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mean-field theory

classical Ising 
(ferromagnet J > 0):

H = −J

�

�i,j�

SiSj + h

�

i

Si

mi = �Si�

Heff = −
�

i

h
eff
i Si βheff

i = tanh−1 mi

heff
i ≈ h+

�

j

Jmj = h+ zJm

m = tanh(βh+ zβJm)selfconsistency equation :

Weiss field:

we are interested in the 
magnetization on every site:

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

approximation:
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DMFT 101
A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

Consider the Hubbard model for fermions:

The full Green function can be written as:

We are interested in the local Green function, but with time dependence:

Analogous to mean-field theory, we map onto an Anderson impurity model

The effective parameters enter only through 
the hybridization function:
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DMFT 101

Rewrite by integrating out the bath degrees of freedom :

with:

The impurity selfenergy can be calculated by solving the impurity problem:

Now comes the approximation in which we neglect all non-local components of the 
selfenergy:

The selfconsistency requirement is then:

or, using the density of states,

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

Wednesday, October 27, 2010



DMFT 101

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

Σimp = G−1
0 (iωn)−G−1

imp(iωn)
G−1
0,new = G−1

loc + Σimp

Gloc =
�

k

[iωn + µ− �k − Σimp(iωn)]
−1G

this is the computationally difficult part
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DMFT

DMFT becomes exact in the following limits:
• non-interacting limit U = 0 (no selfenergy)
• atomic limit t=0 (all sites effectively decoupled)
• infinite coordination number z, with properly scaled hoppings

I view DMFT as an interpolation technique between the U=0 and t=0 limits,
satisfying the limit of infinite coordination number.
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DMFT in physics

X. Dai et al., Science 300, 953 (2003);. J. Wong et al., 
Science 301, 1078 (2003).

phonon spectrum of Pu

- expt
o DMFT

G. Kotliar and D. Vollhardt, Strongly Correlated 
Materials: Insights from Dynamical Mean-Field Theory 
Physics Today 57, No. 3 (March), 53 (2004). 

Wednesday, October 27, 2010



DMFT in cold gases

γ = ωz/ω⊥

Et = Vt(γNσ/(4π/3))
2/3

Rsc =

�
r2⊥

(γNσ)1/3

κRsc = − 1

R3
sc

∂Rsc

∂(Et/12J)

U. Schneider et al., Science, Vol. 322, p.1520-1525 (2008).

groups of A. Rosch, N. Blümer , A. Georges, W. Hofstetter, ...
also applied DMFT (or small variants) to cold gases
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cold gases beyond DMFT

S.Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke, and M. Troyer, arXiv:1009.2759 (2010).

3d Hubbard model, U=8, half filling, physics on approach to TN

when experiments reach colder temperature, we will reach a point where 
the physics is no longer accurately described by DMFT

see also the talk by Emanuel Gull later in this program!
E. Gull et al., arXiv:1010.3690 (2010).
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Goal

We want to develop the dynamical mean-field 
solution for the 3d Bose-Hubbard model

H = −t

�

�i,j�

b
†
i bj +

U

2

�

i

ni(ni − 1)− µ

�

i

ni

write down single-site action :

works fine for normal phase and Mott phase.

we want:
include the physics of the weakly 

interacting Bose gas non-perturbatively, 
which is the limit t >>U

Simp =
� β

0
dτb†(τ) [∂τ − µ] b(τ) +

U

2

� β

0
dτn(τ) [n(τ)− 1]

we lost the momentum dependence for the self-energy

we want: correction on top of mean-field
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Weakly interacting Bose 
gas

symmetry explicitly broken; introduces gap and 
stabilizes supercurrent states

not in non-interacting Hamiltonian; effect is 
non-perturbative because μ is negative for ideal 

gas and positive for WIBG

G(0)(ξ,k) =
1

iξ − �(k)

continuous space description:
B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev, 
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)
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Weakly interacting Bose 
Gas

consider number-breaking diagrams with only one 
incoming or outgoing line (= due to η only)

diagrammatic expansion for anomalous 
average ( =condensate wavefunction)

condensate density

Greens function is resolvent of Laplace operator

in homogeneous case

B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev, 
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)
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weakly interacting Bose 
gas

