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Triangle anomalies



What are triangle anomalies

• Triangle anomalies are inherently quantum features of 
4D quantum field theories

• Symmetry of a classical theory, broken by quantum 
effects

• Deep connections to topology 

• First found by Adler, Bell, and Jackiw while considering 
decay of neutral pions: �0 � 2�
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Anomalous hydrodynamics

• Recently anomalies have been found to exhibit 
themselves in a regime one would normally think 
as completely classical: the hydrodynamic regime

• finite temperature, length scales >> mean free 
path

• Largely due to gauge/gravity duality, more 
concretely: fluid/gravity correspondence

convection diffusion vorticity

j5µ = n5u
µ � �T (gµ� + uµu�)��

µ

T
+��µ���u���u�
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Beyond gauge/gravity duality

• Although anomalous effects in hydrodynamics 
were first seen through gauge/gravity duality, we 
now understand that they exist in a general setting

• in particular, they do not depend on coupling

• non only at strong coupling (gauge/gravity 
duality), but also at weak coupling
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RG interpretation of Fermi 
liquid theory

• An effective action for quasiparticle

• power counting

• BCS interaction is the only marginally relevant 
interaction (Polchinski, Shankar)



Fermi liquids

• Dynamics: kinetic equation

�np(x)
�t

+
��p
�p

· �np

�x
� ��p

�x
· �np

�p
= 0

��p =
�

dq
(2�)3

f(p,q)�nq(y)

Predictions: heat capacity, spin susceptibility, zero sound...

�p = �0p + ��p

�0p = vF(|p|� pF)



Anomalies in Fermi’s liquids

Fermi sphere of
left-handed fermions

Fermi sphere of
right-handed fermions



Anomalies in Fermi’s liquids

Fermi sphere of
left-handed fermions

Fermi sphere of
right-handed fermions

�E · �B �= 0



Anomalies in Fermi’s liquids

Fermi sphere of
left-handed fermions

Fermi sphere of
right-handed fermions

�E · �B �= 0



Anomalies in Fermi liquids

• How does Landau’s Fermi liquid theory 
discriminate left- and right-handed quasiparticles?

• Through magnetic moment?

s

p p
s

left right

�p = |p|� �p̂ · B

But magnetic moment cannot explains anomalies



Chiral magnetic effect
Son, Zhitnitsky; Metlitskii; Kharzeev et al.

A0

x

put our system in B field
and slowly varying scalar 
potential (static)

chemical potential traces A0

�0j
0 + � · j = ± 1

4�2
B ·�A0

j = ± 1
4�2

µB
Nonzero current in ground state! 
contradicts basic tenets of Landau’s 
Fermi liquid theory



Currents in ground state

j =
�

dpnpvp =
�

dpnp
��p
�p

= �
�

dp�p
�np

�p

µ
=0



Hamiltonian reformulation 
of Fermi liquid theory

�tnp = i[H, np]
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Introduction.—Recently, there have been a lot of inter-
est in the e↵ect of Berry phase and Berry curvature on the
physics of the electron Fermi liquid. The standard theory
of Fermi liquids, developed by Landau [1], assumes that
the low-energy degrees of freedom in a Fermi liquid are
the fermion quasiparticles, whose distribution function in
phase space satisfies a kinetic equation. In many cases
the semiclassical motion of a wave packet of electrons in
a crystal should include an extra term due to the Berry
phase, expressible in terms of the electronic Bloch wave
functions [2]. Such a term should alter the standard ki-
netics of Fermi liquids (see also below); including this
term leads to an interpretation of the anomalous Hall
conductivity in terms of Fermi surface properties [3].

In this paper we show the connection between the
Berry curvature on the Fermi surface and triangle anoma-
lies. Let us first notice that the total flux of Berry cur-
vature through a given Fermi surface does not need to
vanish, but can be a multiple of the flux quantum. One
possible case is doped Weyl semimetals [4–6], but the
discussion does not depend on the origin of the Berry
curvature flux. We will show that if there are k quanta
of Berry curvature flux through a given Fermi surface,
then the number of particles associated with this Fermi
surface (which is proportional to its volume) is not con-
served in presence of the external electromagnetic field,

@n

@t
+r · j = k

4⇡2
E ·B. (1)

Charge conservation is ensured by the vanishing of the
sum of k’s of all Fermi surfaces.

