Spin Liquids in Triangular Lattice Organic Compounds: a Nodal Fractionalized State?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

Basics: Phases of Matter

- Most Phases of Matter can be classified by identifying an 'order parameter' O.
- Order parameter \Rightarrow Classical description.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basics: Phases of Matter

- Most Phases of Matter can be classified by identifying an 'order parameter' O.
- Order parameter \Rightarrow Classical description.

同 ト イ ヨ ト イ ヨ ト

'Truly' Quantum Phases of Matter

- Zero Kelvin, no symmetry breaking, no classical description.
- Quantum hall phases, Fermi liquids, Insulators with one-electron per unit cell and no symmetry breaking.
- Spin-liquids ⇒ Oshikawa-Hastings argument gaurantees an interesting outcome e.g. emergence of topological order, artificial photons ...

'Truly' Quantum Phases of Matter

- Zero Kelvin, no symmetry breaking, no classical description.
- Quantum hall phases, Fermi liquids, Insulators with one-electron per unit cell and no symmetry breaking.
- Spin-liquids ⇒ Oshikawa-Hastings argument gaurantees an interesting outcome e.g. emergence of topological order, artificial photons ...

・ロト ・同ト ・ヨト ・ヨト

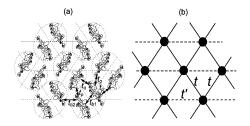
'Truly' Quantum Phases of Matter

- Zero Kelvin, no symmetry breaking, no classical description.
- Quantum hall phases, Fermi liquids, Insulators with one-electron per unit cell and no symmetry breaking.
- Spin-liquids ⇒ Oshikawa-Hastings argument gaurantees an interesting outcome e.g. emergence of topological order, artificial photons ...

- 4 同 2 4 日 2 4 日 2 4

Outline

κ-ET Organic Superconductors and Insulators Spin-liquids on the Triangular Lattice Consequences of d-wave Spin-Liquid State Summary and Questions

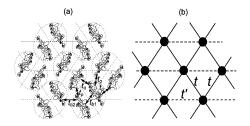

- 1 κ -ET Organic Superconductors and Insulators
 - Basics
 - Phenomenology of insulating region
 - Phenomenology of superconducting region
 - Summary
- 2 Spin-liquids on the Triangular Lattice
 - Ring-exchange Hamiltonian
 - Variational wave-functions
 - Result
- Onsequences of d-wave Spin-Liquid State
- 4 Summary and Questions

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

• □ > • □ > • □ > • □ > •

Structure


- Layered organic structures with one electron per triangular lattice site.
- A moderate pressure can change t, t'!

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

Image: A image: A

Structure

- Layered organic structures with one electron per triangular lattice site.
- A moderate pressure can change t, t'!

Examples

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

- 4 同 2 4 日 2 4 日 2 4

Material	Ground State	t'/t
$\kappa - (ET)_2 Cu_2 (CN)_3$	Unordered Mott insulator	1.06
$\kappa - (ET)_2 Cu[N(CN)_2]CI$	Ordered Mott insulator	0.75

• $\kappa - (ET)_2 Cu[N(CN)_2]Cl$ orders antiferromagnetically at 27 K.

• $\kappa - (ET)_2 Cu_2(CN)_3$ doesn't till lowest observed temperatures ($\approx 20 \text{ mK}$)!

Examples

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Material	Ground State	t'/t
$\kappa - (ET)_2 Cu_2 (CN)_3$	Unordered Mott insulator	1.06
$\kappa - (ET)_2 Cu[N(CN)_2]Cl$	Ordered Mott insulator	0.75

- $\kappa (ET)_2 Cu[N(CN)_2]CI$ orders antiferromagnetically at 27 K.
- $\kappa (ET)_2 Cu_2(CN)_3$ doesn't till lowest observed temperatures ($\approx 20 \text{ mK}$)!

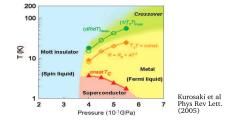
Examples

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

→ Ξ →

Material	Ground State	t'/t
$\kappa - (ET)_2 Cu_2 (CN)_3$	Unordered Mott insulator	1.06
$\kappa - (ET)_2 Cu[N(CN)_2]Cl$	Ordered Mott insulator	0.75


- $\kappa (ET)_2 Cu[N(CN)_2]CI$ orders antiferromagnetically at 27 K.
- $\kappa (ET)_2 Cu_2(CN)_3$ doesn't till lowest observed temperatures ($\approx 20 \text{ mK}$)!

