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Conclusions

1. Geometrical constraints can lead to glassy
dynamics and unusual thermodynamics.
(Structural glasses)

2. By removing geometrical constraints, hard
combinatorial problems whose simulated
annealing dynamics are glass like may
flow faster to their solution.




“Frustration”

Not all interactions can be simultaneously
saturated

/\ A classical example:

| 9 a triangular anti-ferromagnet




Geometrical Frustration in Glasses

e We will now study “non-Abelian” elastic
analogs of constant external magnetic fields
(which lead to Aharonov-Bohm phases and
vortices 1n more conventional systems).

e In certain solvable limits, we find that these
non-abelian backgrounds lead to slow
dynamics and low ordering temperatures.
The theoretical fits compare well with
experiment.




Glasses: Physical Definition

A glass = supercooled liquid (universal)

Stupendous change in the relaxation times.

False Urban Myth: The liquid-like character
of glasses can be seen in old cathedrals (the
windows are thicker at the bottom).




Glasses: Physical Question

What sorts of configurations do we
anticipate if we force the system to
rapidly “compute’’ its low energy state?




(Glass Outline:

. The notion of geometrical frustration in

glasses
Gauge backgrounds

. Deriving glassy dynamics in gauge

backgrounds via replica calculations (new)

. Non-perturbative thermodyanics: an avoided

phase transition (new)

Comparing experimental fit parameters with
theory (new)




I. Geometrical Frustration




Ideal packing in a Lennard-Jones
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We cannot keep going on forever

e The i1deal packing can,
however, be extended over
a substantial volume if we -~757/
consider the surface of a
sphere embedded in d=4
dimensions.

By endowing space with
curvature we may remove
the 7 degree void.

(J. Sethna, Phys. Rev. Lett. 51, 2198 (1983))




An 1deal configuration

Monte Carlo simulations
show that 120 atoms
cooled on the surface of a
sphere find their ground
state 1n a time less than
10-%2 the time required to
reach the fcc ground state
in Euclidean space

(J. P. Straley, Phys. Rev.B 34, 405 (1986))

Representation of the configuration

(polytope {3,3,5})

(H. S. M. Coxeter, Regular Polytopes (1973))




A viable working maxim

When a liquid 1s supercooled it may veer
towards this or other local (high dimensional)
minima before realizing that these
conflgurations cannot tile space globally.




II. Gauge Backgrounds

Ideal template

These link the order on flat and curved
space.

Ponys. (X) = P(X, 1)

u, =(0,0,0,-1)

v

Euclidean space X

Project the particles onto the sphere
(S. Sachdev & D. R. Nelson, Phys. Rev. B 32, 4592(1985))
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Landau-Ginzburg Expansion

1
F :EZ(KH ‘DuQn ‘2 +rn |Qn |2)+

DuQn — (au o IKLIE)LJQn
The theory: that of a system subjected to

a non-Abelian background (magnetic

ﬁ@ld) (S. Sachdev & D. R. Nelson, Phys. Rev. B 32, 4592(1985))




A pictorial representation
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Ideal order
cannot prevail

The non-Abelian background gauge field creates frustration:

Non-Abelian Aharonov-Bohm phase




Non-commutativity of rotation generators

‘Rolling’ operators

/ X ° X ‘ do not commute
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III. Glassy dynamics in geometrically frustrated
SYStems (zN, PRB 69, 014208 (2004))

Geometric frustration leads to a multitude of degenerate and
nearly degenerate states. This is easily seen in momentum
space

1 d3k kn " n o1,
=3 [ (O F 16,4, () +7,)

By rotational symmetry of the energy, all eigenvalues 7\.(| k |)

depend only on the magnitude of the wavenumber-
not its direction.




The minimizing manifold

(R As k™" >0, eround
states and metastable
states proliferate

- ky At low temperatures, only modes
close to the minimizing manifold

are important

G(k) ~

-2 2 232
S +(k"—q)
The configurational entropy S_(Tx<T<T,)

18 extensive




An exponential number of metastable
states 1n non-abelian theories

Extensive configurational entropy

——> T~exp[DT /(T-T,)]

Glassy dynamics (Vogel-Fulcher)

This derivation may be repeated for any
non-Abelian background. The dynamics
on fixed curved surfaces 1s glassy.




