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Conclusions
1.  Geometrical constraints can lead to glassy

dynamics and unusual thermodynamics.
(Structural glasses)

2.  By removing geometrical constraints, hard
combinatorial problems whose simulated
annealing dynamics are glass like may
flow faster to their solution.



“Frustration”

Not all interactions can be simultaneously
saturated

?
 A classical example:

a triangular anti-ferromagnet



Geometrical Frustration in Glasses
• We will now study “non-Abelian” elastic

analogs of constant external magnetic fields
(which lead to Aharonov-Bohm phases and
vortices in more conventional systems).

• In certain solvable limits, we find that these
non-abelian backgrounds lead to slow
dynamics and low ordering temperatures.
The theoretical fits compare well with
experiment.



Glasses: Physical Definition

• A  glass = supercooled liquid (universal)
Stupendous change in the relaxation times.

• False Urban Myth:  The liquid-like character
of glasses can be seen in old cathedrals (the
windows are thicker at the bottom).



Glasses: Physical Question

     What sorts of configurations do we
anticipate if we force the system to

rapidly “compute’’ its low energy state?



Glass  Outline:
1. The notion of geometrical frustration in

glasses
2. Gauge backgrounds
3. Deriving glassy dynamics in  gauge

backgrounds via replica calculations (new)
4. Non-perturbative thermodyanics: an avoided

phase transition (new)
5. Comparing experimental fit parameters with

theory (new)



I. Geometrical Frustration



Ideal packing in a Lennard-Jones
Liquid
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We cannot keep going on forever

• The ideal packing can,
however, be extended over
a substantial volume if we
consider the surface of a
sphere embedded in d=4
dimensions.

• By endowing space with
curvature we may remove
the 7 degree void.

(J. Sethna, Phys. Rev. Lett. 51, 2198 (1983))



An ideal configuration

    Monte Carlo simulations
show that 120 atoms
cooled on the surface of a
sphere find their ground
state in a time less than
10-2 the time required to
reach the fcc ground state
in Euclidean space

Representation of the configuration
(polytope {3,3,5})

(J. P. Straley, Phys. Rev.B 34, 405 (1986))

(H. S. M. Coxeter,  Regular Polytopes (1973))



A viable working maxim

When a liquid is supercooled it may veer
towards this or other local (high dimensional)
minima before realizing that these
configurations cannot tile space globally.



II.  Gauge  Backgrounds

These link the order on flat and curved
space.

Project the particles onto the sphere
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Euclidean space
(S. Sachdev & D. R. Nelson, Phys. Rev. B 32, 4592(1985))



Landau-Ginzburg Expansion
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The theory: that of a system subjected to
a non-Abelian background (magnetic
field) (S. Sachdev & D. R. Nelson, Phys. Rev. B 32, 4592(1985))



A pictorial representation
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cannot prevail

  The non-Abelian background gauge field creates frustration:

Non-Abelian Aharonov-Bohm phase



Non-commutativity of rotation generators
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‘Rolling’ operators
do not commute

[Rxy , Ryz]≠0
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III. Glassy dynamics in geometrically frustrated
systems (ZN, PRB 69, 014208 (2004))

Geometric frustration leads  to a multitude of degenerate and
nearly degenerate states. This is easily seen in momentum
space

By rotational symmetry of the energy, all eigenvalues
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!
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depend only on the  magnitude of the wavenumber-
not its direction.



The  minimizing  manifold
kz

kx

ky

As kmin >0,  ground
states and metastable
states proliferate 

At low temperatures, only modes

close to the minimizing manifold

are important
G(k) ~ !" + !2 2 2 2

Z

(k q )

The configurational entropy Sc(TK<T<TA)
is extensive



An exponential number of metastable
states in non-abelian theories

! "K k~ exp[DT /(T T )]

Extensive configurational entropy

Glassy dynamics  (Vogel-Fulcher)

This derivation may be repeated for any
non-Abelian background. The dynamics
on fixed curved surfaces is glassy.



Holographic ground state entropy

In this and many other related instances, we
also proved that the ground state degeneracy
is exponential in the surface area of system.
Only modes on the minimizing manifold in
momentum space are occupied:

ln(g) ~ Ld-1

( links to a generalized Elitzur’s theorem )
C. D. Batista, ZN (cond-mat/0410599 ), ZN & G. Ortiz,
(cond-mat/0605316)



Unusual Equilibrium Thermodynamics:
Avoided Phase Transitions

0
c
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By performing a large n analysis (n=169
complex components in this theory) to second
order in 1/n, deriving a generalized Mermin-
Wagner theorem, and performing a thermal
fluctuation analysis, we find that

The thermodynamic phase transition is avoided!



Tc(κ=0)

Tc(κ≠0 )

κ

T

The generic phase diagram
•For any finite curvature, the
system is hot.