Basics

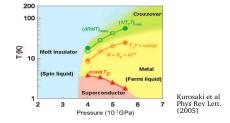
Phenomenology of insulating region Phenomenology of superconducting region Summary

- 4 同 2 4 日 2 4 日

Phase diagram of κCN

• Pressure \Rightarrow Mott Insulator \rightarrow Superconductor \rightarrow Fermi liquid.

Superconductivity proximate to Mott insulator (coincidence?).

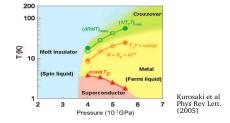

Mott insulator suspected to be a spin-liquid.

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

Image: A image: A

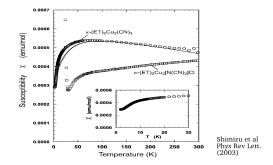
Phase diagram of κCN


- Pressure \Rightarrow Mott Insulator \rightarrow Superconductor \rightarrow Fermi liquid.
- Superconductivity proximate to Mott insulator (coincidence?).
- Mott insulator suspected to be a spin-liquid.

Basics

Phenomenology of insulating region Phenomenology of superconducting region Summary

- **→** → **→**

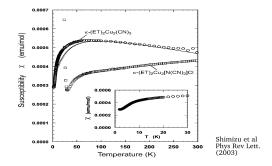

Phase diagram of κCN

- Pressure \Rightarrow Mott Insulator \rightarrow Superconductor \rightarrow Fermi liquid.
- Superconductivity proximate to Mott insulator (coincidence?).
- Mott insulator suspected to be a spin-liquid.

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Insulator: Spin Susceptibility

No signature of phase transition till 1.9 K (J ≈ 250 K!).
χ(T → 0) is finite.

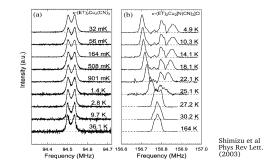

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

▲□ ► < □ ► </p>

-

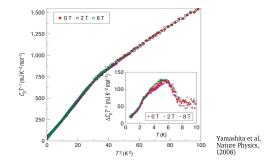
Insulator: Spin Susceptibility


No signature of phase transition till 1.9 K (J ≈ 250 K!).
χ(T → 0) is finite.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

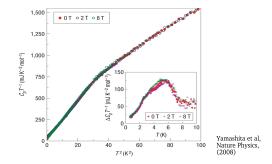

Insulator: NMR spectra

• No appreciable shift \Rightarrow No local magnetization.

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Insulator: Specific Heat

• *T*-linear specific heat at low temperatures!


• Insensitive to external magnetic field.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < ○ へ ○</p>
Spin Liquids in Triangular Lattice Organic Compounds: a Nodal

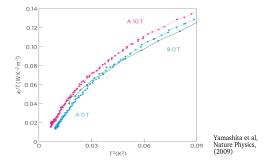
Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Insulator: Specific Heat

- T-linear specific heat at low temperatures!
- Insensitive to external magnetic field.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

Spin Liquids in Triangular Lattice Organic Compounds: a Noda


3

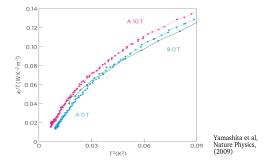
-

< 17 ▶

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Insulator: Thermal Conductivity

κ/T(T→0) extrapolates to different values for different T.
For T > 1K, κ/T(T→0) is non-zero.

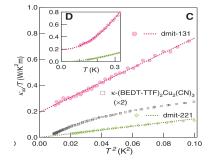

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

《□▷《☞▷《콜▷《콜▷ 콜 ∽) <> (~) Spin Liquids in Triangular Lattice Organic Compounds: a Nodal

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

- ∢ ⊒ →

Insulator: Thermal Conductivity

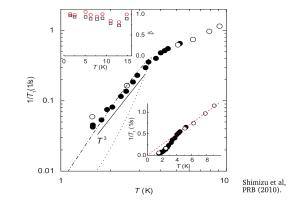


κ/T(T→0) extrapolates to different values for different T.
For T > 1K, κ/T(T→0) is non-zero.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Insulator: Thermal Conductivity for $EtMe_3Sb[Pd(dmit)_2]_2$

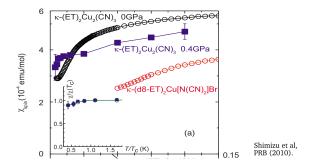

Yamashita et al, Science 2010.

