Developing the bosonic

DMFT formalism

Lode Pollet
—— ETH

SWISE NATIONAL SCIENCE FOUNDATION Eidgenossische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Peter Anders, Emanuel Gull, Lode
Pollet, Matthias Troyer, Philipp Werner

Phys. Rev. Lett. 105, 096402 (2010)

previous approaches : Byczuk/Vollhardt, Hubener/Snoek/Hofstetter, Hu/Tong,
F. Zamponi et al.

Wednesday, October 27, 2010



e |ntroduction

*DMFT in a nutshell
*DMFT in cold cases

* Developing the Bose DMFT formalism (BDMFT)

eweakly interacting Bose gas physics
*BDMFT action

seffective medium approach

ecavity method

ekinetic energy functional approximation

e Results
e Conclusions and Outlook

Wednesday, October 27, 2010



A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3,
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

-O—O—0—0—0—0

classical Ising
(ferromagnet | > 0):

(4,7) t
interested in th —
we are interested in the omy = <Sz>
magnetization on every site:
—1
Weiss field: H.g = — Z h,fﬂ:Si 6h§ﬁ — tanh™ " m;
i
approximation: hfﬂ: ~ h + Z ij —h+zJm

J
selfconsistency equation : m — tanh(ﬁh —+ zﬁ Jm)
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A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3,
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

Consider the Hubbard model for fermions:

H=-— 2 ffjfjﬂﬂjcr+UE”iT”il + & Enfﬂ
a

ij,a i
The full Green function can be written as:

1
iw,+ u — €0 — &g — Z(K, iwy)

G(k, iw,) = £ = Etijgik.{ﬂi—ﬂj)
J

We are interested in the local Green function, but with time dependence:
G (v—7) = ~(Tcio(v)c)y (7))
Analogous to mean-field theory, we map onto an Anderson impurity model
Haim = Hatom + Hparh + Heoupling
Haiom = Un$nf + (& — u) (n§ +nf)
Hpun = Y10 €1 HIUHIU
Heoupling = 316 Vi (@) ,¢o +charo)

The effective parameters enter only through Alic.) — \45
o . (iwp) = ) ———=
the hybridization function: 2 i, — g
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A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3,
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

Rewrite by integrating out the bath degrees of freedom :
B B p
Seff = — fﬂ dr fﬂ dv' Y ()G (7)o (@) +U fﬂ dvn: (T)n, (1)
with: 4 !(iws) = iwn+ p — &0 — A(iwy)

The impurity selfenergy can be calculated by solving the impurity problem:
{#’[}_l(fmﬂ) - G_l('imﬂ)
= iwy,+u—eg—A(iw,) — G‘l(imn)

Emp(fl’fﬂn)

Now comes the approximation in which we neglect all non-local components of the
selfenergy: ¥, ~%,,, %,,;~0

1 .
The selfconsistency requirement is then: E Alion) + Gliwn) | — & = G(iwn)

or, using the density of states, D(e) = 2 5(& — ex)

D(e) _ o
de Aliw,) +Gliw,) 1 —¢ Gliwn)
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A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIl (2004) 3, H=- z tfjcjﬂcjg-l—UzniTnﬂ + & Zn,-g
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004). o 7 5]

B B p
Sefs = — fﬂ dr fﬂ 4V 3 (W5 (v )eo(¥) +U fﬂ dvn:(t)n, (%)

G (iwn) = iwn + 1 — g0 — A(ioy)
Zi~Zimp , Zixj =0

this is the computationally difficult part
EFFECTIVE LOCAL IMPURITY PROBLEM

Effective bath THE

Golion) Dot G (iw,)

2imp = go_l(iwn) - Gi:T}p (iwn)

Local G.F

—1 _ —1 .
gO,neW - Gloc + Zlmp

SELF-CONSISTENCY CONDITION

gloc — Z[an + U — € — Zimp(iwn)]_l
k
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DMFT becomes exact in the following limits:
* non-interacting limit U = 0 (no selfenergy)
e atomic limit t=0 (all sites effectively decoupled)
* infinite coordination number z, with properly scaled hoppings

| view DMFT as an interpolation technique between the U=0 and t=0 limits,
satisfying the limit of infinite coordination number.
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B, = Vi(yNo/(47/3))*/?
&
E'U Y = wz/wJ_
3
w
. . — /2
= 1 15 20 R, = TJ_/
= N 1/3
@ . T (YNo)
£ -0.07 —0.17
-0.10 =020
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U. Schneider et al., Science, Vol. 322, p.1520-1525 (2008).

