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α-RuCl3 essentials (and not)
effective S=1/2

o honeycomb lattice 
o octahedral* environment, Ru3+, Jeff =1/2
o zigzag order, tilted out of basal plane, TN ≈ 7K
o in-plane* critical fields Hc,a≈ Hc,b≈6-7 T

o (*) so-called cubic axes are used (Kitaev-explicit)

Ru3+

S. M. Winter etal., JPCM 29, 493002 (2017).
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[#44, year 1844, Kazan]
Carl Ernst Claus, Ruthenia;
RuCl3 = 1845 (!);
(*) ESR, Kazan, 1944
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minimal effective model

[“generalized Kitaev” or J-K-Γ-Γ’-J3 model,
≈ consensus]

approach:
o include all symmetry-allowed nearest-neighbor,  add minimal non-NN terms
o use phenomenology

this approach:
o ≠ but not ⊥ to DFT [DFT: many more terms, truncate, correlations?]
o ≠ but not ⊥ to downfoldings [superexchange expansions: perturbative]
o parameters of the effective model ≠ DFT parameters [effective resummation]

2

induced transition to the paramagnetic phase, but fail
above it. This dichotomy can be rationalized as due to
an e↵ective reduction of the bare parameters by quantum
fluctuations [42], which are gradually lifted by the field in
the paramagnetic phase. For a representative set of the
proposed parameters, we demonstrate that a mean-field
approach to quantum fluctuations provides a consistent
description of the field evolution of spin excitations in the
paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18, 42]. This approxi-
mation is further justified by a comparison to the exact
diagonalization results [43].

A di↵erent set of quantum e↵ects is also notable. As
is advocated in Refs. [35, 51], large o↵-diagonal terms
in the anisotropic-exchange magnets necessarily precipi-
tate strong anharmonic coupling of magnons, regardless
of the underlying magnetic order. These strong anhar-
monic interactions inevitably lead to large decay rates of
the higher-energy magnons into the lower-energy magnon
continua [52], such that some of the magnon modes cease
to be well-defined, leading to characteristic broad fea-
tures in the neutron-scattering spectra. We apply the
analysis of Ref. [35] to the representative sets of our
model parameters and demonstrate a coexistence of the
low-energy well-defined quasiparticles with the broad-
ened excitation continua. These results are in agreement
with the prior studies [35, 51] and are also in accord with
the experiments in ↵-RuCl3 [22, 34, 49, 53]. Our results
underscore the importance of taking into account magnon
decays in interpreting broad features in the spectra of the
strongly-anisotropic magnets [7].

There are other persistent features in the spectrum of
the generalized KH model throughout the advocated pa-
rameter space that are also present in ↵-RuCl3. One
of them is the quasi-Goldstone modes that occur away
from the ordering vector of the underlying zigzag phase
[34, 53], suggesting accidental near-degeneracy due to a
hidden symmetry. We provide an insight into its na-
ture using duality transformations of the model. First, a
global rotation in the plane of magnetic ions transforms
the generalized KH model into itself, but with the dom-
inant ferromagnetic J < 0, smaller positive and nearly
equal K and �0 terms, and a much smaller �-term. It
is important to note that this description is identical to
the original one and represents a feature of the KJ��0

parametrization of the exchange matrix. We then show
that the Klein duality [54] transforms the K–J–�0 model
with �=0 into a K–J–�̆0 model with an anti -symmetric
�̆0 term that is akin to the Dzyaloshinskyi-Moriya cou-
pling. This last model preserves a Goldstone mode of the
pure K–J model, in a close similarity to the observation
made for the same model on the triangular lattice [55].

Not only does this observation explain the ubiquitous
accidental pseudo-Goldstone modes, but it also suggests
a simpler model for ↵-RuCl3, which is more amendable
to a detailed exploration because of the lower dimension-
ality of its parameter space: the K–J–�0–J3 model ob-
tained by the first transformation described above. More-
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FIG. 1. (a) The nearest-neighbor Ru-Ru {X,Y,Z} bonds,
crystallographic {x0, y0, z0} and cubic {x, y, z} axes, and prin-
cipal in-plane a(b) directions. (b) Cubic axes and idealized
Ru-Cl bonds. (c) Brillouin zone with the ordering vectors of
the zigzag phase Y, M, and M’.