Holographic ground state entropy

In this and many other related instances, we
also proved that the ground state degeneracy
is exponential in the surface area of system.
Only modes on the minimizing manifold in
momentum space are occupied:

In(g) ~ Ld-!

( links to a generalized Elitzur’s theorem )

C. D. Batista, ZN (cond-mat/0410599 ), ZN & G. Ortiz,
(cond-mat/0605316)




Unusual Equilibrium Thermodynamics:
Avoided Phase Transitions

By performing a large n analysis (n=169
complex components in this theory) to second
order in 1/n, deriving a generalized Mermin-
Wagner theorem, and performing a thermal
fluctuation analysis, we find that

=0

The thermodynamic phase transition is avoided!




x

The generic phase diagram

T .(%=0)

/

*For any finite curvature, the
system 1s hot.

*Why 1s there no phase
transition?

*The huge degeneracy and near
degeneracy of the system makes
it very susceptible to thermal

/ fluctuations.

T.(%20)

eAll of this is true for all non-
abelian fields.

H




Are there any empirically testable
consequences”?

Scaling away from the avoided critical
temperature T_.(%=0)? Measurable quantities

F[(T-T.(%2=0))/T.(2=0)]?




V. Theory vs. experiment in the
avoided critical fit for glasses

T=1T_ CXP[E(T) / T] relaxation time
E(T) =E_+ (at>8/3 e(t) free energy barrier
t = (T* -1/ T reduced temperature

T = TC (K — ()) avolded critical temperature

Fit derived by domain wall energy considerations




An avoided critical fit
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Works for all known
glass formers.

(Physica A 219, 27 (1995))




A comparison between theory
and experiment

glass former [T*-T 1T,
n-butyl benzene 7.02 %
triphenyl phosphite 8.2%
isopropyl benzene 20.6 %
propylene carbonate 7.73 %
sasol -4.4%
dibutyl phthalate 21%
o-terphenyl 5.7 %
s-trinaphthyl benzene 9.1%
n-propanol 30.6 %
o-phenyl-cresol -10.3%
glycerol 9’5_)\%
glass former average / (9.599
Simple theory 8.4% }

i




Simple theoretical analysis

Ei cosahedral . EFCC

= 3.4%0

FCC
E

We expect T* to be indicative of the
cohesive energy of the ideal curved space
crystal and the natural melting temperature,
T, . to be correlated with the crystallization
energy of the real crystal.




Conclusions
(new results)

Geometrical constraints can lead to glassy dynamics
and unusual thermodynamics.

Phase transitions can be avoided.

Possible relaxation time scaling with respect to the
avolded critical temperature.

An exponential number of ground and metastable
states.




II. Dynamics in high dimensions



Outline (dynamics 1n high
dimensions)
General 1dea

The largest clique problem

Community detection



Community Detection
and Multi-Resolution Methods




Two approaches

Dynamics 1n high dimensions can lead to the resolution of
communities.

A discretized Potts model (discrete dynamics in high
dimensions)




Conclusions

(1) Approaches are free of the
resolution limit problem and are able
to determine the graph hierarchy

(2) Both are very accurate (Potts
model as least as accurate as
simulated annealing) and rapid.



Idea:

* By removing geometrical constraints, hard
problems whose simulated annealing dynamics 1s
glass like may flow faster to their solution. In high
dimensions, there are fewer geometrical

constraints.

Less constrained systems -> faster dynamics. Can
we make complicated calculations faster by
increasing the dimensionality?