•Why is there no phase
transition?

•The huge degeneracy and near
degeneracy of the system makes
it very susceptible to thermal
fluctuations.

•All of this is true for all non-
abelian fields.



Are there any empirically testable
consequences?

Scaling away from the avoided critical
temperature Tc(κ=0)? Measurable quantities
F[(T-Tc(κ=0))/Tc(κ=0)]?



V. Theory vs. experiment in the
avoided critical fit for glasses
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Fit derived by domain wall energy considerations



An avoided critical fit

Works for all known
glass formers.

(Physica A 219, 27 (1995))



A comparison between theory
and  experiment

8.4%Simple theory
9.59%glass former average
9.9%glycerol
-10.3%α-phenyl-cresol
30.6%n-propanol
9.1%s-trinaphthyl benzene
5.7%o-terphenyl
21%dibutyl phthalate
-4.4%sasol
7.73%propylene carbonate
20.6%isopropyl benzene
8.2%triphenyl phosphite
7.02%n-butyl benzene
[T*-Tm]/Tmglass former



Simple theoretical analysis
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We expect T* to be indicative of the
cohesive energy of the ideal curved space
crystal and the natural melting temperature,
Tmelt to be correlated with the crystallization
energy of the real crystal.



Conclusions
(new results)

• Geometrical constraints can lead to glassy dynamics
and unusual thermodynamics.

• Phase transitions can be avoided.

• Possible relaxation time scaling with respect to the
avoided critical temperature.

• An exponential number of ground and metastable
states.



II. Dynamics in high dimensions



Outline (dynamics in high
dimensions)

General idea
The largest clique problem

Community detection







Conclusions

(1) Approaches are free of the
resolution limit problem and are able

to determine the graph hierarchy

(2) Both are very accurate (Potts
model as least as accurate as

simulated annealing) and rapid.









A tale of a dean

The dean needs to place 100 out of 400 students in a
dorm. So 1st come 1st …, or alphabetically, or poorest,

But all come with at the same time, all equally deserving,
all start with J.

So lottery. But here comes:

Student #1 (John) comes with a big list of 170 students
that he will never share a dorm with…

Student #400 comes with a big list if 260 incompatibles.



Graphical representations
Connect a line
between students I
and J if they are
compatible.

Look for a cluster (a “clique”)
within which each vertex is
connected to all others.

The dean needs a clique of 100 students

A clique of
6 members



A brute force approach

How to find the maximal set of compatibles?

Just put on the boots and go into the field.

Take Janine because she excluded the least number of students.
However, the 250 that she likes are excluded by many. Taking
John now at step 106 will exclude Jay 107 steps later.

There are, ab initio,

                                                                  possible configurations.
! "
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The thinking dean



A forceful physical approach

So the dean is desperate!

Then he has an inspiration.

Let them fight it out.

he is out
Pull in whoever you like

Push out whoever you hate



The failure of the forceful approach

Even if all the students are
equally strong, the results
are biased by initial
placements and shielding,
and will not be optimal.

good candidates surrounded
by bad candidates and
ejected with them good candidate placed near

the boundary and ejected
early onThe ordeal of low dimensions.



What to do next?

At time t=0, we need to place the students symmetrically at

                                       i = 1,…,N (=400)

Such that for all i≠ j

This can only be done on the vertices of a symmetric N-
simplex in (N-1) dimensions!
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The simplex at t=0:

2-simplex

3-simplex

4-simplex
and so on .

We encountered similar polytopes
in the glass problem



Why are high dimensions useful?

There is no shielding. Fewer metastable states. The number of
vertices N=d+1, with d the dimension. No cancellation of force
components can occur to produce bad ejections or undesired
pulls. The faster dynamics towards more stable minima
correspond to the distortion of a simplex in (N-1) dimensions.

Old lower dimensional worries:  The formation of cliques may
stop as any given point tries to move towards its designated
clique, it might be overwhelmed by many repulsive forces
which prevent it from joining the clique. Are there not many
false minima which may trap the system- just as in the glass
and spin-glass problems??



Intuitive argument for the absence of
false minima

! "#
!

j i
j

F 0 (N-1) independent vectors in
(N-1) dimensions do not sum to
zero (unless we collapse to a
lower dimensional manifold)!The vertices respond

simultaneously to all forces.

All constraints imposed
simultaneously.



Our physical system
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! "g N 1 (upper bound in collinear
case)

Good results already with g=2



Numerical results

An example system consisted of an n=100
clique in an N=400 graph. Background
valency is 90% for a partially overlapping
300 x 300 cluster. An average of 50%
reconnections in the rest. We easily
achieved Numerical reconstruction of the
clique.



Numerical results
Original configuration After permutation

g=2









Numerical results



Lancichinetti-Fortunato-Radicchi benchmark





Numerical results
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