groups of A. Rosch, N. Blumer ,A. Georges, W. Hofstetter, ...
also applied DMFT (or small variants) to cold gases
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cold gases

3d Hubbard model, U=8, half filling, physics on approach to Tn

1.1

-I ! ! 0-6 I I I I
lattice QMC +—a— - =
L DML 1 ? I]Bdgi —— ]
extrapolated DCA +——e— 0.5 F extrapolate o o
0.9 | . HTSE —+ .
In2
0.3 0.4 F °
e 0.7 F*
o 0.7 w 03 B [
Z 0.6 | o ey
0.6 09 | * ) .
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05 ‘ 0 4 | 1
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T/t filling

S.Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke, and M. Troyer, arXiv:1009.2759 (2010).
when experiments reach colder temperature, we will reach a point where

the physics is no longer accurately described by DMFT

see also the talk by Emanuel Gull later in this program!
E. Gull et al., arXiv:1010.3690 (2010).
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We want to develop the dynamical mean-field
solution for the 3d Bose-Hubbard model

H = —thzbj -+ %an(nz — 1) —/LZTLZ'
(3,3) 2 2

write down single-site action :

& &)
Simp = /0 drb’ (1) [0r — u] b(7T) + g /o drn(7) [n(1) — 1]

we lost the momentum dependence for the self-energy

works fine for normal phase and Mott phase.

()
\/

we want:
include the physics of the weakly
interacting Bose gas non-perturbatively,
which is the limit t >>U

we want: correction on top of mean-field
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Weakly

B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev,

continuous space description. B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)

H = Ho+ Hine + Hy

1 , |
= — (0) _
Hy 2m/|V'¢/)| dr GY(¢,k) = p—

. / U(rs — r2)|(r1) 2 [(r2) 2dr1drs

H = [VE) - lvldr — [l +ccldr

symmetry explicitly broken;introduces gap and

not in non-interacting Hamiltonian; effect is “
stabilizes supercurrent states

non-perturbative because M is negative for ideal
gas and positive for WIBG

»—

Golr— 1) 3¢ () (r) Yin(r) Your (r) Ulr — 1)
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Weakly

B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev,
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)

consider number-breaking diagrams with only one
incoming or outgoing line (=:due to N only)

Yout(F) r r. r r r r
- T —— 4 —’—x55>+ —’—{eﬁut(l@

Uin(r) / : / /
)53' —_— ‘.P_.L +)59Xr—’£ + (ein(rl)}r_,i

Yin(r) = —GO(r —r')n(r') +
G (r —r')[V(r') — pltpin (') + GO (r — 1')O1a(r)

Greens function is resolvent of Laplace operator

. * _ *
";bout - in ? €')out - 9in
A

diagrammatic expansion for anomalous e QPO(I‘) + [V(r) . M] ¢0(r) + @in(r) _ 77(1')
average ( =condensate wavefunction) 2m

Yo(r) = (W(r)) = vin(r) in homogeneous case

condensate density
= Oin = Bou 5
no(r) = 1o (r)|? i /%o t/%o
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Why BDMFT should be good: look at self-energies of weakly interacting
Bose gas (Beliaev)

= s O ¢ 4 . b o——

aU(0) o "U(0)

G(k)
+ =RUGST N -
Ulp—k) b = i

£
3

p —b — p -P
+ r—eC >+ < H>——

Y(P) = =2G(r =0,7 = —0)U 4 2noU = 2nU €+ e(k) + [d
~ momentum independent to 1§ + € + |
E(P) = noU . leading and sublezding order G(P) — @ 52 + E2 (k) similar in

magnitude at
B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev,

~ low
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010) F(P) |”’| temperature, but

52 + E2 (k) , opposite in sign
E®(k) = e(k)[e(k) + 2|l]

Hohenberg P C and Martin P C 1965 Ann. Phys. 34 291 p=p—2nU
Hugenholtz N M and Pines D S 1959 Phys. Rev. 116 489

