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Introduction

e Conventional T>0 quantum-criticality in 2D antiferromagnets

e Scaling behavior at putative deconfined quantum-critical point
- Neel - VBS transition in “J-Q” model
- Observed (QMCQC) scaling anomalies; T=0 and T>0
- Phenomenological spinon-gas model

Results and analysis
e Locating the critical point in the J-Q model and dimerized models
e T>0 correlation length at criticality
e Evidence for continuous transition (J-Q) with weak scaling violations
e Low-energy phenomenology; spinon and magnon gas model
- Low-T forms of magnetic susceptibility and specific heat
- QMC data fits; critical J-Q and dimerized models
- Effective spin (S=1/2) of the excitations in the J-Q model

Other related issues (time permitting)

e Critical examination of the first-order scenario
- comparing with the first-order transition into staggered VBS
e VBS fluctuations and emergent U(1) symmetry

key papers: arXiv:1010.2522 PRL 104, 177201 (2010), PRB 80, 180414 (2009)




Conventional O(3) transition in 2D antiferromagnets
Theory: Chakravarty, Halperin, Nelson (1989), Chubukov, Sachdev, Ye (1994)
Realized in dimerized S=1/2 Heisenberg models
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Neel - non-magnetic T=0 transition vs g=J’/J
e plain singlet-product (+ fluct) state for g>gc = T>0 quantum-critical regime
cross-over “phase diagram” * magnons (S=1) remain as
A the elementary excitations
high-T', lattice effects at the critical point

¢ dynamic exponent z=1

¢ scaling behavior:
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T = 0 Néel order non-magnetic g e confirmed by QMC
— »

3D O(3) (Heisenberg) universality * some issues remain in (c)




Deconfined Neel-VBS transition in 2D antiferromagnets
Theory: Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 303, 1490 (2004)

Neel-VBS transition realized in the “J-Q” model (square lattice)
AWS, PRL 98, 227202 (2007)
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® no sign problems in QMC simulations
- unlike frustrated systems (traditional play ground for VBS physics)
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A generic continuous (non-Landau)
T=0 transition predicted

QMC in agreement with theory:
¢ dynamic exponent z=1

e “large” exponent Nspin = 0.35
e emergent U(1) VBS symmetry

weakly 1st-order transition argued by
Jiang et al., JISTAT, P02009 (2008)

Kuklov et al., PRL 101, 050405 (2008)

order parameter

recent large-scale studies do
not find any evidence for 1st-order
e instead: log-corrections




Question: Consequences of spinons in T>0 QC regime?

A
. expected phases and cross-overs J-Q QMC results:
Standard QC forms
Sl e gl
QC e oe

are weakly violated.
Specific heat obeys
Q/J the standard form
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T=0 Neel

Phenomenological model of a spinon gas at T>0
® bosonic spinons, linearly dispersing at T=0; g(k)=ck
e thermal length A(T); assuming free spinons for g>1/A
» contributions to thermodynamics from these spinons

Infrared momentum cut-off 1/A equivalent to thermal gap A=1/A
e(k) = /c2k2 + A2

J-Q model: critical € diverges faster than 1/T as T—0 (A/T—0) »
e infrared divergent integral leads to weak T—0 divergence (log) of x/T
e weaker correction to T? form of C




T=0 critical couplings: dimensionless quantities should scale as L
e correlation lengths, Binder cumulants, spin stiffness (Lps),...
e curves vs coupling for different L cross at critical point
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Critical-point estimates
J-J’ model: (J’/J)c=1.90948(4), (using J’/J=1.9095)
J-Q model: (J/Q):=0.04498(3), (using J/Q=0.0450)

T>0 critical spin correlation length

e L up to 512; converged to thermodynamic limit for T considered
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J-J’ model: expected 1/T divergence
J-Q model: faster than 1/T divergence

e |ogarithmic or power correction (data consistent with either form)




