Triangle anomalies in Landau's Fermi liquid theory

Dam Thanh Son
Institute for Nuclear Theory, University of Washington

DTS, N. Yamamoto, I 203.2697

Triangle anomalies

CoOgle triangle anomalies

Search
About 127,000 results (0.15 seconds)

Everything
Images
Maps
Videos
News

What are triangle anomalies

- Triangle anomalies are inherently quantum features of 4D quantum field theories
- Symmetry of a classical theory, broken by quantum effects
- Deep connections to topology
- First found by Adler, Bell, and Jackiw while considering decay of neutral pions: $\quad \pi^{0} \rightarrow 2 \gamma$

Triangle anomalies

Massless fermions: lowest Landau level is chiral

Triangle anomalies

Massless fermions: lowest Landau level is chiral

Triangle anomalies

Massless fermions: lowest Landau level is chiral

Triangle anomalies

Massless fermions: lowest Landau level is chiral

Triangle anomalies

Massless fermions: lowest Landau level is chiral

Anomalous hydrodynamics

- Recently anomalies have been found to exhibit themselves in a regime one would normally think as completely classical: the hydrodynamic regime
- finite temperature, length scales \gg mean free path
- Largely due to gauge/gravity duality, more concretely: fluid/gravity correspondence
$j^{5 \mu}=n_{5} u^{\mu}-\sigma T\left(g^{\mu \nu}+u^{\mu} u^{\nu}\right) \partial_{\nu} \frac{\mu}{T}+\xi \epsilon^{\mu \nu \lambda \rho} u_{\nu} \partial_{\lambda} u_{\rho}$

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

If sugar behaved that way

\uparrow ? \downarrow

Beyond gauge/gravity duality

- Although anomalous effects in hydrodynamics were first seen through gauge/gravity duality, we now understand that they exist in a general setting
- in particular, they do not depend on coupling
- non only at strong coupling (gauge/gravity duality), but also at weak coupling

Weak coupling

Most important example of kinetic theory: Landau's Fermi liquid theory

Weak coupling

anomalies

Most important example of kinetic theory: Landau's Fermi liquid theory

Weak coupling

anomalies
anomalies

Most important example of kinetic theory: Landau's Fermi liquid theory

Weak coupling

 anomalies anomalies? anomalies

Most important example of kinetic theory: Landau's Fermi liquid theory

Landau's Fermi liquids

Landau’s Fermi liquids

Landau’s Fermi liquids

- Low-energy degrees of freedom: quasiparticles near Fermi surface
- interaction: forward-scatterings of quasiparticles

Landau’s Fermi liquids

- Low-energy degrees of freedom: quasiparticles near Fermi surface
- interaction: forward-scatterings of quasiparticles

RG interpretation of Fermi

 liquid theory- An effective action for quasiparticle
- power counting
- BCS interaction is the only marginally relevant interaction (Polchinski, Shankar)

Fermi liquids

- Dynamics: kinetic equation

$$
\begin{aligned}
& \frac{\partial n_{\mathbf{p}}(\mathbf{x})}{\partial t}+\frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{x}}-\frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{x}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}=0 \\
& \epsilon_{\mathbf{p}}=\epsilon_{\mathbf{p}}^{0}+\delta \epsilon_{\mathbf{p}} \\
& \epsilon_{\mathbf{p}}^{0}=v_{\mathrm{F}}\left(|\mathbf{p}|-p_{\mathrm{F}}\right) \quad \delta \epsilon_{\mathbf{p}}=\int \frac{\mathrm{d} \mathbf{q}}{(2 \pi)^{3}} f(\mathbf{p}, \mathbf{q}) \delta n_{\mathbf{q}}(\mathbf{y})
\end{aligned}
$$

Predictions: heat capacity, spin susceptibility, zero sound...

