make predictions; programs have

to be executed to the end – they are not predictive (see the irreducibility

section)

• Prediction works – we are not hit by moving trucks (Wolfram

would probably argue that these are all simple cases)
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Biology
• “I. . . believe . . . that many of the most obvious examples of complexity in biological systems

actually have very little to do with adaptation or natural selection. . . [I]n almost any kind
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• “I. . . believe . . . that many of the most obvious examples of complexity in biological systems

actually have very little to do with adaptation or natural selection. . . [I]n almost any kind

of system many choices of underlying rules inevitably lead to behavior of great complexity.”

• “[V]ast majority of features of biological systems do not correspond to anything close to

optimal solutions. . . ” (I cannot agree with this)

• Natural selection only makes things simpler; operates on simple

parts of organisms

• Bacteria are the most optimal – they produce the most offsprings.

Higher organisms are “random mutations that happened to add . . . features

without . . . fatal flaws”

• Can explain things a posteriori – this is not predictive science

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start
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Simple programs in biology
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Simple programs in biology

Reaction–diffusion process
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• . . . Remarkably simple programs are often able to capture the essence [of fundamental
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• . . . Remarkably simple programs are often able to capture the essence [of fundamental
physics] – even though traditional efforts have been quite unsuccessful

(Have they?)

• reversibility requires more complicated rules

• due to intrinsic randomness generation some reversible CA exhibit

seemingly irreversible behavior – [this is] the central phenomenon responsible

for the Second Law of Thermodynamics

• in practice no entropy decrease is seen since we start with low

entropy states (!)

• The Second Law is an important and quite general principle—but it is not universally valid.
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Space–time
• [It could] be that underneath all the complex phenomena we see in physics there lies some

simple program which, if run for long enough, would reproduce our universe in every detail.
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Space–time
• [It could] be that underneath all the complex phenomena we see in physics there lies some

simple program which, if run for long enough, would reproduce our universe in every detail.

• No need to assume space-time as continuum

• . . . [T]he universe might work as a mobile automaton or Turing machine. . .

Causal space–time network effectively numbers

each 4d point and arranges them in order of causal

relevance (partially ordered sets)

• multiway universes may sample different histories

• How is this all testable?
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Problems, solutions, and further problems

• Relativity: one step in network – `P , tP ; different causal cuts

through the network

• Can recover time dilation and other spatial properties

• Cannot get E = mc2 and other non-spatial aspects

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start
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Elementary particles and gravity

• Defects in the network of space–time
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Elementary particles and gravity

• Defects in the network of space–time

• Interactions preserve the total number of (space) network nodes

• Akin to stable structures

in cellular automata
• Gravity is changing the pattern of connections and getting

curvature – the number of nodes within a given distance from the

center depends on the Ricci scalar
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News about ANKOS

• Space, time, interactions, particles emerge from the same

space–time network.
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News about ANKOS

• Space, time, interactions, particles emerge from the same

space–time network. (But at the GR level matter should be put in

explicitly.)

• Randomness of Quantum Mechanics is intrinsically generated

• EPR–type problems may be overcome by “threads that continue to connect

particles” (But no details are given.)

• Some interesting properties of physics are obtained

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start



35

Computations

• Everything is computation (e. g., motion of fluid – solving

Navier-Stokes equation)

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start



35

Computations

• Everything is computation (e. g., motion of fluid – solving

Navier-Stokes equation)

• Some computations are reducible, but some are not, hence limits

of traditional science. (Do we care about irreducible results?)

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start



35

Computations

• Everything is computation (e. g., motion of fluid – solving

Navier-Stokes equation)

• Some computations are reducible, but some are not, hence limits

of traditional science. (Do we care about irreducible results?)

• There are universal computers among almost all very simple ones

Ilya Nemenman, KITP Colloquium, March 12, 2003 back to start



35

Computations

• Everything is computation (e. g., motion of fluid – solving

Navier-Stokes equation)

• Some computations are reducible, but some are not, hence limits

of traditional science. (Do we care about irreducible results?)

• There are universal computers among almost all very simple ones

• Threshold for universality is low – possibly all class 4 CA’s are in it
(localized structures allow controlled information transmission)

I suspect that in almost any case where we have seen complex behavior . . . it will
. . . be possible to show that there is universality.
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Universal cellular automata
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Principle of computational equivalence

• “Almost all processes that are not obviously simple can be viewed as computations of

equivalent sophistication.”
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• Most systems are universal
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• “Almost any statement that can . . . readily be investigated by the traditional methods of

mathematical proofs will tend to be largely irrelevant to the true Principle of
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Principle of computational equivalence

• “Almost all processes that are not obviously simple can be viewed as computations of

equivalent sophistication.”

• Upper limit on computational sophistication: we are as complex as

a piece of metal, but we are also as complex as the whole universe

• Most systems are universal

• Most systems are irreducible

• “Almost any statement that can . . . readily be investigated by the traditional methods of

mathematical proofs will tend to be largely irrelevant to the true Principle of

Computational Equivalence.

• Related to Gödel’s undecidability (does the pattern die out?)
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• Formal mathematics is a CA/multiway system – it transforms

input according to rules (axioms). According to PCE vast

majorities of axiom sets are universal and, therefore, incomplete
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• Formal mathematics is a CA/multiway system – it transforms

input according to rules (axioms). According to PCE vast

majorities of axiom sets are universal and, therefore, incomplete

• Relations to NP–completeness of finding i.c. for CA to produce a

given state

• “. . . In the future, when the ideas and methods of this book have successfully been

absorbed, the field of mathematics as it exists today will come to be seen as a small and

surprisingly uncharacteristic sample of what is actually possible” (Wigner – The

Unreasonable Effectiveness of Mathematics)

• Maybe we should ask about all possible input–output relations? If

mutual information between them can get infinite, we can encode

all computations and get universality
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from ours? (perhaps purposefullness, or minimality of rules may

help – but need to see rules)
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Implications to intelligence

• Can’t find compressed description of simple produced data

(relations to AC, NFLT) – how can we find intelligence different

from ours? (perhaps purposefullness, or minimality of rules may

help – but need to see rules)

• Hash tables based on intrinsic randomness as human memory

• “. . .most of the core processes needed for general human-like thinking will be able to be

implemented with rather simple rules.”

• There is not intelligence substantially better than ours

• Free will is described

• Bleak human future
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Last addition to understanding ANKOS

• Most systems are irreducible, but random only instrinsically

• Most systems are as complex as they get

• They cannot be predicted at all

• Traditional science is useless for them

• But aside from stating the uselessness, ANKOS does no better.
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