Conclusion from previous T A

T=0 and T>0 caculations 020 = L=256 : i
o L =48 64, 906,128, 192
AWS, PRL 104, 177201 (2010) o Lo 32

logarithmic corrections to §° .
quantum-critical scaling z
~
1D(L Lo) o
Ps ™~ g (T'— 0) .
x~T[1+aln(1/T)] (L — )
Could the behavior indicate z#1? 0035 004 'J/Q' 005 00
5 ~ T_(l/z) B — T | .
_ : | =2 J/Q=0050
~ T2/z 1
X e
—Z *—o = U.
Ps ™~ L oo J/Q = 0.043
€ gives z=0.82 S oo J/Q = 0.040
¢ consistent with ps(L) 0.045
¢ inconsistent with x(T)
- demands X/T—0 for T—0
Some unconventional reason e | | | |

e marginal operator causing logs? o o /0




Can we find relationships between the different anomalies?
¢ can this provide a fingerprint for spinons?

Gas of non-interacting spinons (S=1/2) or magnons (S=1) at T>0
e+ (k) = \/02k2 + A? 4+ uB =e(k)+ puB  (B=magnetic field)
@ =1/2 (spinons), p =1 (magnons)

Magnetization to linear order (bosonic excitations)

1 1 d*k
M = uF —
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F is a degeneracy factor; F=2 (spinons/anti-spinons), F=1 (magnons)
Conventional quantum-criticality: A/T—-m=0.96 (Chubukov & Sachdev 1994)
e computed using large-N calculations (nonlinear o-model)

In the J-Q model (deconfined criticality?): A/T—0 (log™'(1/T) or T?)
e infrared divergent integral; significant consequences




/ _ xdx 4p . 41n(ep o 1) p= A/T
o sinh”(

WaTtpR)  1-e
Using these gaps for spinon (S=1/2) and magnon (S=1) calculations:
Ayyo/T = 1/(T¢) = (T/mc)" (mcand a from J-Q QMC data)

A1/T = m = 0.96 (Chubukov & Sachdev)
Gives the low-T magnetic susceptibility

x1 = (1.0760/7c*)T
1+ al (mC)Jr 1 T 2a
@ T 24 \ mc

Specific heat
B on(e) d*k
Cy = (25 + 1)F / () G

C, = [36((3)/5mc*]T*  (Chubukov & Sachdev)
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QMC data fits: J-J’ (magnon forms) and J-Q models (spinon forms)
e J-J’: velocity fitted in E/T3, polynomial fit for X/T (velocities agree to 2%)
e J-Q: velocity is fitted; values from X/T and C agree within 2%
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J-Q model: effective spin of the excitations
Under the assumption of spinons, S=1/2, u=1/2, F=2 (spinon/anti-spinon):

2F 25 + 1)F c, = 2.060
Fo=tE oo, ro=EDE ges O
cy Ct cc = 2.5
Should have cy=cc. S#1/2? For both spinons (S=1/2) and magnons (S=1)
F 52
=S, F=1/S X =
s ’ / Fo 2511

Treat S as continuous variable and find effective S given the J-Q data:

| | | The J-Q results are consistent

0.3 _
with S=1/2 (spinons) but not

52 1 consistent with S=1 (magnons)

02k 25 +1 _ @ Could this be a coincidence?

e assumed A=1/¢
* may be A=d/E, d=1
e results depend weakly on d

Independent estimate of the
velocity would be good

e can be done

06 08 1 - imaginary time correlations




Could the transition be first-order?
Jiang, Nyfeler, Chandrasekharan, Wiese, JSTAT, P02009 (2008)

From an antiferromagnet to a valence bond solid: evidence for a first order phase transition

Kuklov, Matsumoto, Prokof'ev, Svistunov, Troyer, PRL 101, 050405 (2008)
Deconfined Criticality: Generic First-Order Transition in the SU(2) Symmetry Case

One can never, strictly speaking, rule out a very weak first-order transition
e but are there any real signs of this in the J-Q model?