Anomalies in Fermi's liquids

Fermi sphere of
left-handed fermions

Fermi sphere of right-handed fermions

Anomalies in Fermi's liquids

Fermi sphere of
left-handed fermions

Fermi sphere of right-handed fermions

$$
\vec{E} \cdot \vec{B} \neq 0
$$

Anomalies in Fermi's liquids

Fermi sphere of
left-handed fermions

Fermi sphere of right-handed fermions

$$
\vec{E} \cdot \vec{B} \neq 0
$$

Anomalies in Fermi liquids

- How does Landau's Fermi liquid theory discriminate left- and right-handed quasiparticles?
- Through magnetic moment?

left

right

$$
\epsilon_{\mathbf{p}}=|\mathbf{p}|-\gamma \hat{\mathbf{p}} \cdot \mathbf{B}
$$

But magnetic moment cannot explains anomalies

Chiral magnetic effect

Son, Zhitnitsky; Metlitskii; Kharzeev et al.

put our system in B field and slowly varying scalar potential (static)
chemical potential traces A_{0}

$$
\begin{gathered}
\partial j^{0}+\nabla \cdot \mathbf{j}= \pm \frac{1}{4 \pi^{2}} \mathbf{B} \cdot \nabla A_{0} \\
\mathbf{j}= \pm \frac{1}{4 \pi^{2}} \mu \mathbf{B} \quad \begin{array}{l}
\text { Nonzero current in ground state! } \\
\text { contradicts basic tenets of Landau's } \\
\text { Fermi liquid theory }
\end{array}
\end{gathered}
$$

Currents in ground state

$$
\mathbf{j}=\int d \mathbf{p} n_{\mathbf{p}} v_{\mathbf{p}}=\int d \mathbf{p} n_{\mathbf{p}} \frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}=-\int d \mathbf{p} \epsilon_{\mathbf{p}} \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}
$$

Hamiltonian reformulation of Fermi liquid theory

$$
\begin{aligned}
& \partial_{t} n_{\mathbf{p}}=i\left[H, n_{\mathbf{p}}\right] \\
& H=\int \frac{\mathrm{d} \mathbf{p} \mathrm{~d} \mathbf{x}}{(2 \pi)^{3}} \epsilon_{\mathbf{p}}^{0} \delta n_{\mathbf{p}}+\frac{1}{2} \int \frac{\mathrm{~d} \mathbf{p} \mathrm{~d} \mathbf{q} \mathrm{~d} \mathbf{x}}{(2 \pi)^{6}} f(\mathbf{p}, \mathbf{q}) \delta n_{\mathbf{p}} \delta n_{\mathbf{q}},
\end{aligned}
$$

$$
\begin{aligned}
{\left[n_{\mathbf{p}}(\mathbf{x}), n_{\mathbf{q}}(\mathbf{y})\right]=-\mathrm{i}(2 \pi)^{3} \frac{\partial}{\partial \mathbf{p}} } & \delta(\mathbf{p}-\mathbf{q}) \cdot \frac{\partial}{\partial \mathbf{x}} \delta(\mathbf{x}-\mathbf{y}) \\
& \times\left[n_{\mathbf{p}}(\mathbf{y})-n_{\mathbf{q}}(\mathbf{x})\right] .
\end{aligned}
$$

where does it come from?

Commutators and Poisson brackets

$$
\hat{A}=\int \frac{\mathrm{d} \mathbf{p} \mathrm{~d} \mathbf{x}}{(2 \pi)^{3}} A(\mathbf{p}, \mathbf{x}) n_{\mathbf{p}}(\mathbf{x}), \quad \hat{B}=\int \frac{\mathrm{d} \mathbf{p} \mathrm{~d} \mathbf{x}}{(2 \pi)^{3}} B(\mathbf{p}, \mathbf{x}) n_{\mathbf{p}}(\mathbf{x})
$$

$$
\begin{aligned}
& {[\hat{A}, \hat{B}]=-\mathrm{i} \int \frac{\mathrm{~d} \mathbf{p} \mathrm{~d} \mathbf{x}}{(2 \pi)^{3}}\{A, B\} n_{\mathbf{p}}(\mathbf{x}) } \\
& \uparrow \uparrow^{\frac{\partial A}{\partial \mathbf{p}} \cdot \frac{\partial B}{\partial \mathbf{x}}-\frac{\partial A}{\partial \mathbf{x}} \cdot \frac{\partial B}{\partial \mathbf{p}}}
\end{aligned}
$$

