# Topological Order: Patterns of Long Range Entanglements of Gapped Quantum States

Xiao-Gang Wen, MIT

KITP; Dec., 2010

arXiv:1004.3835, arXiv:1008.3745, arXiv:1010.1517



Xie Chen Z.-C. Gu ZH Wang

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of

• From the chiral spin states and FQH states, we learned that states with the same symmetry can belong to different phases.

- From the chiral spin states and FQH states, we learned that states with the same symmetry can belong to different phases.
- The order in FQH states is a kind of order that
  - cannot be described by symmetry breaking
  - cannot be described by long range correlations
  - cannot be described by local order parameter

向下 イヨト イヨト

- From the chiral spin states and FQH states, we learned that states with the same symmetry can belong to different phases.
- The order in FQH states is a kind of order that
  - cannot be described by symmetry breaking
  - cannot be described by long range correlations
  - cannot be described by local order parameter
- Hard to publish papers by describing what the new order is not.

伺下 イヨト イヨト

- From the chiral spin states and FQH states, we learned that states with the same symmetry can belong to different phases.
- The order in FQH states is a kind of order that
  - cannot be described by symmetry breaking
  - cannot be described by long range correlations
  - cannot be described by local order parameter
- Hard to publish papers by describing what the new order is not.

#### But how to describe the new order in terms what it is?

・ 同 ト ・ ヨ ト ・ ヨ ト

• A gapped state can have a non trivial low energy effective theory even below the gap!

→ ∃ →

• A gapped state can have a non trivial low energy effective theory even below the gap!

Topology-dependent and topologically robust ground state degeneracy can (partially) describe the new order Wen 89; Wen & Niu 90

向下 イヨト イヨト

• A gapped state can have a non trivial low energy effective theory even below the gap!

Topology-dependent and topologically robust ground state degeneracy can (partially) describe the new order wen 89; Wen & Niu 90 Low energy effective theory is an almost trivial but highly non-trivial theory = topological field theory Witten 89

 $\rightarrow$  motivate us to name the new order as topological order

伺 とう きょう とう とう

• A gapped state can have a non trivial low energy effective theory even below the gap!

Topology-dependent and topologically robust ground state degeneracy can (partially) describe the new order wen 39; Wen & Niu 90 Low energy effective theory is an almost trivial but highly non-trivial theory = **topological field theory** Witten 89  $\rightarrow$  motivate us to name the new order as topological order Topologically stable ground states can be used as fault tolerant quantum memory. Kitaev 97; Dennis & Kitaev & Landahl & Preskill 02

・ 同 ト ・ ヨ ト ・ ヨ ト …

• A gapped state can have a non trivial low energy effective theory even below the gap!

Topology-dependent and topologically robust ground state degeneracy can (partially) describe the new order wen 89; Wen & Niu 90 Low energy effective theory is an almost trivial but highly non-trivial theory = topological field theory  $w_{itten 89}$ 

 $\rightarrow$  motivate us to name the new order as topological order

Topologically stable ground states can be used as fault tolerant

quantum memory. Kitaev 97; Dennis & Kitaev & Landahl & Preskill 02

• Topologically robust non-Abelian Berry's phases of the degenerate ground states from deforming the torus  $\rightarrow$  representation S, T of modular group which can completely (?) describe the topological order. Wen 89

・ 同 ト ・ ヨ ト ・ ヨ ト

• Topologically robust degeneracy even exists on sphere if we have quasiparticles Wen 91, Moore & Read 91, Nayak & Wilczek

Topologically robust Non-Abelian Berry's phases from exchanging defects  $\rightarrow$ 

representation of Braid group  $_{Wu,\,85} \rightarrow$  non-Abelian statistics  $_{Goldin\,\&}$ 

Menikoff & Sharp 85

Can be realized in FQH states Moore & Read 91, Wen, 91 and lead to topological quantum computation.