The above studies were based on scaling of winding numbers
e claimed signs of phase coexistence (finite spin stiffness and susceptibility)
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Recent large-scale QMC results Aws, Phys. Rev. Lett. 104, 177201 (2010)

e Stochastic series expansion

e up to 256x256 lattices
Box L (B=0L, 3=LJ4)

Same finite-size definition
of critical point as used by
Kuklov et al. and Jiang et al.
e fixed probability of the
generated configurations
having Wx=Wy=W-=0
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Let’s look at a well known signal of a first-order transition:

Binder ratio
4
Q2 = <<7;f7;2>>2

Binder cumulant

Us = (5—3Q2)/2

Size independent
(curve crossings) at
criticality

U2 < 0 at a first-order
transition
® no signs of U2<0 in
SSE results for
L up to 256

Phase coexistence
leads to U = -
at 1st-order trans.
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Example: Scalar order parameter at classical transition
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Example of a first-order Neel - VBS transition

J-Q model with staggered VBS phase [A. Sen, AWS, PRB (2010)]
¢ no local VBS fluctuations favoring emergent U(1) symmetry

VBS
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e clear signs of phase coexistence
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Any signs of coexistence in the standard J-Q VBS distributions?
¢ | =128 data close to the transition
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Exponents: T=0 results obtained with valence-bond QMC algorithm
AWS, PRL 2007; J.Lou, AWS, N. Kawashima, PRB (2009)

Exponents ns, N4, and v from the squared order parameters

N N
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3}4 i Spin
- ‘DN15F o L=24 —
ns = 0.35(2) Sﬁ L = L=32 ]
- & 1 ¢ L=48 - =
nd S 020(2) B}q | A szyt€ P
0.5F -
v =0.67(1) =L ..
] I | ] ] ] ]
=0 -10 0 10
Analysis should be improved (larger lattices) LYY (g —q0)/qe

in light of possible logarithmic corrections




Columnar or plaquette VBS? columnar VBS plaquette VBS

QMC-sampled state in the ' I I I
valence-bond basis I I I

‘O>:ZCHV]€> I I I

Joint probability distribution ¢ ¢

P(Dx,Dy) of x and y columnar D,
VBS order parameters ° o

[ ] critical

4 peaks expected in VBS phase
o Z4-symmetry unbroken in finite system




VBS fluctuations in the theory of deconfined quantum-critical points
[Senthil et al., 2004]

> plaquette and columnar VBS are almost degenerate
> tunneling barrier seperating the two

e barrier increases with increasing system size L

e barrier decreases as the critical point is approached

(3)% (b)% (C)% (d)%

> emergent U(1) symmetry
> ring-shaped distribution expected in the VBS phase for small systems

L<A~€2, a>1 (spinon confinement length)




Signs of Z4 symmetry in the original J-Q model?

L=128, J=0
P(DX!DV)
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L=32, L=64; J=0

Weak but statistically
significant angular
dependence consistent
with columnar VBS
(L=128 still too noisy)




Creating a more rubust VBS order - the J-Q3z model
J.Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

This model has a more robust VBS phase q = m
e can the symmetry cross-over be detected? 3

qg = 0.85
L = 32

q = 0.635
(¢ ~ 0.60)

L =32

Sl




Analysis of the VBS symmetry cross-over (J-Qsz model)

J.Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Zs-sensitive VBS order parameter
D4/7“dr/dqu r, ¢) cos(4¢)

Finite-size scaling gives U(1)

) (deconfinement) length-scale

A~ €1—|—a 4FE
-~ o —(14a)v -

(q QC) ~ 3 -
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Conclusions

Large-scale QMC calculations of the J-Q model
e scaling behavior consistent with a continuous Neel-VBS transition
- with weak scaling corrections; maybe logarithmic
¢ no signatures of first-order behavior
- cannot be ruled out as a matter of principle, but seems unlikely
¢ a simple spinon gas pictures can account for the T>0 behavor
- log-correction to susceptibility follows from anomalous length scale
- effective-spin calculation in very good agreement with S=1/2 spinons

Relation to deconfined quantum-criticality of Senthil et al.
¢ Main features in good agreement
- z=1 scaling
- “large” anomalous dimension Nspin
- emergent U(1) symmetry
e NCCPN-1 field theory for large N
[Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]
- no log-corrections found
- difficult to extend to N=2 in analytical work
- could there be log-corrections for N=2 (or general “small” N)?