over, the original K–J–�–�0–J3 model can be rewritten
in the “spin-ice” language [5, 10, 54, 55] that uses more
natural spin axes tied to the honeycomb plane, yield-
ing the so-called XXZ–J±±–Jz± form of the model. For
the parameter range that we advocate for ↵-RuCl3, the
model in this language consistently has two nearly van-
ishing terms, the XXZ anisotropy � and one of the
anisotropic terms J±±. That is, the model that closely
describes ↵-RuCl3 is dominated by an easy-plane ferro-
magnetic J1 and a sizable anisotropic Jz± terms. Such a
J1–Jz±–J3 model description o↵ers a much simpler way
of thinking about ↵-RuCl3, can give a new perspective
on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the
model, its parameters, their empirical constraints, and
outline the resulting parameter space in Sec. II. In
Sec. III, we discuss the e↵ects of quantum fluctuations on
magnons in the paramagnetic and zigzag phases. Sec. IV
is devoted to the dual models for the advocated parame-
ter space and to di↵erent ways of representing them. We
conclude by a brief discussion in Sec. V and provide some
further details in Appendixes.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of ↵-RuCl3 is the K–J–�–�0–J3 or gen-
eralized Kitaev-Heisenberg model [29, 30, 41],

Ĥ = Ĥ1 + Ĥ3 =
X

hiji

S
T
i ĴijSj + J3

X

hiji3

Si · Sj , (1)

where S
T
i = (Sx

i , Sy
i , Sz

i ), the third-neighbor exchange is

assumed isotropic, and Ĵij is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational
symmetries in the anisotropic-exchange Hamiltonians
are, generally, absent, the allowed matrix elements of Ĵij

are determined solely by the symmetry of the lattice [47].
For ↵-RuCl3 and related materials [13], the conven-

tional choice of the Cartesian reference frames for the
spin projections are the so-called cubic axes, see Fig. 1.
They correspond to an idealized undistorted octahedral
environment of Ru3+ and are not coincidental with the
plane of magnetic ions, the point that is often lost on a
non-expert or a casual reader. These axes are natural
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

o lattice symmetries* ➾ four terms (+J3) ➾ 5D space
o cubic axis parametrization of Jij (exchange matrix)
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).
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o K < 0, leading term [is it?] 
o 0 < Γ ≲ |K|, [is it?] 
o J < 0, subleading [?]
o 0 < J3 ≲ |J|
o 0 > Γ’ ~ 0

DFT/expansion guidance
guidance from DFT/downfolding:
o overall values*
o hierarchy of terms* 
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induced transition to the paramagnetic phase, but fail
above it. This dichotomy can be rationalized as due to
an e↵ective reduction of the bare parameters by quantum
fluctuations [42], which are gradually lifted by the field in
the paramagnetic phase. For a representative set of the
proposed parameters, we demonstrate that a mean-field
approach to quantum fluctuations provides a consistent
description of the field evolution of spin excitations in the
paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18, 42]. This approxi-
mation is further justified by a comparison to the exact
diagonalization results [43].

A di↵erent set of quantum e↵ects is also notable. As
is advocated in Refs. [35, 51], large o↵-diagonal terms
in the anisotropic-exchange magnets necessarily precipi-
tate strong anharmonic coupling of magnons, regardless
of the underlying magnetic order. These strong anhar-
monic interactions inevitably lead to large decay rates of
the higher-energy magnons into the lower-energy magnon
continua [52], such that some of the magnon modes cease
to be well-defined, leading to characteristic broad fea-
tures in the neutron-scattering spectra. We apply the
analysis of Ref. [35] to the representative sets of our
model parameters and demonstrate a coexistence of the
low-energy well-defined quasiparticles with the broad-
ened excitation continua. These results are in agreement
with the prior studies [35, 51] and are also in accord with
the experiments in ↵-RuCl3 [22, 34, 49, 53]. Our results
underscore the importance of taking into account magnon
decays in interpreting broad features in the spectra of the
strongly-anisotropic magnets [7].

