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New orders beyond symmetry breaking?

• From the chiral spin states and FQH states, we learned that states
with the same symmetry can belong to different phases.

• The order in FQH states is a kind of order that
- cannot be described by symmetry breaking
- cannot be described by long range correlations
- cannot be described by local order parameter
• Hard to publish papers by describing what the new order is not.

But how to describe the new order in terms what it is?
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The early attempts to characterize the new order

• A gapped state can have a non trivial low energy effective theory
even below the gap!

Topology-dependent and topologically robust ground state
degeneracy can (partially) describe the new order Wen 89; Wen & Niu 90

Low energy effective theory is an almost trivial but highly
non-trivial theory = topological field theory Witten 89

→ motivate us to name the new order as topological order
Topologically stable ground states can be used as fault tolerant
quantum memory. Kitaev 97; Dennis & Kitaev & Landahl & Preskill 02

• Topologically robust non-Abelian Berry’s phases of the degenerate
ground states from deforming the torus → representation S ,T of
modular group which can completely (?) describe the topological
order. Wen 89
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• Topologically robust degeneracy even exists on sphere if we have
quasiparticles Wen 91, Moore & Read 91, Nayak & Wilczek

Topologically robust Non-Abelian Berry’s phases from exchanging
defects →
representation of Braid group Wu, 85 → non-Abelian statistics Goldin &

Menikoff & Sharp 85

Can be realized in FQH states Moore & Read 91, Wen, 91

and lead to topological quantum computation.
Kitaev 97, Preskill 97, Freedman 00

• Topologically protected gapless boundary excitations:
2D bulk → 1D boundary CFT Halperin 82, Wen 90

4D bulk → 3D boundary chiral fermions (topo. insulator in 4D)
Kaplan 92

Structure of gapless boundary excitation fully characterize the
structure of bulk topological order Wen 90

The edge-bulk correspondence of topological order can be viewed
as the holographic principle in quantum gravity discovered a few
years later. Thorn 91, t’Hooft 93, Susskind 94 .
Is quantum gravity topological?
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A modern view of topological order?

• For gapped systems, entanglement entropy has universal constant
term: SA = γArea− γtop,
topological entanglement entropy, Kitaev & Preskill 06, Levin & Wen 06

and universal spectrum.Li & Haldane 08

(Can be probed by quantum noise Klich & Levitov 08)
Topological order → long range patterns of quantum
entanglements. Wen 04

What really is long range of quantum entanglements?
What really is topological order?
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What are quantum phases?

• Phases are defined through phase transitions.
What are phase transitions?
As we change a parameter g in Hamilto-
nian H(g), the ground state energy den-
sity εg = Eg/V or average of some other
local operators 〈Ô〉 may have a singularity
at gc → the system has a phase transition
at gc .

B

A

C

g
1

g
2

The Hamiltonian H(g) is a smooth function of g . How can the
ground state energy density εg be singular at a certain gc?
• Spontaneous symmetry breaking is a mechanism to cause a

singularity in ground state energy density εg .
→ Spontaneous symmetry breaking causes phase transition.
But symmetry breaking does not describe all the phases.
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Mathematical definition of gapped quantum phases

EE

ε

∆
∆

g ggg

EE

A more general mechanism to cause singularity of εg for gapped
states: gap closing.

gapless

g
1

g
2

A

gapped

gapped

B

C gapped

• A precise definition of gapped quantum phases:
Two gapped states, |Ψ(0)〉 and |Ψ(1)〉, are in the same phase iff
they are related through a local unitary (LU) evolution

|Ψ(1)〉 = P
(

e− i
∫ 1

0 dg ′ H̃(g ′)
)
|Ψ(0)〉

where H̃(g) =
∑

i Oi(g) and Oi(g) are local hermitian operators.
Hastings & Wen 05; Bravyi & Hastings & Michalakis 10Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States



LU evolution and quantum circuit of finite depth

We can rewrite the LU evolution as

|Ψ(1)〉 = P
(

e− iT
∫ 1

0 dg H(g)
)
|Ψ(0)〉

= (local unitary transformation)|Ψ(0)〉
= (quantum circuit of finite depth)|Ψ(0)〉

A

δ−i   T HB

δ−i   T H

e

e
Ui

1 2 l...