Equation (1) is exactly the equation of triangle anoma-
lies in relativistic quantum field theory [7, 8]. It is
therefore expected to hold for a Fermi gas of relativistic
fermions at finite density. Indeed, the Berry curvature
of a relativistic fermion has the form of the field of a
magnetic monopole in momentum space, and k = ±1 for
right- (left-) handed fermions. The statement (1) goes
further by tying anomalies with Fermi surface properties
only. In this way, we demonstrate that axial anoma-
lies are properties of Fermi liquids with Berry curvature
flux, even when the original particles interact strongly.
The only assumption is that the low-energy physics is

described by Landau’s Fermi liquid theory.
As evident from our arguments, triangle anomalies in

Fermi liquid have a “kinematic” origin, independent of
the details of the Hamiltonian. Namely, we will show
that Berry curvature modifies the commutation relation
of the particle number density operator, and that this
commutator is related to the anomalous Hall e↵ect and
the triangle anomalies for the fermion numbers near one
Fermi surface.
Hamiltonian formulation of Landau’s Fermi liquid the-

ory.—The fundamental equation of Landau’s Fermi liq-
uid theory is a kinetic equation governing the time evo-
lution of the occupation number of quasiparticles np(x),

@np(x)

@t
+

@✏p
@p

· @np

@x
� @✏p

@x
· @np

@p
= 0, (2)

where ✏p = ✏0p+�✏p, ✏0p is the energy of a single quasipar-
ticle excitation with energy p, and �✏p is the modification
of its energy due to interactions with other quasiparticles,

�✏p =

Z
dq

(2⇡)3
f(p,q)�nq(y), (3)

�nq(y) = nq(y) � n0
q is the deviation from the ground

state distribution function and f(p,q) are Landau’s pa-
rameter. Above we have neglected the collision term.
For the purpose of generalizing Landau’s Fermi liquid

theory to systems with Berry curvature, we reformulate
the kinetic equation as the evolution equation of a Hamil-
tonian system. In this formulation, the kinetic equation
has the form,

@
t

np(x) = i[H, np(x)], (4)

where the Hamiltonian H is the conserved energy,

H =

Z
dp dx

(2⇡)3
✏0p�np +

1

2

Z
dp dq dx

(2⇡)6
f(p, q)�np�nq,

(5)
and the commutator is postulated as

[np(x), nq(y)] = �i(2⇡)3
@

@p
�(p� q) · @

@x
�(x� y)

⇥ [np(y)� nq(x)]. (6)
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where does it come from? 



Commutators and Poisson brackets
2

It is straightforward to verify that Eqs. (4), (5), and (6)
imply Eq. (2).

The commutation relation (6) is remarkable in the fol-
lowing respect: assume we have two operators, Â and B̂,
linear in occupation numbers,

Â =

Z
dp dx

(2⇡)3
A(p,x)np(x), B̂ =

Z
dp dx

(2⇡)3
B(p,x)np(x),

(7)
then its commutator will be

[Â, B̂] = �i

Z
dp dx

(2⇡)3
{A, B}np(x), (8)

where {A, B} is the classical Poisson bracket

{A, B}(p,x) = @A

@p
· @B
@x

� @A

@x
· @B
@p

. (9)

The presence of the Berry curvature, as we shall see,
changes the classical Poisson bracket and leads to a mod-
ification of Landau’s Fermi liquid theory.

Berry curvature and Poisson brackets.—Before tack-
ling the many-body physics of Fermi liquids, let us con-
sider a single quasiparticle in a theory with Berry cur-
vature of the Fermi surface. Such a quasiparticle is de-
scribed by the action [9, 10]

S =

Z
dt

⇥
piẋi +A

i

(x)ẋi �A
i

(p)ṗi �H(p, x)
⇤
, (10)

where H(p, x) is the Hamiltonian whose form is not im-
portant for us right now, A

i

is the electromagnetic vec-
tor potential and A

i

(p) is a fictitious vector potential in
momentum space. Combining p and x into one set of
variables ⇠a, a = 1 . . . 6, the action can be written as

S =

Z
dt [�!

a

(⇠)⇠̇a �H(⇠)]. (11)