Application of the idea to the largest
clique problem




P VS NP

The P versus NP Problem

CLAY MATHEMATICS INSTITUTE

Dedicated to increasing and disseminating mathematical knowledge

dAP

Suppose that you are organizing howsing aooormrrod ations for a group of four hardred undversity
students. Space is lirnited and anlyone handred of the students will receive places in the dorritory.
To cormplicate meatters, the Dean has provided you with a list of pairs of incompatible students, ard
requested that no pair from this list appear in your final choice. This is an exarnple of what
ocornputer scientists call an NP-problern, sinoe itis easy to checkif a given choios of ore hardred
stidents proposed bya coworker is satisfactory(ie., o pair fromtaken from wour coworker's list
also appears on the list fromthe Dean's offics), however the task of gererating such a list from
scratch seerrs to be so hard as to be completelyimpractical. Indeed, the total mumber of ways of
choosing one himdred students from the four hundred applicants is greater than the mamber of
atorrs in the knovmn i verse! Thus ro fubare civilization could ever hope to build a supercomputer
capable of solving the problem by brute fore; that is, bychecking every possible combination of
10ostudents. Howewer, this apparent difliculty mayonly reflect: the lack of ingenuityof wour
prograrrrrer. I n fact, one of the outstarding problerrs in o rputer science is deterrmining whether
questions exist whose arswer can be quickly checked, but which require aninmpossilylong tiree o
solve byanydirect procedure. Problerns like the one listed above certainly ssemto be of this kind,
but so far no ore has managed to prove that anyof themreallyare so hard as theyappear, ie., that
there reallyis ro feasible wayto gererate an arswer with the help of a mrmputer. Stephen Cook ard
Leonid Levin forrmulated the P (ie.,easyto find) versus NP (ie., easyto check) problem
independentlyin 171

Lecture by Vijaya
Ramachandran at
UT.ram

Official Problem
Description.pdf
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A tale of a dean

The dean needs to place 100 out of 400 students in a
dorm. So 1%t come 1%t ..., or alphabetically, or poorest,

But all come with at the same time, all equally deserving,
all start with J.

So lottery. But here comes:

Student #1 (John) comes with a big list of 170 students
that he will never share a dorm with...

Student #400 comes with a big list 1if 260 incompatibles.




Graphical representations

Connect a line
between students 1

/ and J if they are

compatible.

A clique of
6 members

° o

Look for a cluster (a “clique”)
within which each vertex 1s
connected to all others.

The dean needs a clique of 100 students




A brute force approach

How to find the maximal set of compatibles?
Just put on the boots and go into the field.

Take Janine because she excluded the least number of students.
However, the 250 that she likes are excluded by many. Taking
John now at step 10° will exclude Jay 107 steps later.

There are, ab initio,

(400 )

\100)

~ 72X O% possible configurations.




The thinking dean




A forcetul physical approach

So the dean is desperate!
Then he has an inspiration.

Let them fight it out.

Pull in whoever you like

—> 0

Push out whoever you hate he is out




The failure of the forceful approach

Even if all the students are
equally strong, the results
are biased by initial
placements and shielding,
and will not be optimal.

good candidates surrounded
by bad candidates and

ejected with them good candidate placed near

the boundary and ejected

The ordeal of low dimensions.
early on




What to do next?

At time t=0, we need to place the students symmetrically at

};<O>> 1=1,...,N (=400)
Such that for all 1#]

|t —t |=constant

This can only be done on the vertices of a symmetric N-
simplex 1n (N-1) dimensions!




The simplex at t=0:

2-simplex

3-simplex
and so on .
4-simplex

We encountered similar polytopes
in the glass problem




Why are high dimensions useful?

There 1s no shielding. Fewer metastable states. The number of
vertices N=d+1, with d the dimension. No cancellation of force
components can occur to produce bad ejections or undesired
pulls. The faster dynamics towards more stable minima
correspond to the distortion of a simplex in (N-1) dimensions.

Old lower dimensional worries: The formation of cliques may
stop as any given point tries to move towards its designated
clique, it might be overwhelmed by many repulsive forces
which prevent it from joining the clique. Are there not many
false minima which may trap the system- just as in the glass
and spin-glass problems??




Intuitive argument for the absence of
false minima

SF 0
i

The vertices respond
simultaneously to all forces.

All constraints imposed
simultaneously.

(N-1) independent vectors in
(N-1) dimensions do not sum to
zero (unless we collapse to a
lower dimensional manifold)!




Our physical system

attraction repulsion

U:ZCij | L =5 “"82((:11_1)‘ ri_rj‘
1] ij
C;;=11f 11s connected to j, and is 0 otherwise.

F = —VU = MV Overdamped (Aristo.) dynamics

g < N —1 (upper bound in collinear
case)

Good results already with g=2




Numerical results

An example system consisted of an n=100
clique in an N=400 graph. Background
valency 1s 90% for a partially overlapping
300 x 300 cluster. An average of 50%
reconnections in the rest. We easily
achieved Numerical reconstruction of the
clique.




| results

Numerica
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PHYSICAL REVIEW E 78, 016113 (2008]

FIG. 3. Praction p of correctly identified nodes as a function of
Ly |overage number of links between clusiers per node) for com-
puter generated random graphs with 128 nodes. The DSE algonthm
is represented by stars, for the abbreviations of the other methods

see [4].