• The local unitary transformations define an equivalence relation
A universality class of a quantum phase is an equivalent class of
the LU transformations
Hastings, Wen 05; Bravyi, Hastings, Michalakis 10
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Topological order is a pattern of long range entanglement

Two kinds of states if no symmetries:
• The states that are equivalent to product state under LU

transformations. All those states belong to the same class (phase)
→ short-range entanglement and trivial topological order.
• The states that are not equivalent to direct-product states. Those

states form many different equivalent classes (phases)
→ many patterns of long-range entanglements and many different
topological orders.
• In absence of symmetry:

Quantum phases of matter
= patterns of long-range entanglement = topological orders
= equivalence classes of the LU transformations
Examples: FQH states
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Symm. breaking orders and symm. protected topo. orders

• If the Hamiltonian H has some symmetries, its phases will
correspond to equivalent classes of symmetric LU transformations:

|Ψ〉 ∼ P
(

e− i
∫ 1

0 dg H̃(g)
)
|Ψ〉 where H̃(g) has the same symmetries

as H.

2
g

2
g

SRE

LRE 1 LRE 2

SB−SRE 1

SY−SRE 1

SB−LRE 1 SB−LRE 2

SB−SRE 2

SY−SRE 2

SB−LRE 3

SY−LRE 1 SY−LRE 2 SY−LRE 3

1
gwith symmetry1

gwithout symmetry

• SRE states with different symmetries
→ Landau’s symmetry breaking orders.
• SRE states with the same symmetry can belong to different classes
→ symmetry protected topological orders (symmetry protected
trivial orders). Gu & Wen 09, Pollmann & Berg, Turner & Oshikawa 09

Examples: Haldane phase and Sz = 0 phase of spin-1 XXZ chain.
Band and topological insulators
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Labeling and classifying topological orders

Topological order = pattern of long range entanglement
= equivalent class of LU transformations
How to label those equivalent classes?

• We can use the wave function Φ to label the topological orders.
But this is a many-many to one labeling scheme.

Under the wave function renormalization generated by the LU
transformation,Verstraete, Cirac, Latorre, Rico, Wolf 05; Vidal 07;

Jordan, Orus, Vidal, Verstraete, Cirac 08; Jiang, Weng, Xiang 09; Gu, Levin, Wen 09 the wave
function flows to simpler one within the same equivalent class.
• Use the fixed-point wave function: Φfix to label topological order.

Φfix may give us a one-to-one labeling of topological order, and a
classification of topological order.

A

C

g
1

g
2

B
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Classify 2D topological order

The non-chiral 2D topological orders are classified by the data

Nijk ,F
ijm,αβ
kln,χδ ,P

kj ,αβ
i ,Ai , that satisfy Levin & Wen 05; Chen & Gu & Wen 10

+
∑
m

Njim∗Nkml∗ =
∑
n

Nkjn∗Nl∗ni ,

+
∑

t,η,ϕ,κ

F ijm,αβ
knt,ηϕF itn,ϕχ

lps,κγ F jkt,ηκ
lsq,δφ =

∑
ε

Fmkn,βχ
lpq,δε F ijm,αε

qps,φγ ,

+

Nkii∗∑
α=1

Nj∗ jk∗∑
β=1

Pkj,αβ
i (Pkj,αβ

i )∗ = 1,

+ Pkj,αβ
i =

∑
m,λ,γ,l,ν,µ

F jj∗k,βα
i∗i∗m∗,λγF i∗mj∗,λγ

m∗i∗l,νµ P lm,µν
i∗ ,

+ P jp,αη
i δimδβδ =

∑
χ

F ijm,αβ
klk,χδ P jp,χη

k∗ for all k , i , l with Nkil∗ > 0.