this fixes the commutator between $n_{p}(x)$

Berry curvature

- Standard Fermi liquid theory: does not distinguish left- and right-handed quasiparticles
- Dirac wavefunction for right-handed particles

$$
\begin{gathered}
(\sigma \cdot \mathbf{p}) u_{\mathbf{p}}=|\mathbf{p}| u_{\mathbf{p}} \\
\mathcal{A}(\mathbf{p})=u_{\mathbf{p}}^{\dagger} \partial_{\mathbf{p}} u_{\mathbf{p}}
\end{gathered}
$$

Single quasiparticle

- Motion of a classical particle in an external field

$$
\begin{array}{r}
\dot{\mathbf{x}}=\frac{\partial \epsilon_{\mathbf{p}}}{\partial \mathbf{p}}+\dot{\mathbf{p}} \times \Omega \\
\dot{\mathbf{p}}=\underset{\mathbf{x}}{ }+\dot{\mathbf{x}} \times \mathbf{B} \\
\underset{\substack{(\text { Xiao, Shi, Niu; } \\
\text { Balents, Shindou) }}}{\mathbf{E}}
\end{array}
$$

right-handed

left-handed

Magnetic monopole in momentum space

$$
\nearrow^{\Omega=\nabla_{\mathrm{p}} \times \mathcal{A}(\mathbf{p})}
$$

Berry curvature

Single-quasiparticle physics

$S=\int d t\left(p^{i} \dot{x}^{i}-\epsilon(p)+A_{0}+A_{i} \dot{x}^{i}-\mathcal{A}_{i}(p) \dot{p}^{i}\right)=\int d t\left(-\omega_{a} \dot{\xi}^{a}-H(\xi)\right)$
equation of motion: $\quad \omega_{a b} \dot{\xi}^{b}+\partial_{a} H=0 \quad \omega_{a b}=\partial_{a} \omega_{b}-\partial_{b} \omega_{a}$
Hamiltonian interpretation:

$$
\begin{gathered}
\dot{\xi}^{a}=\left\{H, \xi^{a}\right\} \\
\left\{p_{i}, p_{j}\right\}=-\frac{\epsilon_{i j k} B_{k}}{1+\mathbf{B} \cdot \boldsymbol{\Omega}} \quad\left\{\xi_{i}, x_{j}\right\}=\frac{\epsilon_{i j k} \Omega_{k}}{1+\mathbf{B} \cdot \boldsymbol{\Omega}} \\
\left\{p_{i}, x_{j}\right\}=\frac{\delta_{i j}+\Omega_{i} B_{j}}{1+\mathbf{B} \cdot \boldsymbol{\Omega}}
\end{gathered}
$$

Example: $B=0$

$$
\begin{aligned}
& \left\{p_{i}, p_{j}\right\}=0 \quad\left\{p_{i}, x_{j}\right\}=\delta_{i j} \quad\left\{x_{i}, x_{j}\right\}=\epsilon_{i j k} \Omega_{k} \\
& \mathbf{L}=\mathbf{x} \times \mathbf{p} \\
& \mathbf{J}=\mathbf{L} \pm \frac{\mathbf{p}}{2|\mathbf{p}|}\left\{L_{i}, L_{j}\right\} \neq-\epsilon_{i j k} L_{k} \\
& \text { spin } \quad\left\{J_{i}, J_{j}\right\}=-\epsilon_{i j k} J_{k}
\end{aligned}
$$

Modified Fermi liquid theory

$$
\begin{gathered}
\mathrm{d} \Gamma=\sqrt{\omega} \mathrm{d} \xi=(1+\mathbf{B} \cdot \boldsymbol{\Omega}) \frac{\mathrm{d} \mathbf{p} \mathrm{~d} \mathbf{x}}{(2 \pi)^{3}} \\
\hat{A}=\int \mathrm{d} \xi \sqrt{\omega} A(\xi) n(\xi), \quad \hat{B}=\int \mathrm{d} \xi \sqrt{\omega} B(\xi) n(\xi) \\
{[\hat{A}, \hat{B}]=-\frac{\mathrm{i}}{2} \int \mathrm{~d} \xi \sqrt{\omega} \omega^{a b}\left(A \partial_{a} B-B \partial_{a} A\right) \partial_{b} n(\xi)}
\end{gathered}
$$