There are other persistent features in the spectrum of
the generalized KH model throughout the advocated pa-
rameter space that are also present in ↵-RuCl3. One
of them is the quasi-Goldstone modes that occur away
from the ordering vector of the underlying zigzag phase
[34, 53], suggesting accidental near-degeneracy due to a
hidden symmetry. We provide an insight into its na-
ture using duality transformations of the model. First, a
global rotation in the plane of magnetic ions transforms
the generalized KH model into itself, but with the dom-
inant ferromagnetic J < 0, smaller positive and nearly
equal K and �0 terms, and a much smaller �-term. It
is important to note that this description is identical to
the original one and represents a feature of the KJ��0

parametrization of the exchange matrix. We then show
that the Klein duality [54] transforms the K–J–�0 model
with �=0 into a K–J–�̆0 model with an anti -symmetric
�̆0 term that is akin to the Dzyaloshinskyi-Moriya cou-
pling. This last model preserves a Goldstone mode of the
pure K–J model, in a close similarity to the observation
made for the same model on the triangular lattice [55].

Not only does this observation explain the ubiquitous
accidental pseudo-Goldstone modes, but it also suggests
a simpler model for ↵-RuCl3, which is more amendable
to a detailed exploration because of the lower dimension-
ality of its parameter space: the K–J–�0–J3 model ob-
tained by the first transformation described above. More-
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FIG. 1. (a) The nearest-neighbor Ru-Ru {X,Y,Z} bonds,
crystallographic {x0, y0, z0} and cubic {x, y, z} axes, and prin-
cipal in-plane a(b) directions. (b) Cubic axes and idealized
Ru-Cl bonds. (c) Brillouin zone with the ordering vectors of
the zigzag phase Y, M, and M’.

over, the original K–J–�–�0–J3 model can be rewritten
in the “spin-ice” language [5, 10, 54, 55] that uses more
natural spin axes tied to the honeycomb plane, yield-
ing the so-called XXZ–J±±–Jz± form of the model. For
the parameter range that we advocate for ↵-RuCl3, the
model in this language consistently has two nearly van-
ishing terms, the XXZ anisotropy � and one of the
anisotropic terms J±±. That is, the model that closely
describes ↵-RuCl3 is dominated by an easy-plane ferro-
magnetic J1 and a sizable anisotropic Jz± terms. Such a
J1–Jz±–J3 model description o↵ers a much simpler way
of thinking about ↵-RuCl3, can give a new perspective
on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the
model, its parameters, their empirical constraints, and
outline the resulting parameter space in Sec. II. In
Sec. III, we discuss the e↵ects of quantum fluctuations on
magnons in the paramagnetic and zigzag phases. Sec. IV
is devoted to the dual models for the advocated parame-
ter space and to di↵erent ways of representing them. We
conclude by a brief discussion in Sec. V and provide some
further details in Appendixes.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of ↵-RuCl3 is the K–J–�–�0–J3 or gen-
eralized Kitaev-Heisenberg model [29, 30, 41],

Ĥ = Ĥ1 + Ĥ3 =
X
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S
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Si · Sj , (1)

where S
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i = (Sx
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i ), the third-neighbor exchange is

assumed isotropic, and Ĵij is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational
symmetries in the anisotropic-exchange Hamiltonians
are, generally, absent, the allowed matrix elements of Ĵij

are determined solely by the symmetry of the lattice [47].
For ↵-RuCl3 and related materials [13], the conven-

tional choice of the Cartesian reference frames for the
spin projections are the so-called cubic axes, see Fig. 1.
They correspond to an idealized undistorted octahedral
environment of Ru3+ and are not coincidental with the
plane of magnetic ions, the point that is often lost on a
non-expert or a casual reader. These axes are natural
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

can do better: 
need strong constraints

prior work: combination 
of various approaches and
phenomenologies
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Reference Method K � �0
J J3 �+2�0

J+3J3

Banerjee et al. [22] LSWT, INS fit +7.0 -4.6 -4.6

Kim et al. [29]