......
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The non-chiral 2D fermionic topological orders are (partially?)

classified by the data Nijk ,N
f
ijk ,F

ijm,αβ,±
kln,γλ,± ,O

jk,αβ
i ,± ,Ai that satisfy

Gu & Wang & Wen 10

+

N∑
m=0

Njim∗Nkml∗ =
N∑

n=0

Nkjn∗Nl∗ni ,

+

N∑
m=0

(Nb
jim∗N

f
kml∗ + N f

jim∗N
b
kml∗) =

N∑
n=0

(Nb
kjn∗N

f
l∗ni + N f

kjn∗N
b
l∗ni ),

+
∑
t

Nkjt∗∑
η=1

Ntin∗∑
ϕ=1

Nlts∗∑
κ=1

F ijm,αβ,+
knt,ηϕ,−F itn,ϕχ,+

lps,κγ,− F jkt,ηκ,+
lsq,δφ,−

= (−)sjim∗ (α)slkq∗ (δ)

Nqmp∗∑
ε=1

Fmkn,βχ,+
lpq,δε,− F ijm,αε,+

qps,φγ,−

......

• Those are tensor category theory and super tensor category theory.
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Application to 1D: no 1D topological order

• What are the phases for gapped 1D systems without any symm.?
• What are the phases for short-range correlated (SRC) states

without any symmetry? Hastings 04; Hastings, Koma 06

SRC states: ANY local operator has short range correlation.
• A SRC state can always be represented as a MPS:

Schuch, Wolf, Verstraete, Cirac 08

Ψ(m1, ...,mL) = TrA
[1]
m1 ...A

[L]
mL A

m m1 L
... ...

[1]
A

[L]

• A sequence of n matrix product can be simplified through the LU
transformations if n is large:

β

U

M M
−1

α β

m m

A m m

l r

l r α

Verstraete, Cirac, Latorre, Rico, Wolf, 2005

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States



• Introduce double-tensor E
[i ]
αa,βb =

∑
m A

[i ]
m,αβ(A

[i ]
m,ab)∗

If
∑

m A
[i ]
m,αβ(A

[i ]
m,ab)∗ =

∑
m B

[i ]
m,αβ(B

[i ]
m,ab)∗ → A

[i ]
m =

∑
m′ Umm′B

[i ]
m′

• One largest eigenvalue dominates:

α bβ

b

βα

a

a,E
[k]

βA m ml r α

(
∏
k

E [k])αa,βb = V
[k]
αa W

[k]
βb

• Since E [k] is a completely positive map, one finds, up to a gauge

transformation, V
[k]
αa = λ

[k]
α δαa, W

[k]
αa = λ

[k+1]
β δβb and λα > 0 .

So Amlmr ,αβ =

√
λ

[k]
α δαml

√
λ

[k+1]
β δβmr

• The fixed point wave function is a product state.
r

A

βα

m m

m m

l r αβ

l
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No topological order in 1D, if there are no symmetries

• All product state are linked by LU transformations.
• All SRC MPS are linked by LU transformations.
• All SRC MPS belong to the same quantum phase, if there are no

symmetries.

• But for systems with certain symmetries, we can only use the
symmetric LU transformations to define states in the same phase.
• In this case symmetric LU transformations cannot links all SRC

MPS. SCR MPS can belong to different phases.
Symmetry protected topological orders

SB−SRE 1

1
gwith symmetry1

gwithout symmetry

2
g

2
g

SRE

LRE 1 LRE 2

SB−LRE 1 SB−LRE 2

SB−SRE 2

SB−LRE 3

SY−LRE 1 SY−LRE 2 SY−LRE 3

SY−SRE 2SY−SRE 1
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No topological order in 1D, if there are no symmetries
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Quantum phases with translation and on-site symmetry

• A translation invariant (TI) SRC state can always be represented
as an uniform MPS.Perez-Garcia, Wolf, Sanz, Verstraete, Cirac 08

• A SRC uniform MPS can always be deformed into a “dimer MPS”
within the space of SRC uniform MPS. Schuch & Perez-Garcia & Cirac 10; Chen & Gu

& Wen 10

A

βα

m m

m m

l rαβ

l r

• If the original MPS has a on-site symmetry: u(g), g ∈ G ,

α(g)Amlmr =
∑
k lk r

umlmr ,k lk r (g)M−1(g)Ak lk r M(g)

where u(g) is a representation of G ,
α(g) is an 1D representation of G ,
M(g) is a projective representation of G .

