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Outline

• Conventional T>0 quantum-criticality in 2D antiferromagnets
• Scaling behavior at putative deconfined quantum-critical point

- Neel - VBS transition in “J-Q” model
- Observed (QMC) scaling anomalies; T=0 and T>0
- Phenomenological spinon-gas model

• Locating the critical point in the J-Q model and dimerized models
• T>0 correlation length at criticality
• Evidence for continuous transition (J-Q) with weak scaling violations
• Low-energy phenomenology; spinon and magnon gas model

- Low-T forms of magnetic susceptibility and specific heat
- QMC data fits; critical J-Q and dimerized models
- Effective spin (S≈1/2) of the excitations in the J-Q model

• Critical examination of the first-order scenario
- comparing with the first-order transition into staggered VBS

• VBS fluctuations and emergent U(1) symmetry

Introduction

Results and analysis

Other related issues (time permitting) 

key papers: arXiv:1010.2522 PRL 104, 177201 (2010), PRB 80, 180414 (2009)



Conventional O(3) transition in 2D antiferromagnets 
Theory: Chakravarty, Halperin, Nelson (1989),  Chubukov, Sachdev, Ye (1994)

Realized in dimerized S=1/2 Heisenberg models

Neel - non-magnetic T=0 transition vs g=J’/J
• plain singlet-product (+ fluct) state for g>gc

H = J
∑

〈ij〉

Si · Sj

+ J ′
∑

〈ij〉′
Si · Sj

T>0 quantum-critical regime
• magnons (S=1) remain as
   the elementary excitations
   at the critical point
• dynamic exponent z=1
• scaling behavior:

ξ ∝ T−1

χ ∝ T

C ∝ T 2

• confirmed by QMC
• some issues remain in (c)

T = 0 Néel order non-magnetic

high-T , lattice effects

cross-over “phase diagram”

3D O(3) (Heisenberg) universality



Deconfined Neel-VBS transition in 2D antiferromagnets 
Theory: Senthil, Vishwanath, Balents, Sachdev, Fisher, Science 303, 1490 (2004)

Neel-VBS transition realized in the “J-Q” model (square lattice)
AWS, PRL 98, 227202 (2007)

H = J
∑

〈ij〉

Si · Sj − Q
∑

〈ijkl〉

(Si · Sj −
1

4
)(Sk · Sl −

1

4
)

• no sign problems in QMC simulations
- unlike frustrated systems (traditional play ground for VBS physics)

 
weakly 1st-order transition argued by
Jiang et al., JSTAT, P02009 (2008)
Kuklov et al., PRL 101, 050405 (2008)

QMC in agreement with theory:
• dynamic exponent z=1
• “large” exponent ηspin ≈ 0.35
• emergent U(1) VBS symmetry 

recent large-scale studies do
not find any evidence for 1st-order
• instead: log-corrections

= 〈!Si · !Sj〉

g = Q/J

gc ≈ 22

generic continuous (non-Landau)
T=0 transition predicted



Question: Consequences of spinons in T>0 QC regime?

Phenomenological model of a spinon gas at T>0
• bosonic spinons, linearly dispersing at T=0; ε(k)=ck
• thermal length Λ(T); assuming free spinons for q>1/Λ
‣ contributions to thermodynamics from these spinons

Infrared momentum cut-off 1/Λ equivalent to thermal gap Δ=1/Λ
ε(k) =

√
c2k2 + ∆2

J-Q model: critical ξ diverges faster than 1/T as T→0 (Δ/T→0) ➨
• infrared divergent integral leads to weak T→0 divergence (log) of χ/T 
• weaker correction to T2 form of C

ξ ∝ T−1

χ ∝ T

C ∝ T 2

Standard QC forms

are weakly violated.
Specific heat obeys 
the standard form

J-Q QMC results:expected phases and cross-overs



T=0 critical couplings: dimensionless quantities should scale as L
• correlation lengths, Binder cumulants, spin stiffness (Lρs),...
• curves vs coupling for different L cross at critical point

J-Q model
spin and dimer
correlation 
lengths (second
moment def)

J− J′J−Q

columnar dimers



Critical-point estimates
J-J’ model: (J’/J)c=1.90948(4),  (using J’/J=1.9095)
J-Q model: (J/Q)c=0.04498(3),  (using J/Q=0.0450)

J-J’ model: expected 1/T divergence
J-Q model: faster than 1/T divergence 
• logarithmic or power correction (data consistent with either form)

T>0 critical spin correlation length 
• L up to 512; converged to thermodynamic limit for T considered

ξ =
1
q

√
S(Q)

S(Q− q)
− 1, q =

2π

L



Conclusion from previous
T=0 and T>0 caculations

ν = 0.60χ ∼ T [1 + a ln(1/T )] (L→∞)

ρs ∼
ln(L/L0)

L
(T → 0)

Could the behavior indicate z≠1?