• $\kappa/T(T \to 0)$ extrapolates to non-zero value as $T \to 0$.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Superconductor: NMR Relaxation


• $1/T_1T \rightarrow T^2$ for $T \lesssim 3.5$ K.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

Spin Liquids in Triangular Lattice Organic Compounds: a Nodal

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Superconductor: Suscptibility

Almost no change in suscptibility across the Mott transition!

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

- 4 同 2 4 日 2 4 日 2

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4}J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

<ロ> <同> <同> < 同> < 同>

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4} J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4} J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4} J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

(日)

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4} J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?

Basics Phenomenology of insulating region Phenomenology of superconducting region Summary

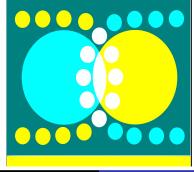
イロン イボン イヨン イヨン

Summary

Insulating Phase

- No magnetic ordering down to 32 mK ($\approx 10^{-4} J$) \Rightarrow Spin-liquid at T = 0?
- Specific heat $C_P \sim T$ at low $T \Rightarrow$ Gapless excitations?

- $1/T_1T \sim T^2$ at low $T \Rightarrow$ Nodes in SC gap?
- $\chi(T \rightarrow 0)$ is finite \Rightarrow Gapless excitations?


Summary

Topological and Quantum Order

Long Lost English Edition

Course of Theoretical Physics Volume 11

L.D. Landau, E.M. Lifshitz and X.G. Wen

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

・ 同 ト ・ ヨ ト ・ ヨ ト Spin Liquids in Triangular Lattice Organic Compounds: a Nodal

э

Ring-exchange Hamiltonian /ariational wave-functions Result

Gapless spin liquids and fractional particles

• κCN as gapless fractionalized Mott insulator.

- Basic idea: electron creation operator $c_{\sigma}^{\dagger} = f_{\sigma}^{\dagger} b$.
- Spinon f_{σ} carries spin while chargeon b carries charge.
- Emergent gauge fields.

Ring-exchange Hamiltonian /ariational wave-functions Result

Gapless spin liquids and fractional particles

- κCN as gapless fractionalized Mott insulator.
- Basic idea: electron creation operator $c_{\sigma}^{\dagger} = f_{\sigma}^{\dagger} b$.
- Spinon f_{σ} carries spin while chargeon b carries charge.
- Emergent gauge fields.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ring-exchange Hamiltonian /ariational wave-functions Result

Gapless spin liquids and fractional particles

- κCN as gapless fractionalized Mott insulator.
- Basic idea: electron creation operator $c_{\sigma}^{\dagger} = f_{\sigma}^{\dagger} \mathbf{b}$.
- Spinon f_{σ} carries spin while chargeon b carries charge.
- Emergent gauge fields.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ring-exchange Hamiltonian /ariational wave-functions Result

Gapless spin liquids and fractional particles

- κCN as gapless fractionalized Mott insulator.
- Basic idea: electron creation operator $c_{\sigma}^{\dagger} = f_{\sigma}^{\dagger} \mathbf{b}$.
- Spinon f_{σ} carries spin while chargeon b carries charge.
- Emergent gauge fields.

Ring-exchange Hamiltonian Variational wave-functions Result

A simple example

• Spinon f_{σ} is fermionic and forms a Fermi surface.

• Chargeon *b* is a boson and gapped.

Ring-exchange Hamiltonian Variational wave-functions Result

A simple example

- Spinon f_{σ} is fermionic and forms a Fermi surface.
- Chargeon *b* is a boson and gapped.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Ring-exchange Hamiltonian Variational wave-functions Result

Hamiltonian for κ -ET insulators?