• Different quantum phases are classified by the pair [M(g), α(g)],
the different projective rep. and different 1D rep.

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States



One can show that the representation u always factorize
u ∼ α(g)M(g)⊗M−1(g)

α( )g
−1 −1

−1α( )

m ml rαβ

M(g)g M   (g)

M   (g)   M(g)M   (g) M(g)

u

A

• So the fixed-point state transform as

L
αM M

−1
αM M

−1
αM M

−1

α

• Consider another fixed-point state that transforms differently
N Nβ −1

N
Lβ

Nβ −1
N Nβ −1

Such a state can be linked to the first fixed-point state via a
symmetric LU transformation, iff M(g) and N(g) are the same
types of projective rep. and α = β.
When α = β = 1, both states are product of “singlet” dimers.
How can the two states belong to two different phases?
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Projective representation

The total phase is unphysical → projective representation
• Matrices u(g) form a projective representation of group G if

u(g1)u(g2) = ω(g1, g2)u(g1g2), g1, g2 ∈ G .

• [u(g1)u(g2)]u(g3) = u(g1)[u(g2)u(g3)] gives rise to the condition

ω(g2, g3)ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3).

• Adding a phase factor u′(g) = β(g)u(g) will lead to a different

factor system ω′(g1, g2) = β(g1g2)
β(g1)β(g2)ω(g1, g2).

We regard ω′(g1, g2) ∼ ω(g1, g2).
Equivalent classes of the factor systems ω(g1, g2) = H2(G ,C)
types of projective representations.
• u1(g)→ ω1 ∈ H2(G ,C), u2(g)→ ω2 ∈ H2(G ,C), then

u1(g)⊗ u2(g)→ ω1 + ω2. → H2(G ,C) is an Abelian group
• Half-integer spins = projective representation of SO(3)

Integer spins = linear representation of SO(3).
→ H2[SO(3),C] = Z2
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Projective representation and symm. LU trans.

Try to link the following two states via symm. LU trans.

Lβ

αL
αM M

−1 αM M
−1 αM M

−1

Nβ −1
N Nβ −1

N Nβ −1
N

• Expand the on-site space of the first state from V
[i ]
αM ⊗ V

[i ]
M−1 to

(V
[i ]
αM + V

[i ]
βN)⊗ (V

[i ]
M−1 + V

[i ]
N−1 )

= V
[i ]
αM ⊗ V

[i ]
M−1 + V

[i ]
αM ⊗ V

[i ]
N−1 + V

[i ]
βN ⊗ V

[i ]
M−1 + V

[i ]
βN ⊗ V

[i ]
N−1

• When α = β, try to rotation the dimer using symm. LU trans.:
|ψ[i ]

M−1〉|ψ[i+1]
αM 〉 ∈ V

[i ]
M−1 ⊗ V

[i+1]
αM → |ψ[i ]

N−1〉|ψ[i+1]
βN 〉 ∈ V

[i ]
N−1 ⊗ V

[i+1]
βN

• During the rotation, the following state appears

|ψ[i ]
αM〉|ψ

[i ]
M−1〉+ |ψ[i ]

βN〉|ψ
[i ]
M−1〉+ |ψ[i ]

αM〉|ψ
[i ]
N−1〉+ |ψ[i ]

βN〉|ψ
[i ]
N−1〉

Each term correspond to projective rep. 0, ωM − ωN , ωN − ωM , 0
The state form a representation of G only when ωM = ωN .
• The two states are linked via symm. LU trans. iff α, ωM = β, ωN .
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Symmetry protected topological orders in 1D

For 1D spin systems with only translation and an on-site
symmetry G which is realized by a linear representation, all the
phases of gapped states that do not break the two symmetries are
classified by a pair (ω, α), where ω ∈ H2(G ,C) label different
types of projective representations of G and α label different 1D
representations of G .