DFT+t/U , P3 -6.55 5.25 -0.95 -1.53 3.35 -1.53

DFT+SOC+t/U -8.21 4.16 -0.93 -0.97 2.3 -0.97

same+fixed lattice -3.55 7.08 -0.54 -2.76 6.01 -2.76

same+U+zigzag +4.6 6.42 -0.04 -3.5 6.34 -3.5

Winter et al. [30]
DFT+ED, C2 -6.67 6.6 -0.87 -1.67 2.8 4.87 6.73

same, P3 +7.6 8.4 +0.2 -5.5 2.3 8.8 +1.4

Yadav et al. [24] Quantum chemistry -5.6 -0.87 +1.2 -0.87 +1.2

Ran et al. [34] LSWT, INS fit -6.8 9.5 9.5

DFT+t/U , U=2.5eV -14.43 6.43 -2.23 2.07 6.43 +3.97

Hou et al. [31] same, U=3.0eV -12.23 4.83 -1.93 1.6 4.83 +2.87

same, U=3.5eV -10.67 3.8 -1.73 1.27 3.8 +2.07

Wang et al. [32]
DFT+t/U , P3 -10.9 6.1 -0.3 0.03 6.1 -0.21

same, C2 -5.5 7.6 +0.1 0.1 7.6 +0.4

Winter et al. [35] Ab initio+INS fit -5.0 2.5 -0.5 0.5 2.5 +1.0

Suzuki et al. [36] ED, Cp fit -24.41 5.25 -0.95 -1.53 3.35 -1.53

Cookmeyer et al. [37] thermal Hall fit -5.0 2.5 -0.5 0.11 2.5 -0.16

Wu et al. [38] LSWT, THz fit -2.8 2.4 -0.35 0.34 2.4 +0.67

Ozel et al. [39]
same, K>0 +1.15 2.92 +1.27 -0.95 5.45 -0.95

same, K<0 -3.5 2.35 +0.46 2.35 +0.46

Eichstaedt et al. [33] DFT+Wannier+t/U -14.3 9.8 -2.23 -1.4 0.97 5.33 +1.5

Sahasrabudhe et al.[42] ED, Raman fit -10.0 3.75 -0.75 0.75 3.75 1.5

Sears et al. [40] Magnetization fit -10.0 10.6 -0.9 -2.7 8.8 -2.7

Laurell et al. [41] ED, Cp fit -15.1 10.1 -0.12 -1.3 0.9 9.86 +1.4

This work

“realistic” range [-11,-3.8] [3.9,5.0] [2.2,3.1] [-4.1,-2.1] [2.3,3.1] [9.0,11.4] [4.4,5.7]

point 1 -4.8 4.08 2.5 -2.56 2.42 9.08 4.7

point 2 -10.8 5.2 2.9 -4.0 3.26 11.0 5.78

point 3 -14.8 6.12 3.28 -4.48 3.66 12.7 6.5

TABLE I. The representative sets of parameters of the generalized KH model (1) for ↵-RuCl3 (in meV). The values that come
close to the ranges proposed in this work are highlighted in bold. The common acronyms include linear spin-wave theory
(LSWT), density-functional theory (DFT), spin-orbit coupling (SOC), inelastic neutron scattering (INS), exact diagonalization
(ED), and terahertz spectroscopy (THz); structures of P3 and C2 symmetry are referred to as “P3” and “C2” for brevity.

positive �0, which is either completely absent in the previ-
ous considerations or is small and negative. In Section II,
we have discussed extensively and made our case for the
necessity of a significant �0 > 0 in the e↵ective model
description (1) of ↵-RuCl3.

Second, are the “cumulative” parameters �tot =�+2�0

and J03 =J+3J3 in the last two columns of Table I. For
the case of �tot, there are a few studies providing com-
parable values, in which there is an attempt to describe
phenomenology that is similar to ours, but without posi-
tive �0. These attempts can be seen as trying to compen-
sate for the lack of �0 by cranking up � [40, 41]. For J03,
it appears that previous works have, generally, underap-
preciated the importance of the mutual correlation of J
and J3, leading to a nearly random distribution of their
values. As is discussed above, this work underscores the
phenomenological constraints on both �tot and J03 and
the associated strong mutual bounds on �, �0, and J03,
see Figs. 7 and 8.

Lastly, as is emphasized in Sec. I and Sec. II, the results
of our work may di↵er from the prior analyses in Table I
because we consider phenomenology of an e↵ective model
as opposed to the first-principles methods, and we also
extract bare parameters that are typically larger than the
ones reduced by quantum fluctuations.

III. QUANTUM EFFECTS

In this section, we present the RPA results for the
spectrum renormalization in the paramagnetic phase and
demonstrate their close agreement with the ESR and
THz data. As is shown above, the ↵-RuCl3 model has
strong anisotropic-exchange interactions. They should
inevitably lead to significant nonlinear quantum e↵ects in
the magnon spectra due to substantial three-particle in-
teractions. Below, we calculate the damping of magnons
due to associated decays and consider their e↵ect in the
spectrum and the dynamical structure factor.
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I. “strong” constrains on the parameter space

II. consequences: better model(s)

III. more consequences: common features 

plan

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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ideal world … [Radu Coldea version]
o strong polarizing field 
➾ fit spin-flip dispersion in the “FM” state
➾ parameters

o α-RuCl3 ➾ difficulties: 
-- fields somewhat too high 
-- neutron experiments limited
-- fluctuations above Hc’s
-- still, high-field regime is profoundly instructive

K. A. Ross etal., 2011; J. D. Thompson etal., 2017.

Yb2Ti2O7, NLSWT
J. Rau etal., PRB 100, 033011 (2019).
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LSWT LSWT

RPA RPA
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#1: ESR, THz, Raman (high field)
o strong in-plane field, probe k=0 spin-flip excitation 
o LSWT?