- Charge gap <u>BUT</u> significant charge fluctuations (proximity to metal-insulator transition).
- \Rightarrow Multiple exchange spin-model.

$$H = 2J_2 \sum_{\langle rr' \rangle} \vec{S}_{r'} \cdot \vec{S}_{r'} + J_4 \sum_{\Box} (P_{1234} + h.c) + \dots \quad (1)$$

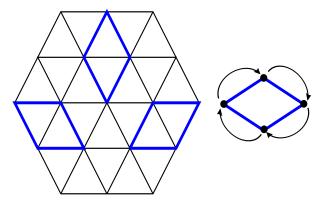
Motrunich, Phys. Rev. B, 2005

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Ring-exchange Hamiltonian Variational wave-functions Result

Hamiltonian for κ -ET insulators?

- Charge gap <u>BUT</u> significant charge fluctuations (proximity to metal-insulator transition).
- \Rightarrow Multiple exchange spin-model.


$$H = 2J_2 \sum_{\langle rr' \rangle} \vec{S}_r \cdot \vec{S}_{r'} + J_4 \sum_{\Box} (P_{1234} + h.c) + \dots \quad (1)$$

Motrunich, Phys. Rev. B, 2005

伺 ト イ ヨ ト イ ヨ ト

Ring-exchange Hamiltonian Variational wave-functions Result

Ring Exchange

<ロ> <同> <同> < 回> < 回>

э

Ring-exchange Hamiltonian Variational wave-functions Result

• Construct variational states $|\Psi\rangle$ motivated by κCN .

- Minimize $E = \langle \Psi | H | \Psi \rangle$ for candidate $| \Psi \rangle$'s.
- Propose $|\Psi
 angle$ with the minimum *E* as the ground state.

・ロト ・同ト ・ヨト ・ヨト

Ring-exchange Hamiltonian Variational wave-functions Result

- Construct variational states $|\Psi\rangle$ motivated by κCN .
- Minimize $E = \langle \Psi | H | \Psi \rangle$ for candidate $| \Psi \rangle$'s.
- Propose $|\Psi
 angle$ with the minimum *E* as the ground state.

・ロト ・同ト ・ヨト ・ヨト

Ring-exchange Hamiltonian Variational wave-functions Result

- Construct variational states $|\Psi\rangle$ motivated by κCN .
- Minimize $E = \langle \Psi | H | \Psi \rangle$ for candidate $| \Psi \rangle$'s.
- Propose $|\Psi
 angle$ with the minimum *E* as the ground state.

Ring-exchange Hamiltonian Variational wave-functions Result

A simple example of gapless spin liquid

• Spinon f_{σ} is fermionic and forms a Fermi surface.

- Chargeon *b* is a boson and gapped.
- Wave-function?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Ring-exchange Hamiltonian Variational wave-functions Result

A simple example of gapless spin liquid

- Spinon f_{σ} is fermionic and forms a Fermi surface.
- Chargeon *b* is a boson and gapped.
- Wave-function?

□ ▶ < □ ▶ < □</p>

Ring-exchange Hamiltonian Variational wave-functions Result

A simple example of gapless spin liquid

- Spinon f_{σ} is fermionic and forms a Fermi surface.
- Chargeon *b* is a boson and gapped.
- Wave-function?

Ring-exchange Hamiltonian Variational wave-functions Result

Wave-function for a gapless spin-liquid

- No symmetry breaking and gapless spinful excitations?
- Fermi liquid almost does it (!).
- Insulator \rightarrow Project out the charges.

$$PFL\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |FL\rangle$$
(2)

$$\equiv \text{ Fermi surface of spinons}$$
(3)

Ring-exchange Hamiltonian Variational wave-functions Result

Wave-function for a gapless spin-liquid

- No symmetry breaking and gapless spinful excitations?
- Fermi liquid almost does it (!).
- Insulator \rightarrow Project out the charges.

$$PFL \rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |FL\rangle$$
(2)

$$\equiv \text{ Fermi surface of spinons}$$
(3)

Ring-exchange Hamiltonian Variational wave-functions Result

Wave-function for a gapless spin-liquid

- No symmetry breaking and gapless spinful excitations?
- Fermi liquid almost does it (!).
- Insulator \rightarrow Project out the charges.

$$PFL \rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |FL\rangle$$
(2)

$$\equiv \text{ Fermi surface of spinons}$$
(3)

Ring-exchange Hamiltonian Variational wave-functions Result

Effective theory of $|PFL\rangle$

• Spinons coupled to U(1) gauge field.

$$S = \sum_{\langle ij \rangle} \left(f_i^{\dagger} f_j e^{i a_{ij}} + h.c. \right) + (\nabla \times a)^2$$
(4)

