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A little history

"."V.V.V.Y“’V.V.V.v -. The S=1/2 Heisenberg Kagome

- systems has long been thought to be
an ideal candidate for a spin liquid
because of its high frustration.
General agreement there 1s no
magnetic order.
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* Key question:is it a valence bond crystal or a spin liquid? What kind
of VBC or SL!?

* Three key approaches have supported a “hexagonal valence bond
crystal” (HVBC) with a 36 site unit cell (Marston and Zeng)

— Series expansions of Singh and Huse (E=-0.433(1))
— MERA of Evenbly and Vidal (E < -0.4322 exact bound!)

* Multiscale entanglement renormalization ansatz, a tensor
product relative of DMRG capable of infinite 2D

— Effective Dimer Model, Poilblanc et al (but SL close by)



* Favoring a spin liquid:

— A gapless SL with a good variational energy (E = -0.429)
with very few parameters was found by Hermele, Ran, Lee,
and Wen.

— A DMRG study by Jiang,Weng and Sheng found a spin
liquid

* They used fully periodic boundary conditions...
* Largest systems had an E=-0.43 1|
* Exact diagonalizations up to 36 sites give E ~ -0.438 on larger
clusters
* Evidence overall seemed to favor the HVBC; higher energy
than Lanczos attributed to finite size effects.



DMRG for Two dimensions

2D Lattice mapped onto ID | © 00 ©-0OJO0-0 O
More sweeps needed © 00 0/eij0 0 O

system block environment block
Accuracy falls off exponentially with width (Liang &
Pang 1994).

— Now understood as consequence of QI “Area Law”

Continued improvement in techniques (and
computers) have allowed pretty big 2D systemes...



Square lattice: benchmark against QMC
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* Cylindrical BCs: periodic /]\ 04 Energy, extrapolated to thermo
in y, open in X limit using series of cylinders
* 21 sweeps, up to -0.669444(5)

=32 ,80 h .
m=3200 states, 80 hours Sandvik, QMC (1997):

* See White&Chernyshey, -0.669437(5)
PRL 99, 127004 (2007)



Practical Issues for Kagome

|. Metastability: getting stuck in a higher energy state
(usually an issue only on wider cylinders)

* Need to understand system and find a simple state close to
the ground state to initialize DMRG

2. Strong dependence on width (and shift) of cylinders

* Need to do many cylinders and understand patterns of
behavior

3.Open edges--obtaining bulk cylinder behavior

* This is a minor problem for this system

e Open ends useful for pinning, selecting different topological
sectors...
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Direct comparison of HYBC and SL

e Given metastability, and possible biases, how can you
rule out the HVYBC?

— Make all the biases favor the HVYBC. Then, if it’s unstable,
you have strong evidence.

— To make a strong bias: make the DMRG mapping to 1D
follow the HVBC state! ) 47 Ts

o © O (O

* Nonresonating HVBC stable at m=2

— Other ways to promote HVBC: initial state (pinning “fields”
= strong J’s); edge shaped to match HVYBC
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m=200
sweep 6

m=600
sweep 14

This run had special
path and edges tuned
to favor HVBC.

HVBC 1s metastable
for small m, but for
m ~ 2400 1t
transitions to the
spin liquid

With standard path
HVBC is
immediately
unstable, m ~ 100

SL energy for this
cylinder, bulk:
-0.43824(2) XC8



Ruling out an HVBC on a width 12 cylinder
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Comparison with HVBC Series expansion

Series Expansion

Hamiltonian: H(\) = Z Si S+ A Z Si S
strong bonds weak bonds
We can simulate H(A) vs A to 871
look for a transition.
A “hysteresis plot” shows evidence
for a first order transition |
separating the HVBC and SL at —~
A:=0.984 o .
g
For A <A¢, the series works fine: + |
at A=0.98 series gives E=-0.431(1), = AES, D4 ses
DMRG gives E=-0.4324. e
*—% m=2000
Thus the series estimate for 2D 1is ,
. T T A RS S SR
{)5?;)321313(1%1) good for the HVBC: -87.2 003 058 005

A



A Rigorous Upper Bound on the 2D energy
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* A variational calculation like DMRG for an open cluster can provide
a rigorous upper bound on the 2D energy.

* Given an open cluster of N sites, N even, which tiles 2D, then a
product state of the cluster state over all tiles has energy E/N

* This is crude, with convergence as the inverse width.

* Previous best rigorous bound was from MERA, E/N = -0.43221. The
spin liquid is so much lower than the HVBC we get a new best
upper bound with N = 576, E/N = -0.433238.



Energies of various cylinders and methods
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Nature of the Spin Liquid

* A natural starting point is a nearest neighbor RVB state.

* The resonance of short loops significantly lowers the
energy. T he shortest loop that can resonate in the kagome is
the hexagon, and much theoretical work has started with

the perfect hexagons.
* However, we find that the 8 site loops are dominant in the
spin liquid!
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Response to 0.5% increase/decrease in J on fat vertical bonds: the
“diamond pattern”, which fits only on the even cylinders



The diamond pattern provides the ideal DMRG initial

state for the spin liquid

m=300

m=600

pinning field

N still on

pinning field
N, on, 0.05



The diamond pattern VBC is continuously connected
to the spin liquid with open gaps
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This utilizes an H(L)
that turns off all
weak bonds in the
diamond pattern.

Gaps are O(1) near
A=0, and smallest
near A—=1.

The diamond pattern
at A=0 1s a product
state, trivial
topologically. What
does this tell us
about the spin liquid?



Gap
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(a)

(b)

(c)

(d)

White, Noack,
Scalapino, PRL 73,
886 (1994). Also
similar: AKLT states

Odd vs Even Ladders/Cylinders
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An odd topological state can be created by adding or

subtracting sites from the open ends

Red path crosses three

bonds (choose a dimer
bonds

cover for each
diamond)
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These show 1nitial pinning

patterns.



The odd topologlcal state on YC8

0.0
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Two completely
different runs,
different initial
states, but the
same system, up
to m=5000:
1dentical
irregular pattern!

This odd topo state has an excess energy of 0.00069(3) per site.
This “spinon string” also seems to have excited states, with energies
~0.01 above it for this length. Note: a torus has both topo states!



Summary

We have presented strong evidence that the ground
state of the Kagome system is a spin liquid with an

energy comparable to that of exact diagonalization on
small clusters.

A first order phase transition appears to separate the
HVBC from the spin liquid.

The spin liquid is a short ranged RVB with strongly

weighted 8 site resonant loops, underweighted 6 site
loops.

Singlet gap ~0.05; triplet gap 0.15 on width 8 cyl.

It has interesting topological structure and excitations
which are just beginning to be understood.