The equations of motion that follow from this action are

!
ab

⇠̇b = �@H

@⇠a
, (12)

where !
ab

= @
a

!
b

� @
b

!
a

, @
a

⌘ @/@⇠a. We can reinter-
pret this equation as

⇠̇a = {H, ⇠a} = �{⇠a, ⇠b}@H
@⇠b

, (13)

where the Poisson bracket is defined as

{⇠a, ⇠b} = (!�1)ab ⌘ !ab, (14)

where !�1 is the matrix inverse of !
ab

. For the ac-
tion (10), the Poisson brackets are [10]

{p
i

, p
j

} = � ✏
ijk

B
k

1 +B ·⌦ , (15a)

{x
i

, x
j

} =
✏
ijk

⌦
k

1 +B ·⌦ , (15b)

{p
i

, x
j

} =
�
ij

+ ⌦
i

B
j

1 +B ·⌦ , (15c)

where B
i

= ✏
ijk

@A
k

/@x
j

, ⌦
i

= ✏
ijk

@A
k

/@p
j

.
The invariant phase space is (here ! ⌘ det!

ab

) [9]

d� =
p
! d⇠ = (1 +B ·⌦)

dp dx

(2⇡)3
. (16)

It is now clear how to incorporate Berry curvature into
Landau’s Fermi liquid theory. One makes a phase-space
modification to the Hamiltonian (5), keep the evolution
equation (4) unchanged, but alter the commutator of
np(x) to be consistent with Eqs. (15). We shall now
work out this commutator.
Let us assume that there are two operators Â and B̂

defined as

Â =

Z
d⇠

p
!A(⇠)n(⇠), B̂ =

Z
d⇠

p
!B(⇠)n(⇠). (17)

Then it seems natural to define the commutator between
n(⇠) so that

[Â, B̂] = �i

Z
d⇠

p
! !ab@

a

A@
b

B n(⇠). (18)

This form, however, is deficient in one respect: it makes
use of n(⇠) in the whole Fermi volume, while we expect
the physics to be concentrated near the Fermi surface.
We shall therefore postulate another form for the com-
mutator,

[Â, B̂] = � i

2

Z
d⇠

p
! !ab(A@

a

B �B@
a

A)@
b

n(⇠). (19)

If we integrate by part in this equation, using
@
b

(
p
! !ab) = 0 (a consequence of the Bianchi identity),

we bring Eq. (19) into the form of (18). However, now
the commutator depends only on the physics near the
Fermi surface. Moreover, we may have problems defin-
ing the integral in Eq. (18) when the Berry curvature is
singular inside the Fermi volume (as in the case when the
Berry curvature flux is nonzero), while Eq. (19) is com-
pletely well-defined in this case. We will take Eq. (19) as
the equation defining the commutators of the occupation
number operator.
It is possible to write down explicitly the commutator

[np(x), nq(y)]. We shall not do it here. Instead, we shall
notice that if A and B are not linear in n(⇠), but are
instead general functional of n(⇠), then the commutator
between them can still be computed explicitly,

[Â, B̂] = � i

2

Z
d⇠

p
! !ab

✓
�Â

�n(⇠)
@
a

�B̂

�n(⇠)
�

�B̂

�n(⇠)
@
a

�Â

�n(⇠)

◆
@
b

n(⇠). (20)

Eq. (20) is particularly useful when Â is the Hamiltonian,
for which we know that �H/�np(x) = ✏p(x).
Commutator of density operator.—We now show that
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vature of the Fermi surface. Such a quasiparticle is de-
scribed by the action [9, 10]
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where H(p, x) is the Hamiltonian whose form is not im-
portant for us right now, A
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is the electromagnetic vec-
tor potential and A
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(p) is a fictitious vector potential in
momentum space. Combining p and x into one set of
variables ⇠a, a = 1 . . . 6, the action can be written as
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It is now clear how to incorporate Berry curvature into
Landau’s Fermi liquid theory. One makes a phase-space
modification to the Hamiltonian (5), keep the evolution
equation (4) unchanged, but alter the commutator of
np(x) to be consistent with Eqs. (15). We shall now
work out this commutator.
Let us assume that there are two operators Â and B̂