• Renormalized propagator $D(\omega, \vec{k})$ for photon:

$$D(\omega, \vec{k}) = \omega^2 + k^2 + \frac{|\omega|}{k}$$
(5)

イロト イポト イヨト イヨト

• Specific heat from photons dominates $C \sim T^{2/3}$

Ring-exchange Hamiltonian Variational wave-functions Result

Effective theory of $|PFL\rangle$

• Spinons coupled to U(1) gauge field.

$$S = \sum_{\langle ij \rangle} \left(f_i^{\dagger} f_j e^{i a_{ij}} + h.c. \right) + (\nabla \times a)^2$$
(4)

• Renormalized propagator $D(\omega, \vec{k})$ for photon:

$$D(\omega, \vec{k}) = \omega^2 + k^2 + \frac{|\omega|}{k}$$
(5)

イロト イポト イヨト イヨト

• Specific heat from photons dominates $C \sim T^{2/3}$

Ring-exchange Hamiltonian Variational wave-functions Result

Effective theory of $|PFL\rangle$

• Spinons coupled to U(1) gauge field.

$$S = \sum_{\langle ij \rangle} \left(f_i^{\dagger} f_j e^{i a_{ij}} + h.c. \right) + (\nabla \times a)^2$$
(4)

• Renormalized propagator $D(\omega, \vec{k})$ for photon:

$$D(\omega, \vec{k}) = \omega^2 + k^2 + \frac{|\omega|}{k}$$
(5)

・ロト ・同ト ・ヨト ・ヨト

• Specific heat from photons dominates $C \sim T^{2/3}$

Ring-exchange Hamiltonian Variational wave-functions Result

Problems with $|PFL\rangle$ as the ground state of κCN ?

- U(1) gauge fluctuations $\Rightarrow C \sim T^{2/3}$ at low T.
- Superconductivity near the Mott transition?
- Many competitive PBCS states.

Motrunich, Phys. Rev. B, 2005 S.-S. Lee and P. A. Lee, Phys. Rev. Lett., 2005.

Consequences of discrete All Antices All A

Ring-exchange Hamiltonian Variational wave-functions Result

Problems with $|PFL\rangle$ as the ground state of κCN ?

- U(1) gauge fluctuations $\Rightarrow C \sim T^{2/3}$ at low T.
- Superconductivity near the Mott transition?
- Many competitive PBCS states.

Motrunich, Phys. Rev. B, 2005 S.-S. Lee and P. A. Lee, Phys. Rev. Lett., 2005.

- 4 周 ト 4 月 ト 4 月 ト

Consequences of discrete All Antices All A

Ring-exchange Hamiltonian Variational wave-functions Result

Problems with $|PFL\rangle$ as the ground state of κCN ?

- U(1) gauge fluctuations $\Rightarrow C \sim T^{2/3}$ at low T.
- Superconductivity near the Mott transition?
- Many competitive PBCS states.

Motrunich, Phys. Rev. B, 2005 S.-S. Lee and P. A. Lee, Phys. Rev. Lett., 2005.

周 ト イ ヨ ト イ ヨ

Ring-exchange Hamiltonian Variational wave-functions Result

More interesting spin-liquids

- Project charges out from the BCS wave-function.
- Instability of the spinon Fermi surface!

$$|PBCS\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |BCS\rangle$$
 (6)
 \equiv Pairing of spinons (7)

Ring-exchange Hamiltonian Variational wave-functions Result

More interesting spin-liquids

- Project charges out from the BCS wave-function.
- Instability of the spinon Fermi surface!

$$|PBCS\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |BCS\rangle$$
 (6)
 \equiv Pairing of spinons (7)

Ring-exchange Hamiltonian Variational wave-functions Result

More interesting spin-liquids

۲

- Project charges out from the BCS wave-function.
- Instability of the spinon Fermi surface!

 $|PBCS\rangle = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) |BCS\rangle$ (6) \equiv Pairing of spinons (7)

Ring-exchange Hamiltonian Variational wave-functions Result

Projected BCS states and κCN

• Explanation for superconductivity.