Nepomnyashchii A A and Nepomnyashchii Yu A 1978 Zh. Eksp. Teor. Fiz. 75 976 [1978 Sov. Phys. JETP 48 493]
Nepomnyashchii Yu A 1983 Zh. Eksp. Teor. Fiz. 85 1244 [1983 Sov. Phys. JETP 58 722]
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B. Capogrosso-Sansone, S. Giorgini, S. Pilati, L. Pollet, N. V. Prokof’ev,
B. V. Svistunov, and M. Troyer, New J. Phys. 12, 043010 (2010)

Recall : Oi, is the sum of all diagrams attached to a bare green function other than Y or n*

Let D sum of diagrams contributing to Oj, with | incoming and (I-/) outgoing condensate
lines

We had before: — % wo(r) + [V(r) — p]o(r) + Oiu(r) = n(r) # = Oin/tho = Oout /%y

@ Dress 2| with Yy : it becomes a term contributing to Oi,

Say 2| has (k-1) incoming condensate lines; upon
integration with o it contributes to D®

How many such diagrams are there?! Answ : k

Y11(r,x")o(r ZZD(Z)

similarly: Yo2(r, ) (r') = Z([ ~1)D"

[=2
h
noric:ggneous p=311(0,0) — ¥302(0,0)
if n= Zt?po H = 211(0, O) — 202(0, O) — 2t
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let’s add a symmetry breaking field :

—zt¢/ dr[b(T) + b'(7)]

this is the same as in static mean-field which can produce a condensate

Bogoliubov prescription : b(»;—) — <b> + 5[)(7_)

imag time dynamics can be added in the two-particle channel.
The second source field can only couple to the normal bosons, otherwise
double counting will occur (Nambu notation):

for infinite 1 G
coordination _ deTlébT (T)A(T L T/)(Sb(T/)
number, this ) 0

term is zero
which contains normal and anomalous propagators.

see J.W.Negele and H. Orland, Quantum Many-Particle
Systems (Addison-VWesley Publishing Company 1988) ISBN
0-201-12593-5 for how to treat broken symmetry

Final step : re-express Ob in terms of full b
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Z=2, [ 1 D¢:(n)DY}(rexp[ —S(¥)] , (A3)

with an effective action

SW)=3 [drI N80,
hJ

- zln(Tfexp [fdflﬁ,-(r}ﬁ,-'"[ﬂ+ﬂ.c. l) ,
i 0

(A4)

where (J -1],” is the inverse of the matrix of hopping
rates. The average in (A4), which is now on-site in the
original boson field ®,, can be readily computed as a cu-
mulant expansion in powers of ¥,. Since (1, ) is linearly
related to (P, ), the field ¥, serves as an order parameter
for superfluidity.

= after Hubbard-
Stratonovich transform
in the hopping (strong-
coupling expansion)

excerpt from Appendix A in Matthew P. A. Fisher, Peter B.

Weichman, G. Grinstein, and Daniel S. Fisher, Phys. Rev. B 40, 546

(1989)

Equations (A3) and (A4) represent an exact rewriting
of the original partition function and thereby serves as a
convenient starting point to generate a field theoretic
description of the onset of superfluidity (see Sec. IV A).
Here, we pursue a different path, specializing to the
infinite-range hopping limit of (2.1), namely J;;=J/N,
where N is the total number of lattice sites in the system.
In this limit H, can be expressed as a perfect square,

H.=—wm|z$,-+} zﬁ:,.]

and only a single auxiliary field ¥(7) is needed to decou-
ple the nonlocal hopping term. The action in (A4) then
takes the form S _(¢)=Nf(¢), so that in the thermo-
dynamic limit a saddle point evaluation of the functional
integral in (A3) becomes[exact.] With the assumption that
the lowest-energy saddle point solution involves a time
independent field, ¥(7)=1, one finds upon performing
the cumulant expansion in (A4) an action of the typical
Landau form

(A3S)

S o (W)=BN[+r (0, J, D> +u (u, D |Y|*+0 (|9]°)] .
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Missing are still the
selfconsistency equations.

