Influence of Disorder on the Physical Properties of the Cuprates

H. Alloul ¹, J. Bobroff ¹and F. Rullier-Albenque ² Samples: N. Blanchard ¹, G. Collin ³, J.F. Marucco ⁴, V. Viallet ⁴, D. Colson ² and P. Lejay ⁵

¹ Physique des Solides, Université Paris-Sud, Orsay
² SPEC, CEA, Saclay.
³ LLB, CEA, Saclay.
⁴ LCNS, CEA, Université Paris-Sud, Orsay
⁵ CNRS, Grenoble.

Native and controlled disorder in cuprates

• Introduction

Phase diagram and open questions in cuprates Native and controlled disorder?

- *NMR as a probe of disorder* Comparison of different cuprate families YBCO6.6 and YBCO7 : homogeneous cases
- Influence of controlled disorder on the phase diagram Pseudogap crossover Superconducting dome and hole content
- Nernst effect, phase coherence and preformed pairs Nersnst effect in « pure » systems Disorder and phase coherence
- Conclusion: Pseudogap and fluctuations

Generic Phase Diagram of the Cuprates ?

This shape of phase diagram is apparently generic

However the optimal Tc is not generic and the hole concentration is not always well determined

Where is located the Metal Insulator transition?

What about the MIT in « pure » cuprates ??

Inhomogeneities in BiSCCO viewed by STM

Cren et al, PRL 84, 147 (2000); Howald et al PRB 64 10054-1(2001)

Questions About the Phase Diagram

H. Alloul, Santa Barbara 26 / 07 / 05

Native and controlled disorder in cuprates

• Introduction

Phase diagram and open questions in cuprates Native and controlled disorder?

- *NMR as a probe of disorder* Comparison of different cuprate families YBCO6.6 and YBCO7 : homogeneous cases
- Influence of controlled disorder on the phase diagram Pseudogap crossover Superconducting dome and hole content
- Nernst effect, phase coherence and preformed pairs Nersnst effect in « pure » systems Disorder and phase coherence
- Conclusion: Pseudogap and fluctuations

Phase Diagram and Pseudogap

H. Alloul, Santa Barbara 26 / 07 / 05

Diverse contributions to the spectral shape

Macroscopic inhomogeneity of doping

Large bulk samples (0.1 to 0.5 g)

Microscopic distribution of LDOS due to defects

Friedel charge oscillations

But also , in correlated electron systems Staggered magnetic response

Comparison of the one layer cuprate families

Planar ¹⁷O NMR linewidths at optimal doping

TABLE I. The different monolayer compounds with the associated T_c and NMR oxygen width.

	$T_c^{\max}(\mathbf{K})$	$^{17}\mathrm{O}$ full width kHz/% of K_s	
HgBa2CuO4+ <i>s</i>	95	30 kHz/50%	YBCO7
Tl2Ba2CuO4+ <i>s</i>	85	15 kHz/20% [11]	
$La_{2-x}Sr_xCuO_4$	38	90 kHz/120% [12]	20% of Ks
BiaSraCuO ₄	10	70 kHz/110% [10]	
<u>D120120400</u>	10	, o hill/ 110/0 [10]	

Volume 78, Number 19

PHYSICAL REVIEW LETTERS

12 May 1997

17 O NMR Evidence for a Pseudogap in the Monolayer HgBa₂CuO_{4+ δ}

J. Bobroff,¹ H. Alloul,¹ P. Mendels,¹ V. Viallet,² J.-F. Marucco,² and D. Colson² ¹LPS, URA2 CNRS, 91405 Orsay Cedex, France ²CEA-Saclay, Service de Physique de l'Etat Condensé, DRECAM/SPEC, 91191 Gif sur Yvette Cedex, France

NMR Spectra: histogram of the local contribtions

$$K(\mathbf{r}) = \sigma(\mathbf{r}) + A(\mathbf{r})\chi(\mathbf{r},T)$$

σ(r) and A (r) weaklydepend on structural andbond disorder

The *T* variation of spectrum shape can be assigned to a distribution of hole content reflected by that of $\chi(T)$

NMR Spectra: histograms of the local hole density

H. Alloul, Santa Barbara 26 / 07 / 05

Analysis of the NMR Spectra

Native and controlled disorder in cuprates

• Introduction

Phase diagram and open questions in cuprates Native and controlled disorder?

- *NMR as a probe of disorder* Comparison of different cuprate families YBCO6.6 and YBCO7 : homogeneous cases
- Influence of controlled disorder on the phase diagram Pseudogap crossover Superconducting dome and hole content
- Nernst effect, phase coherence and preformed pairs Nersnst effect in « pure » systems Disorder and phase coherence
- Conclusion: Pseudogap and fluctuations

Questions About the Phase Diagram

No change of hole doping

No change of T* : the pseudogap is not sensitive to disorder

H. Alloul, Santa Barbara 26 / 07 / 05

H. Alloul, Santa Barbara 26 / 07 / 05

H. Alloul, Santa Barbara 26 / 07 / 05

Native and controlled disorder in cuprates

• Introduction

Phase diagram and open questions in cuprates Native and controlled disorder?