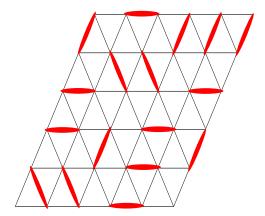
Ring-exchange Hamiltonian Variational wave-functions Result

Projected BCS states and κCN

- Explanation for superconductivity.
- Cooper pairs $\xrightarrow{\text{Projection}}$ Resonating dimers ('RVB').
- Or,

Superconductor $\xrightarrow{\text{Projection}}$ Spin-liquid.

Ring-exchange Hamiltonian Variational wave-functions Result

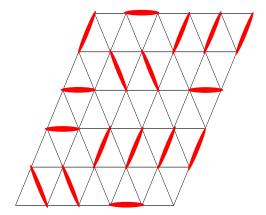

Projected BCS states and κCN

- Explanation for superconductivity.
- Cooper pairs $\xrightarrow{\text{Projection}}$ Resonating dimers ('RVB').
- Or,

Superconductor $\xrightarrow{\text{Projection}}$ Spin-liquid.

Ring-exchange Hamiltonian Variational wave-functions Result

Spin-liquid in pictures

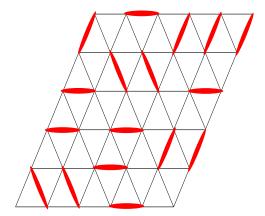

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

<ロ> <同> <同> < 同> < 同>

э

Ring-exchange Hamiltonian Variational wave-functions Result

Spin-liquid in pictures

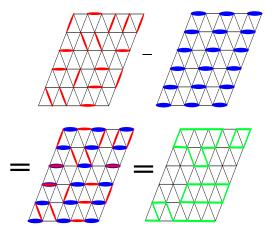


Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

<ロ> <同> <同> < 同> < 同>

Ring-exchange Hamiltonian Variational wave-functions Result

Spin-liquid in pictures



Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

<ロ> <同> <同> < 同> < 同>

Ring-exchange Hamiltonian Variational wave-functions Result

Spin-liquid in pictures

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

Spin Liquids in Triangular Lattice Organic Compounds: a Nodal

э

(日) (同) (三) (

Ring-exchange Hamiltonian Variational wave-functions Result

Projected BCS states on triangular lattice

- Singlet $s, d_{xy} + id_{x^2-y^2}$ and triplet $f_{x^3-3xy^2}$ wave states fit triangular lattice.
- Anisotropic triangular lattice \rightarrow projected $d_{x^2-y^2}$ state has lower energy.
- **Isotropic** triangular lattice? (relevant to κCN)

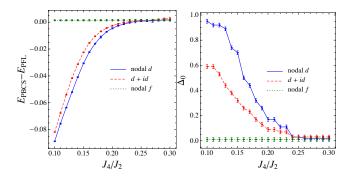
Ring-exchange Hamiltonian Variational wave-functions Result

Projected BCS states on triangular lattice

- Singlet $s, d_{xy} + id_{x^2-y^2}$ and triplet $f_{x^3-3xy^2}$ wave states fit triangular lattice.
- Anisotropic triangular lattice \rightarrow projected $d_{x^2-y^2}$ state has lower energy.
- **Isotropic** triangular lattice? (relevant to κCN)

Ring-exchange Hamiltonian Variational wave-functions Result

Projected BCS states on triangular lattice


- Singlet $s, d_{xy} + id_{x^2-y^2}$ and triplet $f_{x^3-3xy^2}$ wave states fit triangular lattice.
- Anisotropic triangular lattice \rightarrow projected $d_{x^2-y^2}$ state has lower energy.
- **Isotropic** triangular lattice? (relevant to κCN)

・ロト ・同ト ・ヨト ・ヨト

Ring-exchange Hamiltonian Variational wave-functions Result

Variational 'Answer' for Isotropic Triangular

Projected nodal $d_{x^2-y^2}$ has the lowest energy!

Ring-exchange Hamiltonian Variational wave-functions Result

Why projected nodal *d*-wave is the best state?

- Ring-exchange (J_4) tends to delocalize the spinons.
- Heisenberg (J_2) drives BCS instability.
- For J₄/J₂ ≫ 1, mean-field gives projected Fermi liquid. (Motrunich 2005)
- \Rightarrow As J_4/J_2 decreases, best compromise between J_2 and $J_4 \rightarrow$ <u>nodal BCS</u> state.

Ring-exchange Hamiltonian Variational wave-functions Result

Why projected nodal *d*-wave is the best state?