Together with a Hamiltonian $\mathrm{H}\left[\mathrm{n}_{\mathrm{p}}(\mathrm{x})\right]$, it determines the equation of motion

Anomalous commutator

$$
\begin{aligned}
& n(\mathbf{x})=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \sqrt{\omega} n_{\mathbf{p}}(\mathbf{x}) \\
& {[n(\mathbf{x}), n(\mathbf{y})]=-\mathrm{i}\left(\boldsymbol{\nabla} \times \boldsymbol{\sigma}+\frac{k}{4 \pi^{2}} \mathbf{B}\right) \cdot \nabla \delta(\mathbf{x}-\mathbf{y})} \\
& \begin{array}{c}
\text { Anomalous Hall } \\
\text { current }
\end{array} \\
& \text { anomaly }
\end{aligned}
$$

$$
\sigma_{i}(\mathbf{x})=-\int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3}} p_{i} \Omega_{k} \frac{\partial n_{\mathbf{p}}(\mathbf{x})}{\partial p_{k}}, \quad \quad k=\frac{1}{2 \pi} \int \mathrm{~d} \mathbf{S} \cdot \boldsymbol{\Omega} .
$$

(~ 0 for isotropic Berry curvature)

+ I right-handed
-I left-handed

Current ($\mathrm{E}=0$)

$$
\begin{gathered}
\dot{n}=\mathrm{i}[H, n]=-\boldsymbol{\nabla} \cdot \mathbf{j} \\
\mathbf{j}=\int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3}}\left[-\epsilon_{\mathbf{p}} \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}-\left(\boldsymbol{\Omega} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}\right) \epsilon_{\mathbf{p}} \mathbf{B}-\epsilon_{\mathbf{p}} \boldsymbol{\Omega} \times \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{x}}\right] \\
n_{\mathbf{p}} \mathbf{V}_{\mathbf{p}} \quad \text { extra contributions }
\end{gathered}
$$

Anomaly from commutator

- Anomalies are related to non-commutativity of number density at 2 different points

$$
\begin{gathered}
H^{\prime}=H+\int \mathrm{d} \mathbf{x} \phi(\mathbf{x}) n(\mathbf{x}) \\
\partial_{t} n(\mathbf{x})=\mathrm{i}\left[H^{\prime}, n(\mathbf{x})\right]=-\nabla \cdot \mathbf{j}-\left(\nabla \times \boldsymbol{\sigma}+\frac{k}{4 \pi^{2}} \mathbf{B}\right) \cdot \boldsymbol{\nabla} \phi(\mathbf{x}) \\
\partial_{t} n+\boldsymbol{\nabla} \cdot \mathbf{j}^{\prime}=\frac{k}{4 \pi^{2}} \mathbf{E} \cdot \mathbf{B} \quad \mathbf{j}^{\prime}=\mathbf{j}+\mathbf{E} \times \boldsymbol{\sigma} \\
\text { anomaly } \\
\begin{array}{c}
\text { anomalous Hall } \\
\text { current }
\end{array}
\end{gathered}
$$

Chiral magnetic effect

$$
\mathbf{j}=\int \frac{\mathrm{d} \mathbf{p}}{(2 \pi)^{3}}\left[-\epsilon_{\mathbf{p}} \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}-\left(\boldsymbol{\Omega} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}\right) \epsilon_{\mathbf{p}} \mathbf{B}-\epsilon_{\mathbf{p}} \boldsymbol{\Omega} \times \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{x}}\right]
$$

$=0$ in thermal equilibrium

$\frac{k}{4 \pi^{2}} \mu \mathbf{B}$

Conclusion

- Anomalies can be incorporated into Landau's Fermi liquid theory
- Berry curvature with nonzero flux
- Relevance for real materials? (doped Weyl semimetals)