••••

Kitaev 97, Preskill 97, Freedman 00

• Topologically robust degeneracy even exists on sphere if we have quasiparticles Wen 91, Moore & Read 91, Nayak & Wilczek

Topologically robust Non-Abelian Berry's phases from exchanging defects  $\rightarrow$ 

representation of Braid group  $_{Wu,\;85} \rightarrow$  non-Abelian statistics  $_{Goldin\;\&}$ 

Menikoff & Sharp 85

Can be realized in FQH states Moore & Read 91, Wen, 91 and lead to topological quantum computation.

(4月) イヨト イヨト

Kitaev 97, Preskill 97, Freedman 00

• Topologically protected gapless boundary excitations:

2D bulk  $\rightarrow$  1D boundary CFT Halperin 82, Wen 90

4D bulk  $\rightarrow$  3D boundary chiral fermions (topo. insulator in 4D)

Kaplan 92

Structure of gapless boundary excitation fully characterize the structure of bulk topological order  $_{\rm Wen\ 90}$ 

• Topologically robust degeneracy even exists on sphere if we have quasiparticles Wen 91, Moore & Read 91, Nayak & Wilczek

Topologically robust Non-Abelian Berry's phases from exchanging defects  $\rightarrow$ 

representation of Braid group  $_{Wu,\;85} \rightarrow$  non-Abelian statistics  $_{Goldin\;\&}$ 

Menikoff & Sharp 85

Can be realized in FQH states Moore & Read 91, Wen, 91 and lead to topological quantum computation.

Kitaev 97, Preskill 97, Freedman 00

• Topologically protected gapless boundary excitations:

2D bulk  $\rightarrow$  1D boundary CFT Halperin 82, Wen 90

4D bulk  $\rightarrow$  3D boundary chiral fermions (topo. insulator in 4D)

Kaplan 92

Structure of gapless boundary excitation fully characterize the structure of bulk topological order  $_{\rm Wen\ 90}$ 

The edge-bulk correspondence of topological order can be viewed as the holographic principle in quantum gravity discovered a few

years later. Thorn 91, t'Hooft 93, Susskind 94 .

Is quantum gravity topological?

### A modern view of topological order?

• For gapped systems, entanglement entropy has universal constant term:  $S_A = \gamma \text{Area} - \gamma_{top}$ , topological entanglement entropy, Kitaev & Preskill 06, Levin & Wen 06 and universal spectrum.Li & Haldane 08 (Can be probed by quantum noise Klich & Levitov 08) Topological order  $\rightarrow$  long range patterns of quantum entanglements. Wen 04

# What really is long range of quantum entanglements? What really is topological order?

Xiao-Gang Wen, MIT Topological Order: Patterns of Long Range Entanglements of

イロン イヨン イヨン イヨン

æ

• Phases are defined through phase transitions.

- - 4 回 ト - 4 回 ト

• Phases are defined through phase transitions. What are phase transitions?

As we change a parameter g in Hamiltonian H(g), the ground state energy density  $\epsilon_g = E_g/V$  or average of some other local operators  $\langle \hat{O} \rangle$  may have a singularity at  $g_c \rightarrow$  the system has a phase transition at  $g_c$ .



• Phases are defined through phase transitions. What are phase transitions?

As we change a parameter g in Hamiltonian H(g), the ground state energy density  $\epsilon_g = E_g/V$  or average of some other local operators  $\langle \hat{O} \rangle$  may have a singularity at  $g_c \rightarrow$  the system has a phase transition at  $g_c$ .



A (1) > (1) > (1)

The Hamiltonian H(g) is a smooth function of g. How can the ground state energy density  $\epsilon_g$  be singular at a certain  $g_c$ ?

• Phases are defined through phase transitions. What are phase transitions?

As we change a parameter g in Hamiltonian H(g), the ground state energy density  $\epsilon_g = E_g/V$  or average of some other local operators  $\langle \hat{O} \rangle$  may have a singularity at  $g_c \rightarrow$  the system has a phase transition at  $g_c$ .



イロン イヨン イヨン イヨン

The Hamiltonian H(g) is a smooth function of g. How can the ground state energy density  $\epsilon_g$  be singular at a certain  $g_c$ ?

- Spontaneous symmetry breaking is a mechanism to cause a singularity in ground state energy density eg.
  - $\rightarrow$  Spontaneous symmetry breaking causes phase transition.