-- Ek=0 depends only on Γ and Γ’ [via Γtot=Γ+2Γ’]

-- fluctuations renormalize Ek=0 down [ED]
-- most prior parameter choices [table] fail 

o Γtot=Γ+2Γ’ must be at least 8 meV

A. N. Ponomaryov etal., 2017; A. Sahasrabudhe etal., 2019. S. M. Winter etal., 2018.

o ➾ strong bounds on
Γtot = Γ+2Γ’ ≳ 8 meV
Γtot = Γ+2Γ’ ≲ 13 meV



KITP, 11-16-20

#2: [exp.] in-plane critical fields Hc,a≈ Hc,b
o Hc,a≈ Hc,b, what’s a big deal? (if ga≈ gb)
o not true due to anisotropic exchanges:

Hc,a≠ Hc,b even if ga= gb

o LSWT? (1/S, small or is not affecting ΔHc)
-- ΔHc depends only on K, Γ, and Γ’

o -- small ΔHc is impossible to reconcile
without Γ’ > 0 [!] and ≳ Γ/2

-- none of the prior works predicted that 

physical range physical range

Γ= 5meV, g = 2.5
Γ= 5meV
g = 2.5

ΔHexp
c
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−K = Γ

−K = 2Γ

−K = 3Γ

➾ Γ’ ≳ Γ/2
➾ helps with large Γtot = Γ+2Γ’ from the ESR

P. Lampen-Kelley etal., 2018.
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#3: critical fields Hc,a, Hc,b, #4: tilt angle α
o Hc,a and Hc,b, by far the strongest dependence is 

on a combination of J and J3: J+3J3, ➾ fixing Hc,a(b) fixes J+3J3

o (LSWT) out-of-plane tilt angle α also depends only on K, Γ, and Γ’
o -- experimentally, α ≈ 35º, ED suggest modest quantum corrections 

J. Chaloupka and G. Khaliullin, 2016.

o #3 = strong constraint
o #4 = not too strong [exp]
o #5 = “soft” constraint, 

total spectral bandwidth W0
helps with overall scale

+ checks for ZZ GS in H=0 

A. Banerjee etal., 2017, 2018; A. Sahasrabudhe etal., 2019.H. B. Cao etal., 2016.
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a taste of it … : “rigid constraints”

J (meV)
J 3

(m
eV

)

FM
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IC

H (a)c =7 T

-5 -4 -3 -2 -10

1
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o fix [rigid constraints approach]:
o Γ+2Γ’ = 9 meV
o ΔHc = 1 T
o α = 35º

o Hc,a = 7 T
➾

o 4 out of 5 parameters are fixed

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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2D sections of 5D, varying constraints
(Γ maxtot /Γ − 1)/2

(Γ mintot /Γ −
1)/2

W0 = 25 meV

α= 25o

W0 = 20 meV

W0 = 15 meV
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Γ
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o Γ+2Γ’ = 9−13 meV
o ΔHc = 0.5−1.5 T
o α = 25º− 45º

o Hc,a = 7 T
o spectral bandwidth W0

W0 < 15 meV: “realistic” 
W0 < 20 meV: “generous” 
W0 < 25 meV: “outrageous”

o strongest bounds are on Γ, Γ’, and J03
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where are we?
o K < 0, leading term ☑
o 0 < Γ ≲ |K|, ☑

o J < 0, subleading,   ≈ ☑ but larger
o 0 < J3 ≲ |J|, ≈ ☒ J3 ≈|J|
o 0 > Γ’ ~ 0,  ☒☒ Γ’ ≳ Γ/2

o representative points from 
realistic, generous, and outrageous regions 

o agree with some/most DFT guidance
o Γ’ is the most significant difference
o tight parameter space, interrelated 
o ranges do not do full justice 

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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insights?: 2D cut of a 4D space
o fix Γ’, and J3 [5D➾ 3D] 

o introduce global scale                              ➾ 2D

o α-RuCl3 ➾ ZZ in a proximity of IC phase

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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self-consistency, RPA
o proximity to the IC phase ➾

strong fluctuations:
ordered moment in H=0,  ⟨S⟩ = 0.22

o [in agreement with exp.]