defined as

Â =
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This form, however, is deficient in one respect: it makes
use of n(⇠) in the whole Fermi volume, while we expect
the physics to be concentrated near the Fermi surface.
We shall therefore postulate another form for the com-
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If we integrate by part in this equation, using
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we bring Eq. (19) into the form of (18). However, now
the commutator depends only on the physics near the
Fermi surface. Moreover, we may have problems defin-
ing the integral in Eq. (18) when the Berry curvature is
singular inside the Fermi volume (as in the case when the
Berry curvature flux is nonzero), while Eq. (19) is com-
pletely well-defined in this case. We will take Eq. (19) as
the equation defining the commutators of the occupation
number operator.
It is possible to write down explicitly the commutator

[np(x), nq(y)]. We shall not do it here. Instead, we shall
notice that if A and B are not linear in n(⇠), but are
instead general functional of n(⇠), then the commutator
between them can still be computed explicitly,
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Eq. (20) is particularly useful when Â is the Hamiltonian,
for which we know that �H/�np(x) = ✏p(x).
Commutator of density operator.—We now show that

the Berry curvature leads to an anomalous term in the

this fixes the commutator between np(x)
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Modified Fermi liquid theory
2

It is straightforward to verify that Eqs. (4), (5), and (6)
imply Eq. (2).

The commutation relation (6) is remarkable in the fol-
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The presence of the Berry curvature, as we shall see,
changes the classical Poisson bracket and leads to a mod-
ification of Landau’s Fermi liquid theory.

Berry curvature and Poisson brackets.—Before tack-
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(p)ṗi �H(p, x)
⇤
, (10)

where H(p, x) is the Hamiltonian whose form is not im-
portant for us right now, A

i

is the electromagnetic vec-
tor potential and A

i

(p) is a fictitious vector potential in
momentum space. Combining p and x into one set of
variables ⇠a, a = 1 . . . 6, the action can be written as

S =

Z
dt [�!

a

(⇠)⇠̇a �H(⇠)]. (11)

The equations of motion that follow from this action are

!
ab

⇠̇b = �@H

@⇠a
, (12)

where !
ab

= @
a

!
b

� @
b

!
a

, @
a

⌘ @/@⇠a. We can reinter-
pret this equation as

⇠̇a = {H, ⇠a} = �{⇠a, ⇠b}@H
@⇠b

, (13)

where the Poisson bracket is defined as

{⇠a, ⇠b} = (!�1)ab ⌘ !ab, (14)

where !�1 is the matrix inverse of !
ab

. For the ac-
tion (10), the Poisson brackets are [10]

{p
i

, p
j

} = � ✏
ijk

B
k

1 +B ·⌦ , (15a)

{x
i

, x
j

} =
✏
ijk

⌦
k

1 +B ·⌦ , (15b)

{p
i

, x
j

} =
�
ij

+ ⌦
i

B
j

1 +B ·⌦ , (15c)

where B
i

= ✏
ijk

@A
k

/@x
j

, ⌦
i

= ✏
ijk

@A
k

/@p
j

.
The invariant phase space is (here ! ⌘ det!
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It is now clear how to incorporate Berry curvature into
Landau’s Fermi liquid theory. One makes a phase-space
modification to the Hamiltonian (5), keep the evolution
equation (4) unchanged, but alter the commutator of
np(x) to be consistent with Eqs. (15). We shall now
work out this commutator.
Let us assume that there are two operators Â and B̂

defined as

Â =

Z
d⇠

p
!A(⇠)n(⇠), B̂ =
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Then it seems natural to define the commutator between
n(⇠) so that

[Â, B̂] = �i

Z
d⇠

p
! !ab@

a
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B n(⇠). (18)

This form, however, is deficient in one respect: it makes
use of n(⇠) in the whole Fermi volume, while we expect
the physics to be concentrated near the Fermi surface.
We shall therefore postulate another form for the com-
mutator,
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If we integrate by part in this equation, using
@
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(
p
! !ab) = 0 (a consequence of the Bianchi identity),

we bring Eq. (19) into the form of (18). However, now
the commutator depends only on the physics near the
Fermi surface. Moreover, we may have problems defin-
ing the integral in Eq. (18) when the Berry curvature is
singular inside the Fermi volume (as in the case when the
Berry curvature flux is nonzero), while Eq. (19) is com-
pletely well-defined in this case. We will take Eq. (19) as
the equation defining the commutators of the occupation
number operator.
It is possible to write down explicitly the commutator

