CORRELATION PHYSICS FROM A CONDENSED MATTER PERSPECTIVE: MENU AND AMUSE-BOUCHE LEON BALENTS, KITP

serious lecture next week by Cenke Xu

LOCAL RESOURCES

How exotic?

LOCAL RESOURCES

How exotic?

Thursday, October 21, 2010

1

LOCAL RESOURCES

How exotic?

5 7 8 9 10

viewed from outside UCSB

Thursday, October 21, 2010

1

TODAY'S AGENDA

Get to know each other:

Offer up a menu of potentially interesting topics to discuss later

I will try to offer topics which seem most likely to be fruitful topics to explore

Apologies if I am ignorant or naive, especially about the cold atom community

CHEZ KITP

Menu

 $\mathcal{H}igh$ - \mathcal{T}_c Quantum Spin Liquids Mott Transitions Spin-Orbit Physics Classics Frustrated Magnetism Quantum Criticality

SIMULATIONS

quantum

SIMULATIONS

quantum

classical

Anything is possible - so what is really interesting?

MOTIVATIONS IN CMT

- #Understand materials
- Applications
- Second Expand the boundaries of fundamental theory

emergent phenomena - phases, correlations, excitations, topology

mechanisms - e.g. of high-T_c, etc.

** High-T_c - and beyond?
** Quantum spin liquids
** Mott transitions
** Spin orbit physics

HIGH T_c

"Unsolved" almost 25 years, cuprate superconductivity is probably still considered the most greatest challenge in CMP

HIGH T_c - QUESTIONS

 $What are the necessary features for high-T_c?$

₩2d?

proximity to Mott insulator?

antiferromagnetic fluctuations?

Single band?

Charge transfer material?

Is Hubbard model sufficient?

HIGH T_c - QUESTIONS

- * How do we understand the unusual features of the cuprates?
 - Is there an underlying QCP of importance?
 - What is the nature of the "strange metal"?
 - Is the pseudo-gap region a distinct phase?
 - Is inhomogeneity intrinsic and/or important?
 - * Are there "exotic" excitations or phases present or nearby in the phase diagram?

EMULATING HIGH-Tc

Simulate the (fermionic, s=1/2) Hubbard model

DARPA - "The OLE program will construct an emulator — an artificial material whose behavior is governed by the same underlying mathematical description as the material of interest."

in condensed matter

* There are increasing efforts in condensed matter to grow "designer correlated materials" using layer-by-layer growth of transition metal oxides

* "Mott interfaces", "Mott heterostructures", "oxide interfaces"

There are opportunities for quantum and classical simulation here, and inspiration for new models

EMULATING HIGH T_c in condensed matter

Chaloupka + Khaliullin, 2008

EMULATING HIGH T_c in condensed matter

Chaloupka + Khaliullin, 2008 S. Stemmer, unpublished

But this doesn't seem to work (so far!)

EMULATING HIGH T_c in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄ Single j=1/2 Hubbard model on a square lattice

in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄

Charge gap = 0.1-0.5 eV

B.J.Kim et al, PRL (08)

in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄

Neel order below T_N = 240K; J ≈1000K

B.J.Kim et al, Science (09)

in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄

Giant canting angle ≈10°, implies strong Dzyaloshinskii-Moriya D/J ≈0.1

in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄ Films of Sr₂Ir_{1-x}Rh_xO₄ and Sr₂Ir_{1-x}Ru_xO₄ have been grown and show insulatormetal transitions

La_xSr_{2-x}IrO₄?

in condensed matter

Sr₂IrO₄ - same crystal structure as La₂CuO₄ Can we fill in this phase diagram?

Fermi liquid?

QUANTUM SPIN LIQUIDS

QSL = a state in which spins avoid ordering by quantum fluctuations

- Better: a ground state with "exotic" structure e.g. emergent gauge structure such as topological order, supporting fractional quasiparticles, etc.
- Main problem:
 - Where to find them?
- Secondary problem:

How to distinguish different ones?

QUANTUM SPIN LIQUIDS

SQL = a state in which spins avoid ordering by quantum fluctuations

 Better: a ground state with "exotic" structure - e.g. emergent gauge structure such as topological order, st Advertisement: Rajiv Singh's c. talk tomorrow, 1:30pm:
 Mai Experimental Candidates for Quantum Spin-Liquids: <u>Current Status</u>
 Secondary problem:

How to distinguish different ones?