ξ ∼ T−(1/z)

χ ∼ T 2/z−1

ρs ∼ L−z

ξ gives z≈0.82
• consistent with ρs(L)
• inconsistent with χ(T)

- demands χ/T→0 for T→0

logarithmic corrections to 
quantum-critical scaling

Some unconventional reason
• marginal operator causing logs?

AWS, PRL 104, 177201 (2010)



Can we find relationships between the different anomalies?
• can this provide a fingerprint for spinons?

M = µF

∫ (
1

eε−/T − 1
− 1

eε+/T − 1

)
d2k

(2π)2

= −2µ2FB

∫
∂n

∂ε

d2k

(2π)2

= µ2F
TB

4πc2

∫ ∞

0

xdx

sinh2[ 12
√

x2 + (∆/T )2]

Magnetization to linear order (bosonic excitations)

F is a degeneracy factor; F=2 (spinons/anti-spinons), F=1 (magnons)
Conventional quantum-criticality: Δ/T→m≈0.96 (Chubukov & Sachdev 1994)
• computed using large-N calculations (nonlinear σ-model)

In the J-Q model (deconfined criticality?): Δ/T→0 (log-1(1/T) or Ta )
• infrared divergent integral; significant consequences

Gas of non-interacting spinons (S=1/2) or magnons (S=1) at T>0

ε±(k) =
√

c2k2 + ∆2 ± µB ≡ ε(k)± µB

µ = 1/2 (spinons), µ = 1 (magnons)

(B = magnetic field)



∫ ∞

0

xdx

sinh2( 1
2

√
x2 + p2)

=
4p

1− e−p
− 4 ln(ep − 1) p = ∆/T

χ1 = (1.0760/πc2)T

χ1/2 =
T

2πc2

[
1 + a ln

(mc

T

)
+

1
24

(
T

mc

)2a
]

Gives the low-T  magnetic susceptibility

Specific heat

CS = (2S + 1)F
∫

ε(k)
∂n(ε)
∂T

d2k

(2π)2

C1 = [36ζ(3)/5πc2]T 2

C1/2 =
2T 2

πc2

[
6ζ(3)−

(
T

c

)2a [
3
2

+ a + a(1 + a) ln
( c

T

)]]
(Chubukov & Sachdev)

Using these gaps for spinon (S=1/2) and magnon (S=1) calculations:

(mc and a from J-Q QMC data)

(Chubukov & Sachdev)

∆1/2/T = 1/(T ξ) = (T/mc)a

∆1/T = m = 0.96



χ/T

QMC data fits: J-J’ (magnon forms) and J-Q models (spinon forms)
• J-J’: velocity fitted in E/T3, polynomial fit for Χ/T (velocities agree to 2%)
• J-Q: velocity is fitted; values from Χ/T and C agree within 2%

(E−E0)/T3



Fχ =
µ2F

c2
χ

≈ 0.074, FC =
(2S + 1)F

c2
C

≈ 0.615

J-Q model: effective spin of the excitations
Under the assumption of spinons, S=1/2, μ=1/2, F=2 (spinon/anti-spinon):

Should have cχ=cC.  S≠1/2? For both spinons (S=1/2) and magnons (S=1)

µ = S−1, F = 1/S → Fχ

FC
=

S2

2S + 1

cχ = 2.60
cC = 2.55

The J-Q results are consistent 
with S=1/2 (spinons) but not
consistent with S=1 (magnons)

Could this be a coincidence?
• assumed Δ=1/ξ
• may be Δ=d/ξ, d≈1
• results depend weakly on d

Independent estimate of the
velocity would be good
• can be done

- imaginary time correlations

Treat S as continuous variable and find effective S given the J-Q data: 

S2

2S + 1

J-Q



Jiang et a. (2008)

Linear divergence (first-order)?

Could the transition be first-order?
Jiang, Nyfeler, Chandrasekharan, Wiese, JSTAT, P02009 (2008)
From an antiferromagnet to a valence bond solid: evidence for a first order phase transition

Kuklov, Matsumoto, Prokof'ev, Svistunov, Troyer, PRL 101, 050405 (2008)
Deconfined Criticality: Generic First-Order Transition in the SU(2) Symmetry Case

One can never, strictly speaking, rule out a very weak first-order transition
• but are there any real signs of this in the J-Q model?

The above studies were based on scaling of winding numbers
• claimed signs of phase coexistence (finite spin stiffness and susceptibility)

〈W 2〉 = 〈W 2
x 〉 + 〈W 2

y 〉 + 〈W 2
τ 〉

= 2βρs +
4N

β
χ

z = 1,β ∝ L →
ρs ∝ L−1, χ ∝ L−1

→ 〈W 2〉 = constant

At at a critical point



AWS, Phys. Rev. Lett. 104, 177201 (2010)Recent large-scale QMC results

β ∝ L (β = L, β = L/4)

• Stochastic series expansion
• up to 256×256 lattices

Same finite-size definition 
of critical point as used by 
Kuklov et al. and Jiang et al.
• fixed probability of the 

generated configurations 
having Wx=Wy=Wτ=0

Logarithmic divergence of <W2>!
• scaling correction (not 1st-order)



U2 < 0 at a first-order
transition
• no signs of U2<0 in 

SSE results for 
L up to 256

Let’s look at a well known signal of a first-order transition:

Q2 =
〈m4〉
〈m2〉2

Binder ratio

Binder cumulant

Size independent
(curve crossings) at
criticality

U2 = (5− 3Q2)/2

Example: Scalar order parameter at classical transition

Phase coexistence
leads to U2 → -∞
at 1st-order trans.