µ̃ = µ− 2nU

momentum independent to 
leading and subleading order

Why BDMFT should be good: look at self-energies of weakly interacting 
Bose gas (Beliaev) 

Nepomnyashchii A A and Nepomnyashchii Yu A 1978 Zh. Eksp. Teor. Fiz. 75 976 [1978 Sov. Phys. JETP 48 493]
Nepomnyashchii Yu A 1983 Zh. Eksp. Teor. Fiz. 85 1244 [1983 Sov. Phys. JETP 58 722]

similar in 
magnitude at 

low 
temperature, but 
opposite in sign

B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev, 
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)

Hohenberg P C and Martin P C 1965 Ann. Phys. 34 291
Hugenholtz N M and Pines D S 1959 Phys. Rev. 116 489
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Hugenholtz-Pines

Recall : Θin is the sum of all diagrams attached to a bare green function other than μ or η*

 Let D(l) sum of diagrams contributing to Θin with l incoming and (l-1) outgoing condensate 
lines

Σ11(r, r�)ψ0(r�) =
∞�

l=1

lD(l)

Σ02(r, r�)ψ∗
0(r�) =

∞�

l=2

(l − 1)D(l)

µ = Σ11(0, 0)− Σ02(0, 0)η → 0
homogeneous

Σ11

We had before:

Dress Σ11 with ψ0 : it becomes a term contributing to Θin

Say Σ11 has (k-1) incoming condensate lines; upon 
integration with ψ0 it contributes to D(k)

How many such diagrams are there? Answ : k

similarly:

µ = Σ11(0, 0)− Σ02(0, 0)− ztη = ztψ0if

B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev, 
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)
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source fields
let’s add a symmetry breaking field :

−ztφ

� β

0
dτ [b(τ) + b†(τ)]

this is the same as in static mean-field which can produce a condensate

Bogoliubov prescription : b(τ) = �b� + δb(τ)
imag time dynamics can be added in the two-particle channel.

The second source field can only couple to the normal bosons, otherwise 
double counting will occur (Nambu notation):

−1
2

� β

0
dτdτ �δb†(τ)∆(τ − τ �)δb(τ �)

which contains normal and anomalous propagators. 

Final step : re-express δb in terms of full b

see  J. W. Negele and H. Orland, Quantum Many-Particle 
Systems (Addison-Wesley Publishing Company 1988) ISBN 

0-201-12593-5 for how to treat broken symmetry

for infinite 
coordination 
number, this 
term is zero
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mean-field theory for 
bosons

...

= after Hubbard-
Stratonovich transform 
in the hopping (strong-

coupling expansion)

excerpt from Appendix A in Matthew P. A. Fisher, Peter B. 
Weichman, G. Grinstein, and Daniel S. Fisher, Phys. Rev. B 40, 546 

(1989)
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the BDMFT 
approximation

There are ( more than) 3 
ways to proceed:

• effective medium/RG-like description
• cavity method
• kinetic energy functional approximation and 

coupling constant integration method
= the most elegant method,

see EPAPS material in PRL paper for full treatment

will be done in this talk

will be outlined in this talk

Missing are still the 
selfconsistency equations.
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real-space RG reasoning 
to find the action

spontaneously broken

through hopping events in ‘ext’

int

ext

goal : derive an effective action for the impurity ‘imp’ with parameters 
self-consistently determined by the ‘bath’ (so integrate out ΔS) 

∆S

cf. Section IIID in A. Georges, G. Kotliar, W. Krauth, and 
M. J. Rozenberg, Rev. Mod. Phys. 68, 13-125 (1996).