• Phases are defined through phase transitions. What are phase transitions?

As we change a parameter g in Hamiltonian H(g), the ground state energy density  $\epsilon_g = E_g/V$  or average of some other local operators  $\langle \hat{O} \rangle$  may have a singularity at  $g_c \rightarrow$  the system has a phase transition at  $g_c$ .



- 4 同 2 4 日 2 4 日 2

The Hamiltonian H(g) is a smooth function of g. How can the ground state energy density  $\epsilon_g$  be singular at a certain  $g_c$ ?

- Spontaneous symmetry breaking is a mechanism to cause a singularity in ground state energy density ε<sub>g</sub>.
  - $\rightarrow$  Spontaneous symmetry breaking causes phase transition.

But symmetry breaking does not describe all the phases.

## Mathematical definition of gapped quantum phases



A more general mechanism to cause singularity of  $\epsilon_g$  for gapped states: gap closing.



• A precise definition of gapped quantum phases: Two gapped states,  $|\Psi(0)\rangle$  and  $|\Psi(1)\rangle$ , are in the same phase iff they are related through a local unitary (LU) evolution

$$|\Psi(1)
angle = P\Big(e^{-\mathrm{i}\int_0^1 dg' \ ilde{H}(g')}\Big)|\Psi(0)
angle$$

where  $\tilde{H}(g) = \sum_{i} O_{i}(g)$  and  $O_{i}(g)$  are local hermitian operators.

#### LU evolution and quantum circuit of finite depth

We can rewrite the LU evolution as

$$\begin{split} |\Psi(1)\rangle &= P\Big(e^{-\operatorname{i} T \int_0^1 dg \ H(g)}\Big)|\Psi(0)\rangle \\ &= (\text{local unitary transformation})|\Psi(0)\rangle \\ &= (\text{quantum circuit of finite depth})|\Psi(0)\rangle \end{split}$$



### LU evolution and quantum circuit of finite depth

We can rewrite the LU evolution as

$$\begin{split} |\Psi(1)\rangle &= P\Big(e^{-\operatorname{i} T \int_0^1 dg \ H(g)}\Big) |\Psi(0)\rangle \\ &= (\text{local unitary transformation}) |\Psi(0)\rangle \\ &= (\text{quantum circuit of finite depth}) |\Psi(0) \end{split}$$



• The local unitary transformations define an equivalence relation A universality class of a quantum phase is an equivalent class of the LU transformations

Hastings, Wen 05; Bravyi, Hastings, Michalakis 10

#### Two kinds of states if no symmetries:

- The states that are equivalent to product state under LU transformations. All those states belong to the same class (phase) → short-range entanglement and trivial topological order.
- The states that are not equivalent to direct-product states. Those states form many different equivalent classes (phases)

 $\rightarrow$  many patterns of long-range entanglements and many different topological orders.

- In absence of symmetry:
  - Quantum phases of matter
  - = patterns of long-range entanglement = topological orders
  - = equivalence classes of the LU transformations

Examples: FQH states

#### Symm. breaking orders and symm. protected topo. orders

• If the Hamiltonian H has some symmetries, its phases will correspond to equivalent classes of symmetric LU transformations:  $|\Psi\rangle \sim P\left(e^{-i\int_0^1 dg \ \tilde{H}(g)}\right)|\Psi\rangle$  where  $\tilde{H}(g)$  has the same symmetries as H.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Symm. breaking orders and symm. protected topo. orders

• If the Hamiltonian H has some symmetries, its phases will correspond to equivalent classes of symmetric LU transformations:  $|\Psi\rangle \sim P\left(e^{-i\int_0^1 dg \ \tilde{H}(g)}\right)|\Psi\rangle$  where  $\tilde{H}(g)$  has the same symmetries



- SRE states with different symmetries
  - $\rightarrow$  Landau's symmetry breaking orders.
- SRE states with the same symmetry can belong to different classes  $\rightarrow$  symmetry protected topological orders (symmetry protected trivial orders). Gu & Wen 09, Pollmann & Berg, Turner & Oshikawa 09 Examples: Haldane phase and  $S_z = 0$  phase of spin-1 XXZ chain. Band and topological insulators

(D) (A) (A) (A) (A)

#### Topological order = pattern of long range entanglement = equivalent class of LU transformations

How to label those equivalent classes?