RVB STATES

** Anderson (73): ground states of quantum magnets might be approximated by superpositions of singlet "valence bonds"

Walence bond = singlet

$$|VB\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right)$$

VB STATES

VBS

not a spin liquid

a QSL with an energy gap to break a singlet

gapless spin excitations

SLs generically support "spinons", neutral particles with S=1/2

* In 1d, the spinon is a domain wall or soliton

It has in this sense a "string", but this does not confine the spinon because the string's boundary is just its endpoint

In d>1, any observable string costs divergent energy

In d>1, any observable string costs divergent energy

If the ground state is a *superposition* of many states, the string need not be observable, if motion of the string simply reshuffles states in the superposition

SLAVE PARTICLES

Gutzwiller-type variational wavefunction uses a reference Hamiltonian

 $H_{ref} = \sum_{ij} \left[t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + \text{h.c.} + \Delta_{ij} c_{i\uparrow}^{\dagger} c_{j\downarrow}^{\dagger} + \text{h.c.} \right]$ * Project

$$|\Psi_{var}\rangle = \prod \hat{P}_{n_i=1} |\Psi_{ref}\rangle$$

Gauge transformations of reference state leave physical state invariant

** this is believed to be reflected in *emergent gauge* fields in the QSL phases: U(1), Z_2 , ...

THE "LANDSCAPE"

* The space of RVB variational wavefunctions is vast

The number of distinct Quantum Spin Liquid (QSL) phases is also huge

* e.g. X.G. Wen has classified *bundreds* of different QSL states all with the same symmetry on the square lattice (and this is *not* a complete list!)

This makes it difficult to compare all of the states

Many QSLs are described by non-trivial interacting QFTs, which are themselves not well understood

THE PARADOX

- There seem to be so many QSLs in theory
- But no clear demonstrations in experiment

* probably thousands of quantum antiferromagnets have been studied experimentally and nearly all of them order magnetically

#How to tell? A good subject for discussion.

WHERE IN CMP?

- Materials with
 - \$\$ S=1/2 spins (necessary?)
 - % Frustration
 - Other sources of fluctuations, e.g. proximity to Mott transition (where the electrons become delocalized)

*e.g. Hubbard rather than Heisenberg

D>1 QSL MATERIALS

κ-(BEDTTTF)₂Cu₂(CN)₃ EtMe₃Sb[Pd(dmit)₂]₂

herbertsmithite

volborthite

vesignieite

Na₄Ir₃O₈

Thursday, October 21, 2010

QSL CANDIDATES

- **Triangular lattice** organics: κ-(BEDT-TTF)₂Cu₂(CN)₃, EtMe₃Sb[Pd(dmit)₂]₂
- **Kagome lattices**: herbertsmithite, vesignieite, volborthite
- **Hyperkagome lattice**: Na₄Ir₃O₈

XY pyrochlore: Er₂Ti₂O₇

FCC double perovskites: A₂BB'O₆, e.g. Ba₂YMoO₆ recent work in our group

$\mathbf{SLS} \neq \mathbf{QSLS}$

- Classical spin liquids (thermal fluctuations)
 - * "spin ice" Ho₂Ti₂O₇, Gd₂Ti₂O₇
 - # Heisenberg pyrochlores ACr₂O₄, A=Zn, Cd, Hg...
 - * "spiral spin liquid" MnSc₂S₄,CoAl₂O₄?
 - % "ring liquid" Bi₃Mn₄O₁₂(NO₃)?
- # Unconventional partially frozen states (very common)
 - ** S=1/2 anisotropic kagome: "volborthite" $Cu_3V_2O_7(OH)_2 \cdot 2H_2O$
 - # triangular S=1 antiferromagnet: NiGa2S4
 - FCC antiferromagnet: Sr₂CaReO₆

QSLS IN COLD ATOMS?