[np(x), nq(y)]. We shall not do it here. Instead, we shall
notice that if A and B are not linear in n(⇠), but are
instead general functional of n(⇠), then the commutator
between them can still be computed explicitly,
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Eq. (20) is particularly useful when Â is the Hamiltonian,
for which we know that �H/�np(x) = ✏p(x).
Commutator of density operator.—We now show that

the Berry curvature leads to an anomalous term in the
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modification to the Hamiltonian (5), keep the evolution
equation (4) unchanged, but alter the commutator of
np(x) to be consistent with Eqs. (15). We shall now
work out this commutator.
Let us assume that there are two operators Â and B̂
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Eq. (20) is particularly useful when Â is the Hamiltonian,
for which we know that �H/�np(x) = ✏p(x).
Commutator of density operator.—We now show that

the Berry curvature leads to an anomalous term in the

Together with a Hamiltonian H[np(x)], it determines the 
equation of motion



Anomalous commutator
n(x) =

�
d3p

(2�)3
�

� np(x)

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i
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where � is defined as
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and k is the monopole charge inside the Fermi surface,

k =
1
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Z
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We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as
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The commutator of the density operator at two di↵erent
points is, according to Eq. (19),
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where � is defined in Eq. (22). The {x
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and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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@np
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@x

�
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
B

◆
·r�(x� y), (21)

where � is defined as

�
i

(x) = �
Z

dp

(2⇡)3
p
i

⌦
k

@np(x)

@p
k

, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i
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The {x
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, x
j

} term in the commutator is reduced to
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dp

(2⇡)3
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= �i(r⇥�) ·r�(y�z),

(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as

iB
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i

�(y � z)

Z
dp

(2⇡)3
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j

@np
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j

. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
B

◆
·r�(x� y), (21)

where � is defined as

�
i

(x) = �
Z

dp

(2⇡)3
p
i

⌦
k

@np(x)

@p
k

, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i

2

Z
d� �(x�y)@

i

�(x�z)


{x

i

, x
j

}@np

@x
j

+ {x
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}@np

@p
j

�
� (y $ z). (25)

The {x
i

, x
j

} term in the commutator is reduced to

�i@
i

�(y�z)

Z
dp

(2⇡)3
✏
ijk

⌦
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@np
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j

= �i(r⇥�) ·r�(y�z),

(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as

iB
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i

�(y � z)

Z
dp

(2⇡)3
⌦

j

@np

@p
j

. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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@np
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⌦ · @np

@p
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@x

�
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium
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equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
B

◆
·r�(x� y), (21)

where � is defined as

�
i

(x) = �
Z

dp

(2⇡)3
p
i

⌦
k

@np(x)

@p
k

, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i

2

Z
d� �(x�y)@

i

�(x�z)


{x

i

, x
j

}@np
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+ {x
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}@np

@p
j

�
� (y $ z). (25)

The {x
i

, x
j

} term in the commutator is reduced to

�i@
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�(y�z)

Z
dp

(2⇡)3
✏
ijk

⌦
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j

= �i(r⇥�) ·r�(y�z),

(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as

iB
i

@
i

�(y � z)

Z
dp

(2⇡)3
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j

@np

@p
j

. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
B

◆
·r�(x� y), (21)

where � is defined as

�
i

(x) = �
Z

dp

(2⇡)3
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⌦
k

@np(x)

@p
k

, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i

2
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The {x
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, x
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} term in the commutator is reduced to
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ijk
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= �i(r⇥�) ·r�(y�z),

(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as

iB
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. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium
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extra contributions



Anomaly from commutator

• Anomalies are related to non-commutativity of 
number density at 2 different points

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
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◆
·r�(x� y), (21)

where � is defined as
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, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i
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} term in the commutator is reduced to
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= �i(r⇥�) ·r�(y�z),

(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as
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. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i
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k

4⇡2
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·r�(x� y), (21)

where � is defined as
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@np(x)