#### Topological order = pattern of long range entanglement = equivalent class of LU transformations

How to label those equivalent classes?

• We can use the wave function  $\Phi$  to label the topological orders.

#### Topological order = pattern of long range entanglement = equivalent class of LU transformations

How to label those equivalent classes?

・ 同 ト ・ ヨ ト ・ ヨ ト …

Topological order = pattern of long range entanglement = equivalent class of LU transformations

How to label those equivalent classes?

Under the wave function renormalization generated by the LU transformation,  $v_{erstratet, Cirac, Latorre, Rico, Wolf 05; Vidal 07;$ 

Jordan, Orus, Vidal, Verstraete, Cirac 08; Jiang, Weng, Xiang 09; Gu, Levin, Wen 09 the wave function flows to simpler one within the same equivalent class.

• Use the fixed-point wave function:  $\Phi_{\text{fix}}$  to label topological order.  $\Phi_{\text{fix}}$  may give us a one-to-one labeling of topological order, and a classification of topological order.



#### Classify 2D topological order

The non-chiral 2D topological orders are classified by the data  $N_{ijk}, F^{ijm,\alpha\beta}_{kln,\chi\delta}, P^{kj,\alpha\beta}_i, A^i$ , that satisfy Levin & Wen 05; Chen & Gu & Wen 10

・日・ ・ ヨ・ ・ ヨ・

The non-chiral 2D **fermionic** topological orders are (partially?) classified by the data  $N_{ijk}$ ,  $N_{ijk}^{f}$ ,  $F_{kln,\gamma\lambda,\pm}^{ijm,\alpha\beta,\pm}$ ,  $O_{i,\pm}^{jk,\alpha\beta}$ ,  $A^{i}$  that satisfy Gu & Wang & Wen 10

$$\begin{aligned}
\mathbf{ISF} \quad \sum_{m=0}^{N} N_{jim^{*}} N_{kml^{*}} &= \sum_{n=0}^{N} N_{kjn^{*}} N_{l^{*}ni}, \\
\mathbf{ISF} \quad \sum_{m=0}^{N} (N_{jim^{*}}^{b} N_{kml^{*}}^{f} + N_{jim^{*}}^{f} N_{kml^{*}}^{b}) &= \sum_{n=0}^{N} (N_{kjn^{*}}^{b} N_{l^{*}ni}^{f} + N_{kjn^{*}}^{f} N_{l^{*}ni}^{b}), \\
\mathbf{ISF} \quad \sum_{t} \sum_{\eta=1}^{N_{kjt^{*}}} \sum_{\varphi=1}^{N_{in^{*}}} \sum_{\kappa=1}^{N_{lts^{*}}} F_{knt,\eta\varphi,-}^{ijm,\alpha\beta,+} F_{lps,\kappa\gamma,-}^{itn,\varphi\chi,+} F_{lsq,\delta\phi,-}^{jkt,\eta\kappa,+} \\
&= (-)^{s_{jim^{*}}(\alpha)s_{lkq^{*}}(\delta)} \sum_{\epsilon=1}^{N_{qmp^{*}}} F_{lpq,\delta\epsilon,-}^{mkn,\beta\chi,+} F_{qps,\phi\gamma,-}^{ijm,\alpha\epsilon,+} \end{aligned}$$

• Those are tensor category theory and super tensor category theory.