Solvable spin models, e.g. Kitaev

Difficult: very fine-tuned (might actually exist in CM though!) and must cool deeply

Many conserved quantities - hard to equilibrate

 Mimic experimental CM systems
 e.g. triangular lattice fermionic Hubbard model at 1/2-filling

TRIANGULAR LATTICE

TRIANGULAR LATTICE

TRIANGULAR LATTICE

The "sweet spot" is at intermediate coupling

One may expect similar things in other frustrated lattices (maybe unfrustrated ones too!)

metal ₅ QSL AF U/t

~t/U

The Mott transition of fermions is a storied topic in condensed matter physics

MOTT TRANSITION

Thursday, October 21, 2010

BANDWIDTH CONTROLLED MOTT TRANSITION

- Mott originally argued for a first order transition
 - But he changed his mind later!
- If it is, a line of first order transitions must exist at T>0
 - ** this is often seen in
 experiment

FIG 2. Different predictions about the way the activation energy changes at the transition.

FIRST ORDER MOTT TRANSITIONS

0

200

300 Temperature (K)

100

500

400

Thursday, October 21, 2010

FIRST ORDER MOTT TRANSITIONS

 κ -(ET)₂Cu[N(CN)₂]Cl

Seen in several organic quasi-2d conductors

RECENT ÁCTIVITY

A major focus of method development

ℬDMFT++

* Variational wavefunctions, fixed node, etc.

Many of the most interesting materials may be close to one (e.g. many QSL candidates)

Study is reinvigorated by Mott heterostructures

LANIO3 FILMS

G. Sawatzky, unpublished

* Numerous groups are now studying LaNiO₃ films and superlattices, grown down to thicknesses of a few unit cells

Strain and interfaces have been shown (experimentally) to alter the electronic structure in a rationalizable way, tuning a metal-insulator transition

CONTINUOUS MOTT TRANSITIONS? Т T/t T_{coh} Quantum critical T. Senthil, non-fermi liquid Marginal 2008 arginal FI spinon liqui ~t/U Mott insulator **JSL** AF meta

Recently theorists have returned to the idea of a continuous (bandwidth tuned) Mott transition

U/t

Might occur in frustrated situations

Requires "killing" entire Fermi surface at the QCP - very exotic criticality

* Plausible scenarios based on "slave rotor" approximation

MOTT TRANSITIONS IN COLD ATOMS

In general, the Mott transition occurs with U comparable to bandwidth, so temperature does not need to be too low

- Systems are much more tunable than solid state (lattice depth, symmetry, SU(N))
- Conditions more favorable for continuous transitions:
 - % lack of phonons

large SU(N) symmetry

SPIN ORBIT PHYSICS

 $\lambda L \cdot S$

fine structure magnetic anisotropy

spin Hall effect

anomalous Hall effect

topological insulators

Thursday, October 21, 2010

λ

#Hubbard model:

Thursday, October 21, 2010

#Hubbard model:

Thursday, October 21, 2010

$$H = t H_{hop} - \lambda \sum_{i} L \cdot S + U \sum_{i} n_{i}(n_{i} - 1)$$

$$U/t$$

$$strong correlation$$

$$weak correlation$$

$$\lambda/t$$

INTERMEDIATE REGIME

% Very common in 5d transition metal oxides:

 $\gg \lambda \sim U \sim t$ (e.g. Iridates)

This is a complex regime, with many interesting suggestions:

** topological Mott insulator
 ** magnetic topological insulator
 ** spin-orbit 3d Dirac semimetal
 ** Pesin, Balents 2010
 BJ Yang, YB Kim, 2010
 ** Mong, Essin, Moore 2010
 ** Wan *et al* 2010

STRONG SO + STRONG MOTT

Common example: 4f electron systems

Here Mott localization is so strong energy scales are very low

Transition metals: U and λ are anti-correlated, so it is hard to find strong SO Mott insulators

* Need to seek special situations where bandwidth is unusually low

* Also need to preserve orbital degeneracy

STRONG SO + STRONG MOTT

A-site spinels FeSc₂S₄ Double perovskites A₂BB'O₆

STRONG SO + STRONG MOTT

A-site spinels FeSc₂S₄ Double perovskites A₂BB'O₆ More specifically: insulating rock salt d⁰d¹ double perovskites

#Hubbard model: $H = t H_{hop} - \lambda \sum_{i} \boldsymbol{L} \cdot \boldsymbol{S} + U \sum_{i} n_i (n_i - 1)$ U/t multipolar order enhanced quantum fluctuations "traditional" Mott strong SO Mott insulators insulators "simple" materials TIs, SO-semimetals λ/t

TIME FOR DESSERT!

Thursday, October 21, 2010

CIDRE

Cidre Artisan