There are ( more than) 3
ways to proceed:

will be done in this talk

o effective medium/RG-like description

® CaVit)’ methodwiu be outlined in this talk

e kinetic energy functional approximation and
coupling constant integration method

= the most elegant method,
see EPAPS material in PRL paper for full treatment
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/D ;] exp(=S[b7, b;]) S = Sint + AS + Sext

U
Smt — / dTant( )(@T _.u')bint (T) + Eﬂint{.ﬂint — ]-)

B3 B3
AS = / &S(T} = / Z —t (bj-ntbext + blxtbiﬂt)
0 0

{int ext)

U
Se:'-:t — / dsz;.;t( )(aﬂ" - ,u)be:-:t + Enext (next — 1)
0

Dext = Doxt + 0bext spontaneously broken

Dint = Oint + 0bint,  (bint) = &t through hopping events in ‘ext’

goal : derive an effective action for the impurity ‘imp’ with parameters
self-consistently determined by the ‘bath’ (so integrate out AS)

cf. Section IlID in A. Georges, G. Kotliar, W. Krauth, and
M. J. Rozenberg, Rev. Mod. Phys. 68, |3-125 (1996).
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We can exactly rewrite:
3

AS = Z — (bg-ntbext + E?l:a:tbiﬂt)

U {int,ext)

3
— —fj/ dT,E,"i;L"lJint (Sbext + ﬁblxt) + E'ﬁext (ﬁbint + 651-11‘5)

5bext + ﬁbT ﬁbintﬁ

exth

0
+ ab!

it
{int,ext)

We keep in the exponent:
1 = 00 [ 0b(r) +0b1(r) = 2ty [ B(r) +b(D)

and expand only in the term (the other one factorizes):
3
ﬂS — —t Z {Sbj‘nt{ﬁbext —I_ é‘blxt‘ﬁbiﬂt
0

{int,ext)

N.B. if you do not introduce the condensate on the ‘int’ part at this point but expand into the full b-operators

(instead of Ob) , you will have to reintroduce the condensate and bring it back into the exponent (=identify all

the diagrams to all orders contributing to the condensate).This is doable (cf. the weakly interacting Bose gas),
but a bit more technical than the approach followed here and making life unnecessarily complicated
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this results in an infinite series:

Zext]‘D[bmtq 1111: —Smt[mt.,.bmt] Sl[bmtvbmt]g

(=1 —[] AT (AS(T))ext +

1 B 3
+ / dre / A7 (AS (1) AS(73))ext + - ..
[} i)

We will now examine

what these terms
look like.

to first order :

/ AS)exs = —t f dr Y (6] Obextext + hoc.

(int,ext)

is zero
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to second order :

l/ﬂ drm /ﬁ dro(AS(T1)AS(T2))ext =

/dn/ dry Y [S'+ 8%+ 5%+ 51,

with:

j.kcext

SU = (5bin (71)0bime (72)5519 (71)36T ) (7)Yt
S% = (8bins (11)0b], (12)8619) (1)) (79) ) e
S3 = (8b] (71)8bine (72)6b (1) 86! (7)o
St = (3b], (71)0b], (72)GBE (T1)8D 5 (72) st

in the presence of a condensate, the anomalous terms

are also nonzero.
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cumulant re-exponentiation
=53 — o= Jo dri [ dr2dbine(r1)Ke(ri—72)8bine(72)  and analogous for the 3 other terms

we could go on, but we are already in a position to postulate the form of the
effective impurity action:

B U
Simp — / dTant( )(aT - _H) bint(T) T Eﬂint(ﬂ'int - ]-)
0
; 3
_zt.i'ext/ dThmt( )
/ dT/ dT 1111: ‘I)int{T:])ﬁ(T - T!)(bint (Tr) - I':]::'1111: (Tr:])

notation: A(r —1') = ( in"g?;:Tg’) QfT'EFT:TT;) )

F, K and ¢ have to be determined self-consistently:

the condensate has to be the same on all sites: 'i' — ¢ext — ‘ﬁint — <b}int

normal and anomalous Green function treated similarly as ~ Glatt (iwn) = > [ﬁm“‘m +(p—edl - E{iw“)]

in fermionic DMFT: (= the Green’s function on the impurity .\ _ [ 2 pro\i AL ~1
coincides with the local Green function of the medium) latt (in) eD(e)(iwnos + (1 —€) (iwn))
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the effective action can be
rewritten as:

1 3 3
Simp = ——/ d'r/ dT’bT(T)Gu_l(T — 7 )b(7)