Z =

�
D[b∗j , bj ] exp(−S[b∗j , bj ]) S = Sint +∆S + Sext
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real-space RG

We keep in the exponent:

and expand only in the term (the other one factorizes):

We can exactly rewrite:

N.B. if you do not introduce the condensate on the ‘int’ part at this point but expand into the full b-operators 
( instead of δb) , you will have to reintroduce the condensate and bring it back into the exponent (=identify all 
the diagrams to all orders contributing to the condensate). This is doable (cf. the weakly interacting Bose gas), 

but a bit more technical than the approach followed here and making life unnecessarily complicated
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real-space RG

to first order :

is zero

this results in an infinite series:

We will now examine 
what these terms 

look like.
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real-space RG

to second order :

in the presence of a condensate, the anomalous terms 
are also nonzero.

with:
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real-space RG

cumulant re-exponentiation

the condensate has to be the same on all sites:

we could go on, but we are already in a position to postulate the form of the 
effective impurity action:

and analogous for the 3 other terms

F, K and ϕ have to be determined self-consistently:

notation:

normal and anomalous Green function treated similarly as 
in fermionic DMFT: (= the Green’s function on the impurity 

coincides with the local Green function of the medium)
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real-space RG

the effective action can be 
rewritten as:

with:

or, written out in components:

Nambu notation
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1/z expansion 

z = 4

G. Semerjian, M. Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008).

On a Bethe lattice (= Cayley tree) Semerjian et al. show that :
• with a coherent path integral representation, the exact solution reduces to mean-field 

theory for infinite coordination number and to BDMFT in first order 1/z
• with a number occupation representation, the exact solution can be written as a 

selfconsistency equation

idea (‘cavity method’):
use recursive structure of the tree

site i

site j

Zi-j is partial partition function of subtree rooted at site i, excluding the branch between i and j 
for fixed occupation number on site i. This can be normalized and leads to probabilities η.

Requiring that all edges and all vertices are equal leads to the self-consistency equation:

with weights:
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1/z expansions

Γ(Φ) =

� β

0
dτ�b†�cavΦ(τ) +

1

2

� β

0
dτdτ �Φ†(τ)Gc

cav(τ − τ �)Φ(τ �) + . . .

Gc
cav(τ − τ �) = �b†(τ)b(τ �)�cav − �b†(τ)�cav�b(τ �)�cav.

ηcav(b) =
1

Zcav
exp [−Scav]

Scav =
1

2

� β

0
dτdτ �b†(τ)G−1

0,cav(τ − τ �)b(τ �) +

� β

0
dτ

�
U

2
n(τ)(n(τ)− 1)− t(z − 1)Φ†

cavb(τ)

�

G−1
0,cav(τ − τ �) = (∂τ − µ)σ3δ(τ − τ �)− t2(z − 1)Gc

cav(τ − τ �)

G. Semerjian, M. Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008).

This can be rewritten using the generating functional Γ and in Nambu notation:

The generating functional of connected correlation functions can safely be expanded as:

 connected two-point correlator: 

Plugging the expansion for Γ into the cavity field, we get:

with:
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1/z expansion

Gc
imp(τ − τ �) = Gc

cav(τ − τ �)

= �b†(τ)b(τ �)�imp − �b†(τ)�imp�b(τ �)�imp

Simp = Scav − t

� β

0
dτΦ†b(τ).

Φimp = �b�imp ∼ Φcav + t

� β

0
dτGc

imp(−τ)Φcav.

Φcav ∼
�
I− tGc

imp(iωn = 0)
�
Φimp.inversion:

if we want to compare this 
with our BDMFT 

formalism, we need to 
correct for the missing leg.

The Green function was already 
accurate to this order (t2(z-1)~1/z) :

this part is still missing in G. Semerjian, M. Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008) but I 
acknowledge private discussions with these authors as well as their notes sent to me.

for infinite coordination number z, the hopping needs to be 
scaled as t~1/z . We now expand in 1/z to leading order.