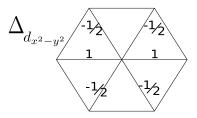
- Ring-exchange (J_4) tends to delocalize the spinons.
- Heisenberg (J_2) drives BCS instability.
- For J₄/J₂ ≫ 1, mean-field gives projected Fermi liquid. (Motrunich 2005)
- \Rightarrow As J_4/J_2 decreases, best compromise between J_2 and $J_4 \rightarrow$ <u>nodal BCS</u> state.

Ring-exchange Hamiltonian Variational wave-functions Result

Why projected nodal *d*-wave is the best state?

- Ring-exchange (J_4) tends to delocalize the spinons.
- Heisenberg (J_2) drives BCS instability.
- For $J_4/J_2 \gg 1$, mean-field gives projected Fermi liquid. (Motrunich 2005)
- \Rightarrow As J_4/J_2 decreases, best compromise between J_2 and $J_4 \rightarrow \underline{nodal BCS}$ state.

- 4 同 6 4 日 6 4 日 6

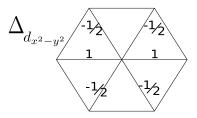

Ring-exchange Hamiltonian Variational wave-functions Result

Why projected nodal *d*-wave is the best state?

- Ring-exchange (J_4) tends to delocalize the spinons.
- Heisenberg (J_2) drives BCS instability.
- For $J_4/J_2 \gg 1$, mean-field gives projected Fermi liquid. (Motrunich 2005)
- \Rightarrow As J_4/J_2 decreases, best compromise between J_2 and $J_4 \rightarrow \underline{nodal BCS}$ state.

(4月) (4日) (4日)

Basic Properties of the $d_{x^2-y^2}$ spin-liquid

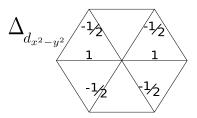

• Spinons coupled to a Z_2 gauge field.

$$S = \sum_{\langle ij \rangle} \sigma_{ij} \left(f_i^{\dagger} f_j + \Delta_{ij} f_i f_j + h.c. \right) + \prod_{\Box} \sigma_{ij} \sigma_{jk} \sigma_{kl} \sigma_{li}$$
(8)

- Spinons gapless at nodes.
- Breaks lattice orientational symmetry ⇒ 'Nematic spin-liquid'.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

Basic Properties of the $d_{x^2-y^2}$ spin-liquid

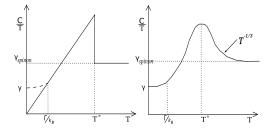

• Spinons coupled to a Z_2 gauge field.

$$S = \sum_{\langle ij \rangle} \sigma_{ij} \left(f_i^{\dagger} f_j + \Delta_{ij} f_i f_j + h.c. \right) + \prod_{\Box} \sigma_{ij} \sigma_{jk} \sigma_{kl} \sigma_{li}$$
(8)

- Spinons gapless at nodes.
- Breaks lattice orientational symmetry ⇒ 'Nematic spin-liquid'.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee

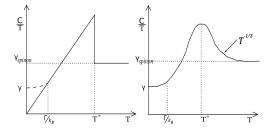
Basic Properties of the $d_{x^2-y^2}$ spin-liquid



• Spinons coupled to a Z_2 gauge field.

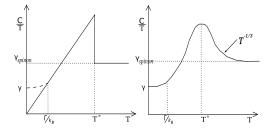
$$S = \sum_{\langle ij \rangle} \sigma_{ij} \left(f_i^{\dagger} f_j + \Delta_{ij} f_i f_j + h.c. \right) + \prod_{\Box} \sigma_{ij} \sigma_{jk} \sigma_{kl} \sigma_{li}$$
(8)

- Spinons gapless at nodes.
- Breaks lattice orientational symmetry \Rightarrow 'Nematic spin-liquid'.


Nematic Spin Liquid: Specific heat and Spin Susceptibility

- No impurities $\Rightarrow C(T) \sim T^2$ at low T.
- Impurities $\Rightarrow C(T) \sim T$ and $\chi(T) \sim \text{constant}$
- Issue with the magnetic field dependence of specific heat.