/3
—|——/ drn(T —1]—H(I’T/ drb(T).
(

Nambu notation

with:
A(iwy,) = —iwnoz — il + G5t (iwy)

k= zt — F(iw, =0) — K(iw, = 0) — K*(iw, = 0)
or, written out in components:

3
Simp = —/ﬂ drdt’ [b(T}F(T — () + b (DK (1 — )b (7)) + b(7) K * (1 — T’)b('r’)]

p U [? . X t
+ [ Witan)o, - pbtr) + 5 [ dra(lar) - 11— [ drlorhr) + o)
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On a Bethe lattice (= Cayley tree) Semerijian et al. show that :
e with a coherent path integral representation, the exact solution reduces to mean-field
theory for infinite coordination number and to BDMFT in first order 1/z
e with a number occupation representation, the exact solution can be written as a
selfconsistency equation

o
idea (‘cavity method’): \ L/ o

use recursive structure of the tree site |

Zi; is partial partition function of subtree rooted at site i, excluding the branch between i and j
for fixed occupation number on site i. This can be normalized and leads to probabilities n.

Requiring that all edges and all vertices are equal leads to the self-consistency equation:

z—1 3 z—1 z—1
e 1 * % % ) _ * — — W
ncav(b b) — anVW(b 3'5)fgp[bi:bi]??cav(bi:bi) ExXp |:t/.5 d (b (")Zbi(‘ ) +b(‘)zbz(" )):|

with weights:

3
w(b”,b) = exp [—/ﬂ dr (b* (T)(0r — p)b(7) + %ﬂ(?‘) (n(1) — 1))]

G. Semerjian, M.Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008).

Wednesday, October 27, 2010



This can be rewritten using the generating functional [ and in Nambu notation:

e (b) = ()= TP,

3
['(®)=1In [/ Db1jeayv(b) exp/ﬂ drb' (7)®(7)

The generating functional of connected correlation functions can safely be expanded as:

B B
(@) = /O dT<bT>CaV<1>(T)+% /O drdr' T (1)GE. (1 — ) B() + ...

connected two-point correlator: G¢, (7 —7') = <bT (T)b(7")) cav — <bT (7)) cav (B(T")) cav-

1
Plugging the expansion for I into the cavity field, we get: Tcav(b) = 7 exp |—Scav]
cav
with: 1 (7 ot . o b TUu ;
Secay = 5 / drdT' b (7)Gq oy (T — 7)b(T") + / dr ER(T)(’N/(T) — 1) —t(z—1)®.  b(7)
0 0
G(;,}:av(,r o T/) — (87' o :LL)0-35(7- o 7_/) N t2(Z o 1)Ggav(7- o T/)

G. Semerijian, M.Tarzia, and F Zamponi, Phys. Rev. B 80, 014524 (2008).
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if we want to compare this
with our BDMFT
formalism, we need to
correct for the missing leg.

for infinite coordination number z, the hopping needs to be
scaled as t~//z .VWe now expand in |/z to leading order.

The Green function was already G, (T —7) =G (1—7)

accurate to this order (t?(z-1)~1/z) : = (b' (1)b(™")imp — (BT (7))imp (D7) imp

The prefactor of the cavity
condensate was however of order
unity, so for the impurity condensate we
need to take corrections into account

B
Simp = Scav — t/ d7'<I>Tb(7‘).
0 B
q:)imp — <b>imp ~ CIJCEW —|— t/ dTGiCmp(_T>q)0av-
. . O
inversion: ’(I)c:a,v ~ (I — tQ¢ (iwn — O)) (I)imp-

1mp

this part is still missing in G. Semerjian, M. Tarzia, and F. Zamponi, Phys. Rev. B 80, 014524 (2008) but |
acknowledge private discussions with these authors as well as their notes sent to me.
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kinetic

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3,
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

We perform an expansion around the atomic limit, use the coupling constant integration
method, arrive at the DMFT selfconsistency equations and see what terms are neglected.