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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we are not in Kansas anymore …
o and, arguably, never been … 
➾ why do we need k ubic axes? scaffolding that was never ideal…

o ➾ use "natural” axes instead (honeycomb plane)
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induced transition to the paramagnetic phase, but fail
above it. This dichotomy can be rationalized as due to
an e↵ective reduction of the bare parameters by quantum
fluctuations [42], which are gradually lifted by the field in
the paramagnetic phase. For a representative set of the
proposed parameters, we demonstrate that a mean-field
approach to quantum fluctuations provides a consistent
description of the field evolution of spin excitations in the
paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18, 42]. This approxi-
mation is further justified by a comparison to the exact
diagonalization results [43].

A di↵erent set of quantum e↵ects is also notable. As
is advocated in Refs. [35, 51], large o↵-diagonal terms
in the anisotropic-exchange magnets necessarily precipi-
tate strong anharmonic coupling of magnons, regardless
of the underlying magnetic order. These strong anhar-
monic interactions inevitably lead to large decay rates of
the higher-energy magnons into the lower-energy magnon
continua [52], such that some of the magnon modes cease
to be well-defined, leading to characteristic broad fea-
tures in the neutron-scattering spectra. We apply the
analysis of Ref. [35] to the representative sets of our
model parameters and demonstrate a coexistence of the
low-energy well-defined quasiparticles with the broad-
ened excitation continua. These results are in agreement
with the prior studies [35, 51] and are also in accord with
the experiments in ↵-RuCl3 [22, 34, 49, 53]. Our results
underscore the importance of taking into account magnon
decays in interpreting broad features in the spectra of the
strongly-anisotropic magnets [7].

There are other persistent features in the spectrum of
the generalized KH model throughout the advocated pa-
rameter space that are also present in ↵-RuCl3. One
of them is the quasi-Goldstone modes that occur away
from the ordering vector of the underlying zigzag phase
[34, 53], suggesting accidental near-degeneracy due to a
hidden symmetry. We provide an insight into its na-
ture using duality transformations of the model. First, a
global rotation in the plane of magnetic ions transforms
the generalized KH model into itself, but with the dom-
inant ferromagnetic J < 0, smaller positive and nearly
equal K and �0 terms, and a much smaller �-term. It
is important to note that this description is identical to
the original one and represents a feature of the KJ��0

parametrization of the exchange matrix. We then show
that the Klein duality [54] transforms the K–J–�0 model
with �=0 into a K–J–�̆0 model with an anti -symmetric
�̆0 term that is akin to the Dzyaloshinskyi-Moriya cou-
pling. This last model preserves a Goldstone mode of the
pure K–J model, in a close similarity to the observation
made for the same model on the triangular lattice [55].

Not only does this observation explain the ubiquitous
accidental pseudo-Goldstone modes, but it also suggests
a simpler model for ↵-RuCl3, which is more amendable
to a detailed exploration because of the lower dimension-
ality of its parameter space: the K–J–�0–J3 model ob-
tained by the first transformation described above. More-
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FIG. 1. (a) The nearest-neighbor Ru-Ru {X,Y,Z} bonds,
crystallographic {x0, y0, z0} and cubic {x, y, z} axes, and prin-
cipal in-plane a(b) directions. (b) Cubic axes and idealized
Ru-Cl bonds. (c) Brillouin zone with the ordering vectors of
the zigzag phase Y, M, and M’.

over, the original K–J–�–�0–J3 model can be rewritten
in the “spin-ice” language [5, 10, 54, 55] that uses more
natural spin axes tied to the honeycomb plane, yield-
ing the so-called XXZ–J±±–Jz± form of the model. For
the parameter range that we advocate for ↵-RuCl3, the
model in this language consistently has two nearly van-
ishing terms, the XXZ anisotropy � and one of the
anisotropic terms J±±. That is, the model that closely
describes ↵-RuCl3 is dominated by an easy-plane ferro-
magnetic J1 and a sizable anisotropic Jz± terms. Such a
J1–Jz±–J3 model description o↵ers a much simpler way
of thinking about ↵-RuCl3, can give a new perspective
on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the
model, its parameters, their empirical constraints, and
outline the resulting parameter space in Sec. II. In
Sec. III, we discuss the e↵ects of quantum fluctuations on
magnons in the paramagnetic and zigzag phases. Sec. IV
is devoted to the dual models for the advocated parame-
ter space and to di↵erent ways of representing them. We
conclude by a brief discussion in Sec. V and provide some
further details in Appendixes.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of ↵-RuCl3 is the K–J–�–�0–J3 or gen-
eralized Kitaev-Heisenberg model [29, 30, 41],