Community Detection with a Potts Model

Identify Nodes as Potts model spins

Spin orientation O < community assignment
(with ferromagnetic and anti-ferromagnetic interactions)

Energy Contributions

.~ Inside Connected (-)

~ Inside Unconnected (+)
Outside Connected (+)

o~ Outside Unconnected (—)




Community Detection with a Potts Model

* Optimal communities are found from the ground-
state of a Potts Hamiltonian

IZ{H A,—b.J )éloas

TR j \‘ * contributions:

4, — the adjacency matrix, elements are 1 if nodes 7 and j are connected
and 0 otherwise

Sy — the complement of the adjacency matrix, elements are 0 if nodes i

and j are connected and 1 otherwise
a_and bg. are respective weights of the adjacency matrix elements and

its complement




Numerical results
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Lancichinetti-Fortunato-Radicchi benchmark
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Multiresolution Accuracy:
LFK Benchmark

 LFK benchmark features — a more ‘‘realistic”’ benchmark

- Heterogeneous distribution of community sizes
(power law with a exponent)
- Heterogeneous distribution of node degrees (f)
- Tests a large range of system sizes — N nodes
- “Mixing parameter” u —
external degree fraction




Numerical results
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Community Detection with a Potts Model

¢ What is a resolution limit?

* A popular quality function for community detection 1s
modularity’

NE
_; L_(ZL)

* g — the niumber of communities
[ — the number of total links in the system
e | —the number of links in community

. a’ — the sum of the number of links in community i




Community Detection with a Potts Model

* Resolution limit: The effect is not drastic: but if a
community division is solved by maximizing modularity,
the number of communities g tends toward VL where L 1s
the number of links in the system'>-’. The result 1s:

+ solution can merge smaller communities, or...

- solution can divide large communities

- i.e. the solution 1s affected by a global parameter of the
graph that 1s being examined

This Potts model eliminates these resolution limit
1ssues®




Community Detection with a Potts Model

* (Consider two communities 4 and B of size n and
m connected by / edges 1n a graph G with N nodes.

 modularity max. merges 4 and B (on average) if **

nm
-
N

* QOur Potts model merges them 1f ®

Y

F= nm

with no dependence on global graph parameters.




Community Detection Algorithm

e Select a desired weight Y in the Hamiltonian

|
H([{TH:_EZ (ﬂsz:}_}’b:ng}‘Su-.cr

1T,
i j

Y determines a mimmimum density for communities.

* Initialize the system to one node per cluster'®.

* Select a node sequentially:

- Scan its neighbor nodes to determine the largest energy
decrease (can be a new cluster). This 1s an O(NZ log 7)
calculation for weighted graphs.

- Move the selected node to that cluster if appropriate




Community Detection Algorithm

Repeat above steps for all nodes

Repeat all of the above steps until no lower energy
moves are found.

Repeat for a several configurations and select the
lowest energy configuration as the solution.




Multi-Resolution Issues

* Systems can differ in optimal divisions based on
the resolution at which the system 1s examined

+ Hierarchical systems
+ Unrelated multi-resolution structures

Difficulty: Model does not ‘scale’ with system edge
density or global graph parameters. ‘Mixing’

between divisions of a system 1s constrained

by local parameters and an externally

defined graph-independent global scaling.




Multi-Resolution Method

* Solution: Propose the following argument.

+ At the “proper’ resolutions of a system, different
imdependent solutions should be more highly correlated

+ Conversely for ‘mm-between’ resolutions, independent
solutions will be less correlated due to ‘mixing’
occurring between competing divisions.

* Other random effects will work to reduce the correlation
between independent solutions




Normalized Mutual Information
(NMI)

* Borrowed from Information Theory® and
suggested for application in community detection

» J(A4.,B) assesses how much ‘mutual information’ 1s
present 1n two similar sets of data
+ I(4.B) = 1 if the two sets are perfectly correlated
- I(4,B) = 0 1f they are completely uncorrelated
« Start with a confusion matrix I\Qj which indicates

how many nodes of set 4 clusters are in each of
the clusters of set B




Shannon Entropy

» Probability P(k) that a random node will belong to
community &

Pk)=—

N

n, 1s the number of nodes in community &
N 1s the total number of nodes.