- *NMR as a probe of disorder* Comparison of different cuprate families YBCO6.6 and YBCO7 : homogeneous cases
- Influence of controlled disorder on the phase diagram Pseudogap crossover Superconducting dome and hole content
- Nernst effect, phase coherence and preformed pairs Nersnst effect in « pure » systems Disorder and phase coherence
- Conclusion: Pseudogap and fluctuations

Transverse Electric field E_y in response to a temperature gradient $\nabla_x T$ in presence of a perpendicular magnetic field B

Nernst effect : very small in normal metal - cancellation of Sondheimer

$$B = 0 \qquad J_{x} = \sigma E_{x} + \alpha (\nabla_{x}T) \qquad J_{x} = 0 \implies E_{x} = -\frac{\alpha}{\sigma} \nabla_{x}T = -S \nabla_{x}T$$

$$B \neq 0 \qquad J_{y} = \sigma E_{y} + \sigma_{yx}E_{x} + \alpha_{yx}(\nabla_{x}T) \qquad J_{y} = 0 \implies E_{y} = \left[\frac{\alpha_{xy}}{\sigma} - S \tan \Theta_{H}\right] (-\nabla_{x}T)$$

Nernst coefficient

$$v_{N} = \frac{E_{y}}{(-\nabla_{x}T)B} = \left[\frac{\alpha_{xy}}{\sigma} - S \tan \Theta_{H}\right] \frac{1}{B}$$

S thermopower σ conductivity $\Theta_{\rm H}$ Hall angle

Counterflows of hot and cold electrons

Nernst effect in the mixed state of superconductors

Mobile vortices move under the application of a thermal gradient $\nabla_x T$

$$F_{th} = -S_{\Phi} \nabla_{x} T$$

Powerful probe for detecting mobile vortices in the mixed state of superconductors

V.A. Rowe and R.P. Huebener, Phys. Rev. 185 (1969)

Josephson relation

 $E_{v} = \vec{v} \wedge \vec{B}$

voltage transverse to the

direction of flow

 $v_s = \frac{E_y}{(-\nabla T)B} > 0$

Anomalous Nernst effect in the normal state of cuprates

Signature of superconducting fluctuations in the normal state $T_c = loss of long range phase coherence$

Wang et al, PRB 64 (2001)

Nernst effect in pure underdoped YBCO_{6.6}

Negative contribution in the normal state

Difficult to determine the onset of superconducting Nernst signal with high accuracy

Nernst effect in pure YBCO_{6.6}

N.P. Ong et al, cond-mat/0312213 (2003)

Question : is there an anomalous Nernst signal in the normal state of $YBCO_{6.6}$?

Influence of irradiation defects on the superconducting properties

T_c depression induced by disorder

 T_c decreases quasi linearly with defect content down to $T_c = 0$

F. Rullier-Albenque et al, PRL <u>91</u> (2003)

Question : Does this loss of phase coherence induce a Nernst signal ?

H. Alloul, Santa Barbara 26 / 07 / 05

Nernst effect in irradiated YBCO₇

Nernst effect in irradiated underdoped YBCO_{7-δ}

The Nernst signal persists well above T_c in irradiated underdoped YBCO_{6.6} The negative contribution decreases with disorder

Nernst effect in irradiated YBCO_{6.6}

H. Alloul, Santa Barbara 26 / 07 / 05

Nernst effect in irradiated YBCO_{6.6}

Native and controlled disorder in cuprates

• Introduction

Phase diagram and open questions in cuprates Native and controlled disorder?

- *NMR as a probe of disorder* Comparison of different cuprate families YBCO6.6 and YBCO7 : homogeneous cases
- Influence of controlled disorder on the phase diagram Pseudogap crossover Superconducting dome and hole content
- Nernst effect, phase coherence and preformed pairs Nersnst effect in « pure » systems Disorder and phase coherence
- Conclusion: Pseudogap and fluctuations

Conclusions

The effect of disorder on Nernst signal is stronger in underdoped crystals Superconducting pairs survive in the normal state of disordered crystals

No link between Nernst signal and pseudo-gap in pure YBCO_{6.6}

Our results suggest that the Nernst signal seen in « pure » compounds could be associated to the presence of uncontrolled defects

In presence of disorder the fluctuation regime extends well above Tc. Some techniques do not differentate Pseudogap and fluctuation regime

H. Alloul, Santa Barbara 26 / 07 / 05

