Surfing q-space of a high temperature superconductor

Adam Kamiński

Ames Laboratory and Iowa State University

Funded by: US Department of Energy National Science Foundation The Royal Society of Great Britain

Outline:

- introduction
- origin of the collective mode
- topology of the Fermi surface
- AutoCorrelated (AC) ARPES

Joong-Mok Park Ames Laboratory Spectroscopy Group James Koll

J. C. Campuzano University of Illinois at Chicago, Argonne Nat. Lab. Utpal Chatterjee

- M. R. Norman Material Science Division, Argonne National Lab. S. Rosenkranz
- M. Randeria Ohio State University
- T. Takeuchi Nagoya University, Japan
- Z.Z.Li H. Raffy

- Universite de Paris-Sud, Orsay, France

K. Kadowaki

University of Tsukuba, Tsukuba, Japan

ARPES experiment

We need: binding energy - E_b initial momentum - kⁱ

$$E_{b} = E - hv + W$$

$$k_{\parallel}^{i} = k_{\parallel}^{f} = \sqrt{2mE/\hbar^{2}} \sin\theta$$

$$k_{\perp}^{i} = 0 \text{ for quasi 2D samples}$$

Instrumentation:

angle resolved mode of the lens:

- 32x improvement of angular resolution
- 2D data acquisition: intensity vs kinetic energy & momentum

developed and perfected by Bjørn Wannberg Uppsala University/Gammadata-Scienta

Quality of the vacuum

March 1998

November 2002

Normalized Intensity

AMES LABORATORY

High precision lab-based ARPES spectrometer

Energy resolution: ~1.3 meV

Angular resolution: 0.1 deg.

UV source: 10¹³ photons/sec. soon: µm size beam

Sample positioning: ~1µm

ARPES intensity $I = \langle \Psi_i | A \cdot p | \Psi_f \rangle^2 A(\mathbf{k}, \omega) f(\omega)$

electronic structure interactions

symmetry of $\boldsymbol{\Psi}$

Spectral function and self energy

A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

The change of scattering rates obtained from MDC peak dispersion and MDC peak widths are the same

A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

Renormalization effects in the superconducting state - magnetic of phonon origin?

T. Valla et al., *Science* 24, 2110 (1999)
P.V. Bogdanov et al., *Phys. Rev. Lett.* 85, 2581 (2001)
A. Kaminski et al., *Phys. Rev. Lett.* 86, 1070 (2001)

EDC's in the superconducting state

A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001)

Hwang et al. Nature 427, 714 (2004)

Score card

Properties of the bosonic mode	compatibility	
	magnetic	phonons
1) isotropic energy ∆+Ω	yes	yes
2) momentum anisotropy	yes	yes, recently
3) temperature dependence	yes	not obvious
4) doping dependence	yes	not obvious

Topology of the Fermi surface

Time evolution of the Fermi surface of $Bi_2Sr_2CaCu_2O_{8+\delta}$

T=100K

Overdoped sample Tc=80K

Overdoped sample Tc=65K

Overdoped sample Tc=65K

Also observed in:

LSCO

A. Fujimori et al.,J. Phys. Chem. of Sol. 59, 1892 (1998)

Tc [K]

A. Ino et al., PRB **65**, 094504 (2002)

Hwang et al. *Nature* **427**, 714 (2004)

The topology of the Fermi surface of Bi2201

(a) hv = 16eV

3D Fermi surface in overdoped Bi2201

 k_x

Takeuchi et al. Submitted

AMES LABORATORY

Takeuchi et al. Submitted

Scattering in traditional STM

Cu on Cu(111)

Ag on Ag(111)

SPECS website

FT STM

Fourier transform

J. E. Hoffman et al, *Science* **295**, 466 (2002)

J. E. Hoffman et al, *Science* **297**, 1148 (2002)

K. McElroy et al, *Nature* **422**, 592 (2004)

L. Capriotti et al, PRB **68**, 014508 (2003)

R. S. Markiewicz et al, PRB **69**, 214517 (2004)

AutoCorrelated (AC) ARPES -ARPES data and q-space

 $S(q,\omega=\omega_0)=\sum_{k=k}I(k,\omega)\ I(k+q,\omega)$

ARPES intensity maps

q-space

Conclusions:

 all identified properties of the bosonic mode observed in ARPES are consistent with magnetic origin

- the topology of the Fermi surface changes from hole-like to electron-like on the overdoped side around Tc~65K in Bi2212

- a dimensional crossover from 2D to 3D electronic structure occurs within superconducting dome in single layer BSCO

 AutoCorrelated ARPES is a new tool to study scattering processes in solids