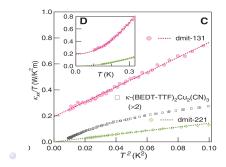
・ロト ・同ト ・ヨト ・ヨト


Nematic Spin Liquid: Specific heat and Spin Susceptibility

- No impurities $\Rightarrow C(T) \sim T^2$ at low T.
- Impurities $\Rightarrow C(T) \sim T$ and $\chi(T) \sim \text{constant}$
- Issue with the magnetic field dependence of specific heat.

・ロト ・ 同ト ・ ヨト ・ ヨ

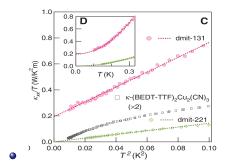
Nematic Spin Liquid: Specific heat and Spin Susceptibility



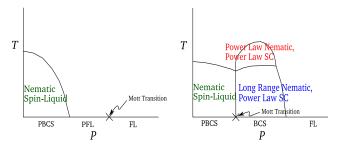
- No impurities $\Rightarrow C(T) \sim T^2$ at low T.
- Impurities $\Rightarrow C(T) \sim T$ and $\chi(T) \sim \text{constant}$
- Issue with the magnetic field dependence of specific heat.

- 4 周 ト 4 戸 ト 4 戸

Nematic Spin Liquid: Thermal Conductivity


• Universal thermal conductivity $\kappa \sim T$

Yamashita et al, Science 2010.

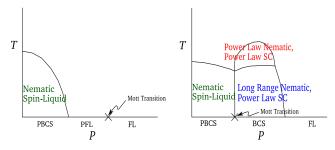

Nematic Spin Liquid: Thermal Conductivity

• Universal thermal conductivity $\kappa \sim T$

Yamashita et al, Science 2010.

Pressure-Temperature Phase Diagram

(a) Mott Transition After Pair-Breaking


(b) Mott Transition Before Pair-Breaking

-

• Case a and b relevant for two different materials.

• $a \rightarrow EtMe_3Sb[Pd(dmit)_2]_2$, $b \rightarrow \kappa CN$

Pressure-Temperature Phase Diagram

(a) Mott Transition After Pair-Breaking

(b) Mott Transition Before Pair-Breaking

- Case a and b relevant for two different materials.
- $a
 ightarrow EtMe_3Sb[Pd(dmit)_2]_2$, $b
 ightarrow \kappa CN$

Phase transition/cross-over in dmit-331?

T. Itou et al, Nature Physics 6, 2010.

Summary:

• Interesting theoretical challenge.

 Projected nodal *d*-wave Z₂ spin liquid state is a promising candidate for *κCN*.

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J₂, anti-ferromagnetic J₄ model? He - 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular L

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z_2 spin liquid state is a promising candidate for κCN .

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J₂, anti-ferromagnetic J₄ model? He - 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Si

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z₂ spin liquid state is a promising candidate for κCN.

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J₂, anti-ferromagnetic J₄ model? He - 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z₂ spin liquid state is a promising candidate for κCN.

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J₂, anti-ferromagnetic J₄ model? He - 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z_2 spin liquid state is a promising candidate for κCN .

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J_2 , anti-ferromagnetic J_4 model? He 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquid

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z_2 spin liquid state is a promising candidate for κCN .

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J_2 , anti-ferromagnetic J_4 model? He 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Summary:

- Interesting theoretical challenge.
- Projected nodal *d*-wave Z₂ spin liquid state is a promising candidate for κCN.

Questions:

- Experimental detection of the Z₂ topological order and/or spinon Fermi surface?
- Stabilization of the projected *d* + *id* ('Chiral spin-liquid') state?
- Phase diagram of the ferromagnetic J_2 , anti-ferromagnetic J_4 model? He 3 films?
- DMRG for J₂ J₄ model in quasi 1-d triangular lattice geometry (cf. arXiv:1009.1179, Matthew S. Block, D. N. Sheng, Olexei I. Motrunich, and Matthew P. A. Fisher).
- Detection of spin-liquid in exact diagonalization?

Acknowledgements

Special thanks to Matthew Fisher, Olexei Motrunich, Ying Ran, Ashvin Vishwanath for interesting discussions and suggestions.

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Noda

同 ト イ ヨ ト イ ヨ ト

THANK YOU!

Tarun Grover, Nandini Trivedi, T. Senthil, Patrick Lee Spin Liquids in Triangular Lattice Organic Compounds: a Nodal