The prefactor of the cavity 
condensate was however of order 

unity, so for the impurity condensate we 
need to take corrections into account
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kinetic energy functional 
approximation

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

We perform an expansion around the atomic limit, use the coupling constant integration 
method, arrive at the DMFT selfconsistency equations and see what terms are neglected.

impurity model:

functionals are obtained in the usual way by constraining 
the condensate and the Green function using Lagrange 
multipliers, demanding stationarity, and then inverting the 
problem expressing the source terms in terms of the 
constrained fields

local terms source source source source source

imposed stationarity:
note our minus-sign convention...

hopping terms:

Lagrange multipliers (sources) are only 
introduced for local quantities
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kinetic energy functional 
approximation

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3, 
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

N. B. This approach is DIFFERENT from the Baym-Kadanoff 
approach, which not only constrains local quantities

in the BDMFT approximation, all Σα are approximated by Σ0

The lattice function is found by summing over all k, which can be related to the hybridization 
function. On the basis of stationarity, one expects that Δα=1[Gc]=δΓ/δGc=0. The calculation 
confirms that this is indeed the case. Hence, we obtain the usual self-consistency equation,

(see the EPAPS part of our paper for an explicit expression of the kinetic energy functional)
features of this approach:
• independent of U
• valid on any lattice in any dimension

The exact Green function is as always
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DMFT self-consistency 
loop

1. For given                  , solve the impurity problem and find      

2. Extract self-energy: Σimp(iωn) = G−1
0 (iωn)−G−1

imp(iωn)

3.  DMFT approximation : 

G0(iωn)

Σ(k, iωn) = Σimp(iωn)

4. Define new bath G−1
0,new(iωn) = G−1

loc(iωn) + Σimp(iωn)

Gimp(iωn)
new Quantum Monte Carlo solver (next)

5.extra self-consistency condition for bosons: 

φ = �b�

Gloc(iωn) =
�

k

[iωnσ3 + (µ− �k)1−Σimp(iωn)]−1

∆(iωn) = −iωnσ3 − µ1 + G0
−1(iωn)

and repeat till convergence is reached
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QMC impurity solver

K

**

K*F
n n

updates:
- insert F line
- change occupation nr n
- change of type:

measurement:

= δ(τ − τ � − β)

∆(τ, τ �) = δ(τ − τ �) τ ≥ 0

τ < 0

F F F
0 0

FF
00

F F

*

F
00

K
K*

K

* *

00

K
K* K*

00

(perfect agreement with 
exact diagonalization)normal

anomalous
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perturbation orders
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condensate and anomalous green functions only occur in 
the SF phase; transitions are continuous

Wednesday, October 27, 2010



sign
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on the Hugenholtz-Pines 
theorem
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Hugenholtz − Pines

• take only ϕ self-consistent: Hugenholtz-Pines is fulfilled up to shift 6t
• take both ϕ and Δ selfconsistenly : Hugenholtz-Pines is not fulfilled

Deviations at the 1% level 
compared to |Σ(0)|

N. B. losing the equation of state is not 
uncommon for strong-coupling expansions
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correlation functions

Density-density correlation function

BDMFT
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comparison with exact 
solution

Condensate density
comparison between BDMFT and exact solution for tree lattice with z=4, β= 1
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µ/U G. Semerjian, M. Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008).
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3d phase diagram
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2d results
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outlook

• other impurity solvers?
• Bose-Fermi mixtures
• Bose-Bose mixtures and spinor bosons
• cluster-BDMFT
• bosonic impurity models (no bath)
• real-time dynamics beyond Gutzwiller?

BDMFT is a formalism under development. It may be a good starting point 
for undertaking further studies in otherwise hard/intractable systems:

We have a mean-field theory with retardation effects, that builds in the broken 
symmetry and the one-loop correction correctly.
It can be seen as an interpolation technique between the non-interacting limit 
(Bogoliubov physics) and the atomic limit (Mott physics), which it reproduces 
correctly, and reduces to mean-field theory for infinite coordination number. It 
shows results for the Bose-Hubbard model with an accuracy that puzzles me. 
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