=%zﬂ.i(ﬂi— —ﬂ'tht

(4.3) functionals are obtained in the usual way by constraining
1 the condensate and the Green function using Lagrange
F — I‘I- J— I‘I- + f d& I_'ﬂ:"ﬂ multipliers, demar\ding stationarity, and. then inverting the
a=1 0 0 ey problem expressing the source terms in terms of the
Lagrange multipliers (sources) are only ~constrained fields

imDU rity mOdGI: introduced for local quantities
local terms 3  source source source 1 source source
[y[®, Ge] =Fimp['§,f3c]-f dr[Fo(7)Ge(7) + Ko(T)Ga(7) + K5 (T)Ge (T]]-f-Nﬁ d’r Z[Ja (T)&i(T)+Jo(T)@; (7)]
]

imposed stationarity: ® = (b)g,

note our minus-sign convention...

G.(1) = G(1) + @' G(7) = —(Tb(r)b'(0))s,.,
hopping terms:
ila _ T | = T (T
do T Sﬁ/“%b Mfdt% + (83 ()8, (7))

|

=3 o ivnloc, ~ yg | df%c;s(w(ﬂ]
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kineti

A. Georges, Lectures on the Physics of Highly Correlated Electron Systems VIII (2004) 3,
American Institute of Physics Conference Proceedings Vol. 715, arXiv:0403123 (2004).

The exact Green function is as always

Go(k,iwn) = [iwnos + (u — aex) I + Aqliw,] — 2ok, z'wn]]_l

in the BDMFT approximation, all 2« are approximated by 2o
G2 (K, iwn)|B.-DMFT = [iwnos + (1 — aer)l + Agfiwn; @, Ge] — Ta—ofiwn; €, G|

The lattice function is found by summing over all k, which can be related to the hybridization

function. On the basis of stationarity, one expects that Ax=/[G.]=0/0Gc=0.The calculation
confirms that this is indeed the case. Hence, we obtain the usual self-consistency equation,

G.(iw,) = deD(E) (iwnoz + (1 — €)1 — By (iwy,)) ™+

(see the EPAPS part of our paper for an explicit expression of the kinetic energy functional)
features of this approach:

* independent of U

* valid on any lattice in any dimension

N. B. This approach is DIFFERENT from the Baym-Kadanoff
approach, which not only constrains local quantities
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DMFT

A(iw,) = —iwpog — pl + Go_l(z’wn)

— new Quantum Monte Carlo solver (next)

|.For given Gy(iw,) ,solve the impurity problem and find Giipp (twp,)

2. Extract self-energy: Eimp (zwn) — Ga 1 (an) — Gl_mlp (an)

3. DMFT approximation : E(k’, an) — Eimp (an)

Gloc(iwn) — Z [iwnUS + (:u — ek)]- — Eimp(iwn)]_l

k

4. Define new bath G(T,%lew (twn) = Ggi (twn ) + Zimp (twy,)

5.extra self-consistency condition for bosons:

¢ = (D)

and repeat till convergence is reached
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QMC

K anomalous

normal F

updates:
- insert F line

- change occupation nr n

- change of type: b(T)F (1 — 7B (7)) > ko™ b(T)kob! (T7),

b(T)K™ (1 — 7 )b(7") = k" b(T)kd™b(T"),
N (T") — kobT (T)RebT (T7).

=
_'_
-
=
|
|
|

measurement:

3
e

(B(T)6(0)) S =

*

NN
w|
3|3
q’ﬁl'ﬁr-q

|
'::‘ﬁ“
—]

=
.
=
=
W
!
b
I
—
[y
| B
w | ™
":l'"‘;q
ollie!
|
'--.H.‘-‘:L‘
I

I
b

=1+

e I
5,

e S

=

3
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C
>MG’? A(r,7') =

(perfect agreement with
exact diagonalization)

F F F
o>  |p — 6> edp

F
o oo |p {oF—e=>—p

F F F
©le—b &by — Gle—o &5 1p

(r—)
(r—7"-8) 7<0

T2>0

S O




condensate and anomalous green functions only occur in
the SF phase; transitions are continuous

8
© mtot )
7_—Q—mF o <
— m . ’%
®6—_A_ phl 5‘
O .
®) —=— K "
C B (/
S ° P
© %
S ", £x
24 b
- 7, )A)A n_ 1 _5
T ” 2 p— ]
m a'
O 3r \
C -0 .
8 A::zev Vv¢A§l¢¢¢¢¢¢¢¢¢¢¢
6009~ p \
Ez< /X
/A
1_ /A
= o0 a-aeeaaaaaE1
'L---—————______
0.09 0.1 011 012 013 014 0.5
t/U
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The anomalous green function introduces a sign torture
( in the superfluid phase only)