回 と く ヨ と く ヨ と

3

### Application to 1D: no 1D topological order

- What are the phases for gapped 1D systems without any symm.?
- What are the phases for short-range correlated (SRC) states without any symmetry? Hastings 04; Hastings, Koma 06 SRC states: ANY local operator has short range correlation.
- A SRC state can always be represented as a MPS:

Schuch, Wolf, Verstraete, Cirac 08

• A sequence of *n* matrix product can be simplified through the LU transformations if *n* is large:



- Introduce double-tensor  $E_{\alpha a,\beta b}^{[i]} = \sum_{m} A_{m,\alpha\beta}^{[i]} (A_{m,ab}^{[i]})^*$ If  $\sum_{m} A_{m\alpha\beta}^{[i]} (A_{mab}^{[i]})^* = \sum_{m} B_{m\alpha\beta}^{[i]} (B_{mab}^{[i]})^* \rightarrow A_{m}^{[i]} = \sum_{m'} U_{mm'} B_{m'}^{[i]}$
- One largest eigenvalue dominates:



$$(\prod_{k} E^{[k]})_{\alpha a,\beta b} = V_{\alpha a}^{[k]} W_{\beta b}^{[k]}$$

• Since  $E^{[k]}$  is a completely positive map, one finds, up to a gauge transformation,  $V_{\alpha a}^{[k]} = \lambda_{\alpha}^{[k]} \delta_{\alpha a}$ ,  $W_{\alpha a}^{[k]} = \lambda_{\beta}^{[k+1]} \delta_{\beta b}$  and  $\lambda_{\alpha} > 0$ . So  $A_{m'm',\alpha\beta} = \sqrt{\lambda_{\alpha}^{[k]}} \delta_{\alpha m'} \sqrt{\lambda_{\beta}^{[k+1]}} \delta_{\beta m'}$ 

• The fixed point wave function is a product state.



## No topological order in 1D, if there are no symmetries

- All product state are linked by LU transformations.
- All SRC MPS are linked by LU transformations.
- All SRC MPS belong to the same quantum phase, if there are no symmetries.

・ 同 ト ・ ヨ ト ・ ヨ ト …

## No topological order in 1D, if there are no symmetries

- All product state are linked by LU transformations.
- All SRC MPS are linked by LU transformations.
- All SRC MPS belong to the same quantum phase, if there are no symmetries.
- But for systems with certain symmetries, we can only use the symmetric LU transformations to define states in the same phase.
- In this case symmetric LU transformations cannot links all SRC MPS. SCR MPS can belong to different phases.

Symmetry protected topological orders



### Quantum phases with translation and on-site symmetry

- A translation invariant (TI) SRC state can always be represented as an uniform MPS.Perez-Garcia, Wolf, Sanz, Verstraete, Cirac 08
- A SRC uniform MPS can always be deformed into a "dimer MPS" within the space of SRC uniform MPS. Schuch & Perez-Garcia & Cirac 10; Chen & Gu

• If the original MPS has a on-site symmetry:  $u(g), g \in G$ ,

 $\alpha(g)A_{m'm'} = \sum_{k'k'} u_{m'm',k'k'}(g)M^{-1}(g)A_{k'k'}M(g)$ 

where u(g) is a representation of G,  $\alpha(g)$  is an 1D representation of G, M(x) is a number of G.

M(g) is a *projective* representation of G.

Xiao-Gang Wen, MIT

Topological Order: Patterns of Long Range Entanglements of

One can show that the representation u always factorize  $u \sim \alpha(g)M(g) \otimes M^{-1}(g)$ 



• So the fixed-point state transform as



- E - N

One can show that the representation u always factorize  $u \sim \alpha(g)M(g) \otimes M^{-1}(g)$ 



## Projective representation

The total phase is unphysical  $\rightarrow$  projective representation • Matrices u(g) form a projective representation of group G if