@p
k

, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),
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} term in the commutator is reduced to
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where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as
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and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
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(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
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·r�(x� y), (21)

where � is defined as
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Z
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, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i
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, x
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} term in the commutator is reduced to
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(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as
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i

�(y � z)

Z
dp

(2⇡)3
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. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium

3

equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i

✓
r⇥ � +

k

4⇡2
B

◆
·r�(x� y), (21)

where � is defined as

�
i

(x) = �
Z

dp

(2⇡)3
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⌦
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@np(x)
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, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i
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The {x
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} term in the commutator is reduced to
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(2⇡)3
✏
ijk

⌦
k

@np

@x
j
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(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as
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⌦
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. (27)

and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium
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equal-time commutator of the density operator n(x) at
two points. Moreover, if the Berry curvature has a
nonzero magnetic flux through the Fermi sphere, then the
commutator has a contribution from the external mag-
netic field,

[n(x), n(y)] = �i
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4⇡2
B

◆
·r�(x� y), (21)

where � is defined as
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, (22)

and k is the monopole charge inside the Fermi surface,

k =
1

2⇡

Z
dS ·⌦. (23)

We note that both � and k involve only the physics near
the Fermi surface.

To derive Eq. (21), first we write the density operator
as

n(y) =

Z
dp

(2⇡)3
(1 +B ·⌦)np(y) =

Z
d� �(x� y)np(x).

(24)
The commutator of the density operator at two di↵erent
points is, according to Eq. (19),

[n(y), n(z)] = � i
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(26)
where � is defined in Eq. (22). The {x

i

, p
j

} term in the
commutator can be rewritten as
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and, by integration by part, taking into account @
i

⌦
i

= 0
around the Fermi surface, np = 1 deep inside the Fermi
surface and np = 0 far outside the Fermi sphere, it be-
comes

�i
k

4⇡2
B ·r�(y � z). (28)

Combining two contributions, we find Eq. (21).
From density-density commutator to anomalous non-

conservation of current.—The connection between the
anomalous density-density commutator [the term propor-
tional to B in Eq. (21)] and triangle anomalies is known
in the context of relativistic quantum field theory [11, 12].

Here we derive this connection using the Hamiltonian for-
malism, and show how the anomalous Hall current and
the triangle anomaly can be traced to the two contribu-
tions to the density-density commutator.
Let us first assume that our system is in a static mag-

netic field, but the electric field is turned o↵. In this
case, the system is described by the Hamiltonian (5), and
by commuting the Hamiltonian with the particle number
operator n(x), the continuity equation can be derived,

ṅ = i[H, n] = �r · j, (29)

where the particle number current j is

j =

Z
dp

(2⇡)3
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Note that by integration by part, the first term in the
bracket in the right hand side of Eq. (30) can be written
in the familiar form npv where v = @✏p/@p. This would
be the only term in the current in the absence of Berry
curvature.
Now we turn on a static electric field by putting the

system in an external scalar potential �(x), E = �r�.
The Hamiltonian is now

H 0 = H +

Z
dx�(x)n(x). (31)

The added term does not commute with n and changes
the time evolution of the latter,

@
t

n(x) = i[H 0, n(x)] = �r·j�
✓
r⇥� +

k

4⇡2
B

◆
·r�(x).

(32)
This equation can be rewritten as

@
t

n+r · j0 = k

4⇡2
E ·B, (33)

where

j

0 = j+E⇥ �. (34)

The second term in Eq. (34) is the usual anomalous Hall
current. On the other hand, Eq. (33) implies that the
particle number around the Fermi surface is not con-
served when both electric and magnetic fields are turned
on. This is the e↵ect of triangle anomalies in quantum
field theory. For example, relativistic right-handed free
fermions have k = 1, and left-handed free fermions have
k = �1. Here we show that this e↵ect depends only on
the monopole charge of the Berry curvature on the Fermi
surface, and is not modified by interactions. Since the to-
tal charge is conserved, all di↵erent contributions to the
current nonconservation should sum up to zero.
The chiral magnetic e↵ect—Let us compute the cur-

rent, given by Eq. (30), in the thermal equilibrium
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Conclusion

• Anomalies can be incorporated into Landau’s 
Fermi liquid theory

• Berry curvature with nonzero flux

• Relevance for real materials? (doped Weyl 
semimetals)