Ĥ = Ĥ1 + Ĥ3 =
X

hiji

S
T
i ĴijSj + J3

X

hiji3

Si · Sj , (1)

where S
T
i = (Sx

i , Sy
i , Sz

i ), the third-neighbor exchange is

assumed isotropic, and Ĵij is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational
symmetries in the anisotropic-exchange Hamiltonians
are, generally, absent, the allowed matrix elements of Ĵij

are determined solely by the symmetry of the lattice [47].
For ↵-RuCl3 and related materials [13], the conven-

tional choice of the Cartesian reference frames for the
spin projections are the so-called cubic axes, see Fig. 1.
They correspond to an idealized undistorted octahedral
environment of Ru3+ and are not coincidental with the
plane of magnetic ions, the point that is often lost on a
non-expert or a casual reader. These axes are natural
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[1] For a less humane form of (??), see, e.g., [? ]. We use a standard form of the XXZ term (cf. [? ] and others) with J=2J±
and anisotropy �=Jz/2J± in their notations and a di↵erent operator form in Hbd (??).

-- [“ice-like”]XXZ

bond-
dependent

bond orientation is coupled to spin orientation
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parameter conversion and better model
o conversion table:

K, J < 0,  Γ, Γ’ > 0
o J1 ➾ all add up, Δ ➾ cancel out
o Jz± ➾ partially add up
o J±± ➾ partially cancel  
o ➾ J1 is the largest, Jz±➾ second largest
➾ neglect Δ, J±± is similar to Jz±, keep Jz± only

altogether:
o α-RuCl3 parameters imply a much simpler 

J1-Jz±-J3 model 

o easy-plane FM J1, AFM J3/|J1| = 0.3−0.4, 
and large anisotropic Jz±/|J1| = 0.5

o [Jz± yields spins’ out-of-plane tilt]

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).
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italians, or back to the future …
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J = cos φ sin θ
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o α-RuCl3 ➾ is “just” a J1-J3 FM-AFM
with a [strong] extra Jz±-term

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020). P. A. Maksimov, unpublished

J1-Jz±-J3 model 
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ZZ proximity to IC that is near FM
J = cos φ sin θ
J3= sin φ sin θ
Jz±= cos θ

0

φ = π/2
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θ = π/23π/8π/4
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S. M. Winter etal., 2018.

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).

J1-Jz±-J3 model 

P. A. Maksimov, unpublished

o refreshing perspective
on α-RuCl3

o similarity to J1-J3 is 
staggering 

o offers a connection to
a large body of work on
J1-J2-J3 models 
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more consequences …
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o S(q,ω), includes both strong decays and large continuum contribution
o decays for other model parameters, similarity with experiments

S. M. Winter etal., 2017.

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).

A. Banerjee etal., 2016, 2018.
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inevitable anharmonic terms

AFM
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o general exchange matrix [due to SOC] 
➾ anisotropic exchanges couple all spin components  

o inevitable magnon coupling ➾ decays, continuum  
o ➾ key features: 

well-defined low-energy modes and broad continuum at higher energy
o ➾ broad features in the spectrum do not require fine tuning of parameters
o the question is not “why?”, but “why not?”

map

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020). P. A. Maksimov, unpublished

transverse
“one-magnon”

longitudinal
“two-magnon”
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! “strong” constrains on the parameter space of anisotropic-
exchange systems can be inferred from phenomenology

! α-RuCl3 is a ferro-antiferromagnet 
with an easy-plane FM J1, AFM J3, and large anisotropic Jz±. 
It is in a ZZ phase that is in a proximity of IC phase

! common features include broad continuum coexisting with well-
defined modes at low energies 

an aftertaste of it …

P. A. Maksimov and SC, “Rethinking α-RuCl3”, PRResearch 2, 033011 (2020).