 $u(g_1)u(g_2)=\omega(g_1,g_2)u(g_1g_2), \qquad g_1,g_2\in G.$ 

- $[u(g_1)u(g_2)]u(g_3) = u(g_1)[u(g_2)u(g_3)]$  gives rise to the condition  $\omega(g_2, g_3)\omega(g_1, g_2g_3) = \omega(g_1, g_2)\omega(g_1g_2, g_3).$
- Adding a phase factor  $u'(g) = \beta(g)u(g)$  will lead to a different factor system  $\omega'(g_1, g_2) = \frac{\beta(g_1g_2)}{\beta(g_1)\beta(g_2)}\omega(g_1, g_2)$ . We regard  $\omega'(g_1, g_2) \sim \omega(g_1, g_2)$ . Equivalent classes of the factor systems  $\omega(g_1, g_2) = H^2(G, \mathbb{C})$  types of projective representations.
- $u_1(g) \rightarrow \omega_1 \in H^2(G, \mathbb{C}), u_2(g) \rightarrow \omega_2 \in H^2(G, \mathbb{C})$ , then  $u_1(g) \otimes u_2(g) \rightarrow \omega_1 + \omega_2. \rightarrow H^2(G, \mathbb{C})$  is an Abelian group

• Half-integer spins = projective representation of SO(3)Integer spins = linear representation of SO(3).  $\rightarrow H^2[SO(3), \mathbb{C}] = \mathbb{Z}_2$ 

### Projective representation and symm. LU trans.

Try to link the following two states via symm. LU trans.  $\begin{tabular}{|c|c|c|c|c|c|} \hline & \alpha M_{i} & M^{-1} \alpha M_{i} & M^{-1} \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & M^{-1} \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline & \alpha M_{i} & \alpha M_{i} & M^{-1} \\ \hline$  $\alpha^{L}$  ||  $\begin{array}{c} \beta N_{1} P^{-1} \beta P^{-1} P^{-1} \beta P^{-1} P^{-1} \rho P^{$ β<sup>L</sup> • Expand the on-site space of the first state from  $V_{\alpha M}^{[i]} \otimes V_{M-1}^{[i]}$  to  $(V_{\alpha M}^{[i]} + V_{\beta M}^{[i]}) \otimes (V_{M-1}^{[i]} + V_{M-1}^{[i]})$  $= V_{aM}^{[i]} \otimes V_{M-1}^{[i]} + V_{aM}^{[i]} \otimes V_{M-1}^{[i]} + V_{BN}^{[i]} \otimes V_{M-1}^{[i]} + V_{BN}^{[i]} \otimes V_{M-1}^{[i]}$ • When  $\alpha = \beta$ , try to rotation the dimer using symm. LU trans.:  $|\psi_{M-1}^{[i]}\rangle|\psi_{\alpha M}^{[i+1]}\rangle \in V_{M-1}^{[i]} \otimes V_{\alpha M}^{[i+1]} \rightarrow |\psi_{M-1}^{[i]}\rangle|\psi_{\beta M}^{[i+1]}\rangle \in V_{\beta M}^{[i]}$  During the rotation, the following state appears  $|\psi_{\alpha M}^{[i]}\rangle|\psi_{M-1}^{[i]}\rangle+|\psi_{\beta N}^{[i]}\rangle|\psi_{M-1}^{[i]}\rangle+|\psi_{\alpha M}^{[i]}\rangle|\psi_{N-1}^{[i]}\rangle+|\psi_{\beta N}^{[i]}\rangle|\psi_{N-1}^{[i]}\rangle$ Each term correspond to projective rep.  $0, \omega_M - \omega_N, \omega_N - \omega_M, 0$ The state form a representation of G only when  $\omega_M = \omega_N$ . • The two states are linked via symm. LU trans, iff  $\alpha, \omega_M = \beta, \omega_N$ .

#### Symmetry protected topological orders in 1D

For 1D spin systems with only translation and an on-site symmetry **G** which is realized by a linear representation, all the phases of gapped states that do not break the two symmetries are classified by a pair  $(\omega, \alpha)$ , where  $\omega \in H^2(G, \mathbb{C})$  label different types of projective representations of **G** and  $\alpha$  label different 1D representations of **G**.

(4月) イヨト イヨト

For 1D spin systems with only translation and an on-site symmetry **G** which is realized by a linear representation, all the phases of gapped states that do not break the two symmetries are classified by a pair  $(\omega, \alpha)$ , where  $\omega \in H^2(G, \mathbb{C})$  label different types of projective representations of **G** and  $\alpha$  label different 1D representations of **G**.