• H2[SO(3),C] = Z2 and SO(3) has no 1D rep. → SO(3) spin
rotation and translation symmetric integer spin chain has two and
only two quantum phases that do not break the two symmetries.
• H2[SU(2),C] = Z1 and SU(2) has no 1D rep. → SU(2) and

translation symmetric integer+half-integer spin chain has only one
quantum phases that do not break the two symmetries.
• H2(Zn,C) = Z1 and Zn has n 1D rep. → Zn and translation

symmetric q-dit chain has n and only n quantum phases that do
not break the two symmetries.
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Canonical fixed point wave function

u u u u

u u uu

α ω−ω α ω−ω α ω−ωα ω−ω

ω −ω

u: linear representation of G
α :1D linear representation of G
ω,−ω: projective representations of G

• The boundary states form ω or −ω projective representations of G
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Gapless states I

Generalizing Lieb-Schultz-Mattis theorem
For an 1D spin system with translation and an on-site symmetry

G which is realized by a non-trivial projective representation, the
system must gapless if it does break the two symmetries.

γ γ γ γ

1 2 2 3 3 4 4 5

51

α ω−ω α ω−ω α ω−ωα ω−ω

ω −ω

ωi+1 − ωi = γ

• SO(3) spin rotation and translation symmetric half-integer spin
chain is gapless if it does not break the two symmetries.
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Gapless states II

Hastings 03

In general, a symmetric state of L-sites satisfies
u(g)⊗ ...⊗ u(g)|φL〉 = αL(g)|φL〉

Localization of 1D representation
For 1D spin systems of L sites with translation and an on-site

symmetry G which is realized by a linear representation, a gapped
state that do not break the two symmetries must transform as
u(g)⊗ ...⊗ u(g)|φL〉 = [α(g)]L|φL〉 for all large L.

• a 1D state of conserved bosons with fractional bosons per site must
be gapless, if the state does not break the translation symmetry.
Only integer m boson per site → on-site 1D rep. α(θ) = e imθ.

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States



Gapless states II

Hastings 03

In general, a symmetric state of L-sites satisfies
u(g)⊗ ...⊗ u(g)|φL〉 = αL(g)|φL〉

Localization of 1D representation
For 1D spin systems of L sites with translation and an on-site

symmetry G which is realized by a linear representation, a gapped
state that do not break the two symmetries must transform as
u(g)⊗ ...⊗ u(g)|φL〉 = [α(g)]L|φL〉 for all large L.
• a 1D state of conserved bosons with fractional bosons per site must

be gapless, if the state does not break the translation symmetry.
Only integer m boson per site → on-site 1D rep. α(θ) = e imθ.

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States



A simple result in higher dimensions

For d-dimensional spin systems with only translation and an
on-site symmetry G which is realized linearly, the object
(α, ω1, ω2, ..., ωd) label distinct gapped quantum phases that do
not break the two symmetries. Here α labels the different 1D
representations of G and ωi ∈ H2(G ,C) label the different types of
projective representations of G .

(ω1 = 0, 1;ω2 = 0, 1) label four distinct
states in integer spin systems with trans-
lation and SO(3) spin rotation symme-
tries:
(a) (ω1, ω2) = (0, 0),
(b) (ω1, ω2) = (0, 1),
(c) (ω1, ω2) = (1, 0),
(d) (ω1, ω2) = (1, 1).

(d)(c)

(a) (b)
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Topological order and entanglement – a rich world

• We classify all 1D symmetric quantum phases using symmetric LU
transformation, MPS, and projective representation.
• One can also partially classify 2D quantum phases using LU

transformation, string-nets, and TPS.
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