H = −J
∑

〈ij〉

Cij −Q3

∑

〈ijklmn〉

CijCklCmn Cij = 1
4 − !Si · !Sj

Example of a first-order Neel - VBS transition
[A. Sen, AWS, PRB (2010)]J-Q model with staggered VBS phase

• no local VBS fluctuations favoring emergent U(1) symmetry
VBS

• clear signs of phase coexistence 

For Neel
order



J/Q=0.040

Any signs of coexistence in the standard J-Q VBS distributions?
• L=128 data close to the transition



J/Q=0.041



J/Q=0.042



J/Q=0.043



J/Q=0.044



J/Q=0.045



J/Q=0.046



Exponents: T=0 results obtained with valence-bond QMC algorithm
AWS, PRL 2007;   J. Lou, AWS, N. Kawashima, PRB (2009)

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉

Exponents ηs, ηd, and ν from the squared order parameters 

Coupling ratio

• AF order for q→0
• VBS order for q→1

q =
Q

Q + J

ηs = 0.35(2)
ηd = 0.20(2)
ν = 0.67(1)

L1/ν(q − qc)/qc

(Q/J)c ≈ 24, qc ≈ 0.961

Analysis should be improved (larger lattices) 
in light of possible logarithmic corrections



Joint probability distribution 
P(Dx,Dy) of x and y columnar
VBS order parameters                     

|0〉 =

∑

k

ck|Vk〉

QMC-sampled state in the
valence-bond basis

Dx =
〈Vk| 1

N

∑N
i=1(−1)xiSi · Si+x̂|Vp〉

〈Vk|Vp〉

Dy =
〈Vk| 1

N

∑N
i=1(−1)yiSi · Si+ŷ|Vp〉

〈Vk|Vp〉

Columnar or plaquette VBS?

critical

4 peaks expected in VBS phase
• Z4-symmetry unbroken in finite system

Dx Dx

Dy Dy

columnar VBS plaquette VBS



VBS fluctuations in the theory of deconfined quantum-critical points
[Senthil et al., 2004]

➣ plaquette and columnar VBS are almost degenerate
➣ tunneling barrier seperating the two

• barrier increases with increasing system size L
• barrier decreases as the critical point is approached

➣ emergent U(1) symmetry
➣ ring-shaped distribution expected in the VBS phase for small systems

       L<Λ∼ξa, a>1 ❨spinon confinement length❩



Signs of Z4 symmetry in the original J-Q model?

L=128, J=0
P(Dx,Dy)

L=32, L=64; J=0
Weak but statistically
significant angular
dependence consistent
with columnar VBS
(L=128 still too noisy)



Creating a more rubust VBS order - the J-Q3 model

This model has a more robust VBS phase
• can the symmetry cross-over be detected?

q = 0.635
(qc ≈ 0.60)

L = 32

q = 0.85

L = 32

J. Lou,  A.W. Sandvik,  N. Kawashima,  PRB (2009)

H = −J
∑

〈ij〉

Cij −Q3

∑

〈ijklmn〉

CijCklCmn Cij = 1
4 − !Si · !Sj

q =
Q3

J + Q3



Analysis of the VBS symmetry cross-over   (J-Q3 model)

D4 =
∫

rdr

∫
dφP (r,φ) cos(4φ)

 Z4-sensitive VBS order parameter

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Finite-size scaling gives U(1) (deconfinement) length-scale

Λ ∼ ξ1+a

∼ (q − qc)−(1+a)ν

L1/aν(q − qc)/qc

a = 0.20± 0.05



Conclusions

Large-scale QMC calculations of the J-Q model
• scaling behavior consistent with a continuous Neel-VBS transition

- with weak scaling corrections; maybe logarithmic
• no signatures of first-order behavior

- cannot be ruled out as a matter of principle, but seems unlikely
• a simple spinon gas pictures can account for the T>0 behavor

- log-correction to susceptibility follows from anomalous length scale
- effective-spin calculation in very good agreement with S=1/2 spinons

Relation to deconfined quantum-criticality of Senthil et al.
• Main features in good agreement

- z=1 scaling
- “large” anomalous dimension ηspin

- emergent U(1) symmetry
• NCCPN-1 field theory for large N 
   [Senthil et al. (PRB 2004), Kaul & Sachdev (PRB 2008)]

- no log-corrections found
- difficult to extend to N=2 in analytical work
- could there be log-corrections for N=2 (or general “small” N)?