* Entropy of P(k) for a partition 4 1s

ZP k)log P(k)

Y




Mutual Information

* [(A.B) 1s the Mutual Information (unnormalized)

d4 dp
NI.J.N

. Confusion matrix NU indicates how many nodes of

cluster 7 in partition 4 are in cluster j of partition B
- q,and g, are the number of clusters n partitions 4 and B




Information Measures: NMI and VI

e Normalized Mutual Information 1s

YI(A4,B)
H(A)+H(B)

NMI(A,B)=

e Vanation of Information 1s

VI(4,B)=H(A4)+H(B)—YI(4, B).




Normalized Mutual information

Cyqy Cpg

—2> > N log(N,NIN.N. )
I(4,B)=— =15 -
Q. N,log(N,/IN)) N log(N /N)
=1

Jj=1
~e, and c, are the number of clusters in sets 4 and B

- Tows i are the clusters of set 4
+ columns ; are the clusters of set B
+ N, — the sum of all j columns for row i

. NJ — the sum of all 7 rows for column j




Multiresolution Systems

* Systems can differ in optimal divisions based on
the scale at which the system 1s examined

+ Example: Personal relationships
e Family
* Close friends
* Friends
« Acquaintances




Multiresolution Systems

* Types of multiresolution structure:
- Hierarchical
+ Overlapping structures
(nodes shift membership at different scales)
- Other multiresolution structures?

® MM D TP
' D D > b g D




Multi-Resolution Method

* Examine a system over a range of resolutions by
varying the edge weight Y for the model.

=
H({U]):“EZ {A:j_ijj)‘scrﬂ‘

i
1#]

Or for a weighted system

1
H((o})==7 2. (a;4,~y b;J;)8,
I#J
 Determine the correlation between all pairs of

solutions (at the same Y) via NML

.F




Multi-Resolution Method

e Peaks in the NMI define the ‘best’ resolutions

* Peak values of the NMI give a quantitative
estimate of the ‘strength’ of each division




Multi-Resolution Method

* Solution: Propose the following argument

+ At the ‘best’ resolutions of a system, independent
solutions (“replicas”) should be strongly correlated

- For ‘in-between’ resolutions, independent replicas will
be more weakly correlated due to ‘mixing’ between
competing divisions.

* Other random effects will work to reduce the
correlation between independent solutions




Multi-Resolution Algorithm

* | Solve the system several times to provide enough
averaging for the solution correlations, O(NZ log Z) per
solution since 1t 1s the base community detection method.

Test each solution for local minima.

- The energy landscape can trap the solution.
* Although, some local minima actually carry useful
mformation.
Merge clusters as appropriate 1 order of largest energy
decrease. It is O(g®) per merge for sparse systems due to
the construction and analysis of a gxg energy matrix.

- We merge all communities that lower the energy.




Multi-Resolution Algorithm

Calculate the NMI between the all pairs of solutions, O(g")
per calculation for sparse systems due to building and
analysis of the confusion matrix.

Increment the edge weight y and repeat above steps
For each weight y, plot the average NMI versus y

Find maxima i the NMI plot. These maxima will
correspond to the multi-resolution structure(s).




Multi-Resolution Test System:
Hierarchical

* Test system 1s a heterogeneous 3-level hierarchy

+ Level 1: 256 nodes with a random density of 0.1

+ Level 2: 5 groups with size ranging from 34 to 81 with
an edge density of 0.3 each

+ Level 3: 16 groups with size ranging from 7 to 24 with
an edge density of 0.9 each




Multi-Resolution Test System:
Hierarchical

* Test system 1s a heterogencous 3-level hierarchy

|
O D > >
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Multi-Resolution Test System:
Hierarchical

e Test system 1s a heterogenecous 3-level hierarchy

+ Level 1: 256 nodes with a random density of 0.1 between sub-
communities

- Level 2: 5 groups of sizes from 33 to 79 with an edge density of
0.3 each between sub-communities

- Level 3: 16 groups of sizes from 5 to 22 with an interior edge

density of 0.9 each
Lo T —
1
: D € ¢ > >




Multiresolution Test System

e (7a,b) —
[.evel 2: 5 communities

(iia,b) —
[.evel 3: 16 communities

VI “peaks” — inter-
communty edge density
or

maximum “complexity”
at zero energy difference
between states