- H<sup>2</sup>[SO(3), C] = Z<sub>2</sub> and SO(3) has no 1D rep. → SO(3) spin rotation and translation symmetric integer spin chain has two and only two quantum phases that do not break the two symmetries.
- H<sup>2</sup>[SU(2), C] = Z<sub>1</sub> and SU(2) has no 1D rep. → SU(2) and translation symmetric integer+half-integer spin chain has only one quantum phases that do not break the two symmetries.
- $H^2(\mathbb{Z}_n, \mathbb{C}) = \mathbb{Z}_1$  and  $\mathbb{Z}_n$  has n 1D rep.  $\to \mathbb{Z}_n$  and translation symmetric q-dit chain has n and only n quantum phases that do not break the two symmetries.

・ロト ・回ト ・ヨト ・ヨト

#### Canonical fixed point wave function



• The boundary states form  $\omega$  or  $-\omega$  projective representations of G

#### Generalizing Lieb-Schultz-Mattis theorem

For an 1D spin system with translation and an on-site symmetry G which is realized by a non-trivial projective representation, the system must gapless if it does break the two symmetries.



#### Generalizing Lieb-Schultz-Mattis theorem

For an 1D spin system with translation and an on-site symmetry G which is realized by a non-trivial projective representation, the system must gapless if it does break the two symmetries.



• *SO*(3) spin rotation and translation symmetric half-integer spin chain is gapless if it does not break the two symmetries.

#### Hastings 03

In general, a symmetric state of *L*-sites satisfies  $u(g) \otimes ... \otimes u(g) |\phi_L\rangle = \alpha_L(g) |\phi_L\rangle$ 

#### Localization of 1D representation

For 1D spin systems of L sites with translation and an on-site symmetry G which is realized by a linear representation, a gapped state that do not break the two symmetries must transform as  $u(g) \otimes ... \otimes u(g) |\phi_L\rangle = [\alpha(g)]^L |\phi_L\rangle$  for all large L.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Hastings 03

In general, a symmetric state of *L*-sites satisfies  $u(g) \otimes ... \otimes u(g) |\phi_L\rangle = \alpha_L(g) |\phi_L\rangle$ 

#### Localization of 1D representation

For 1D spin systems of L sites with translation and an on-site symmetry G which is realized by a linear representation, a gapped state that do not break the two symmetries must transform as  $u(g) \otimes ... \otimes u(g) |\phi_L\rangle = [\alpha(g)]^L |\phi_L\rangle$  for all large L.

 a 1D state of conserved bosons with fractional bosons per site must be gapless, if the state does not break the translation symmetry. Only integer *m* boson per site → on-site 1D rep. α(θ) = e<sup>imθ</sup>.

・ロン ・回 と ・ ヨ と ・ ヨ と

### A simple result in higher dimensions

For *d*-dimensional spin systems with only translation and an on-site symmetry *G* which is realized linearly, the object  $(\alpha, \omega_1, \omega_2, ..., \omega_d)$  label distinct gapped quantum phases that do not break the two symmetries. Here  $\alpha$  labels the different 1D representations of *G* and  $\omega_i \in H^2(G, \mathbb{C})$  label the different types of projective representations of *G*.

 $(\omega_1 = 0, 1; \omega_2 = 0, 1)$  label four distinct states in integer spin systems with translation and SO(3) spin rotation symmetries:

(a) 
$$(\omega_1, \omega_2) = (0, 0)$$
,  
(b)  $(\omega_1, \omega_2) = (0, 1)$ ,  
(c)  $(\omega_1, \omega_2) = (1, 0)$ ,  
(d)  $(\omega_1, \omega_2) = (1, 1)$ .



#### Topological order and entanglement – a rich world

- We classify all 1D symmetric quantum phases using symmetric LU transformation, MPS, and projective representation.
- One can also partially classify 2D quantum phases using LU transformation, string-nets, and TPS.

向下 イヨト イヨト

### Topological order and entanglement – a rich world

- We classify all 1D symmetric quantum phases using symmetric LU transformation, MPS, and projective representation.
- One can also partially classify 2D quantum phases using LU transformation, string-nets, and TPS.



Topological Order: Patterns of Long Range Entanglements of