——T=0.25
4:::::::::::::.\ eT=02_
Y —A—T=01 ||

O. | | | | |
0.09 0.1 0.11 0.12 0.13 0.14 0.15
t/U
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on the

Simp —

+

0.18

sigma(0) — sigma_off(0) — mu — 6t

6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7

P U
/ drbl (T)(0r — p)bins(T) + Eﬂ'int(nin‘o —1)
0

—td!

i3
ext / dThiﬂt (T)
]

Hugenholtz — Pines

DeViatifons at the 1% Ievel

compared to |3(0)|

mu

3 3
/ dT/ dT! (bg-nt (T) - q}iut (T)]ﬁ(']" o Tr’)(bint (TI) - ijint (TI))
0 0

e take only ¢ self-consistent: Hugenholtz-Pines is fulfilled up to shift 6t
e take both ¢ and A selfconsistenly : Hugenholtz-Pines is not fulfilled

N. B. losing the equation of state is not
uncommon for strong-coupling expansions
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c

Density-density correlation function

BDMFT

——Normal

——Mott (x10)
——Superfluid

0.5

0.5
——Normal
0.44 ——Mott (x10)
——Superfluid

QMC

0.5 1

1 0

/P /P
(U, u)  |np.pMFT |7MmC b e |23 sign
(20, 6.6) |0.99441(4) |0.99456(1) |0.5042(3) [0.486(2) |0.6373(1)
(24, 8.6) |0.99494(5) 0.995120(1)]0.3383(4) [0.316(1) |0.7836(1)
(26, 10) |1.00194(3) |1.001936(1)]0.2389(4) [0.2227(9)0.8674(1)
(28, 11.3)[1.00252(3) |1.0025098(4)[0.1087(5) [0.104(1) |0.9585(1) 6 -
(30, 13) [1.000403(5) | 1.00041(4) [0 0 1 —
(32, 15) [1.000333(5)[1.000370(9) [0 0 1
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Condensate density
comparison between BDMFT and exact solution for tree lattice with z=4, = |

14 T T T T T T
1 ? ? | —*— kappa=zt-F-K-K*
; ; ; * exact k-
12 RS .

o8k ... . S o P TR, SR TR T

phi

o6l S SRR SR T T SRR S S

o4l S SUREE T S RN SEERE SRR SUNENE SN

02F

1 1.5 2 25 3
I[L/ U G. Semerijian, M.Tarzia, and F Zamponi, Phys. Rev. B 80, 014524 (2008).
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Th

finite temperature,
unity density

Tt~ —— B-DMFT
8t T~ —&— Monte Carlo |-
T~ e Bethe z=6
7t T~ - — —Mean Field |7

=
3

ground state

26
1.8}
1.6
1.4
1.2r

14

0.8
0.6
0.4y
0.2y

S —— Monte Carlo []
I S N Bethe z=6 |
M Ott . — - —~Mean Field
|

—6— B-DMFT

-~
-

SF

Mott

(04
0

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
t/U
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finite temperature,
unity density

- _ —o— B-DMFT
=~ —&6— Monte Carlo

=< - — —Mean Field |

~

Mott

w/U

ground state

2(‘ T T
—— B-DMFT
1.81 SN —— Monte Carlo |7
16l AN ——Bethe z=4 ||
' M \ - - - Mean Field
1
"l Mott "
1.2} e
: SF
0.8 _
0.6} RN
AN
I Mott |
0.2 4
CK; |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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We have a mean-field theory with retardation effects, that builds in the broken
symmetry and the one-loop correction correctly.

It can be seen as an interpolation technique between the non-interacting limit
(Bogoliubov physics) and the atomic limit (Mott physics), which it reproduces
correctly, and reduces to mean-field theory for infinite coordination number. It
shows results for the Bose-Hubbard model with an accuracy that puzzles me.

_O_

BDMFT is a formalism under development. It may be a good starting point
for undertaking further studies in otherwise hard/intractable systems:

e other impurity solvers?

* Bose-Fermi mixtures

* Bose-Bose mixtures and spinor bosons
* cluster-BDMFT

* bosonic impurity models (no bath)

* real-time dynamics beyond Gutzwiller?
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