<u>Sm[α-R</u> <u>Σμια-Γ</u>

$\Re[\alpha-RuCl_3]$

Pavel Maksimov

α -RuCl₃ essentials (and not)

Ru³⁺ [#44, year 1844, Kazan] Carl Ernst Claus, Ruthenia; RuCl₃ = 1845 (!); (*) ESR, Kazan, 1944

effective S=1/2

- honeycomb lattice
- octahedral* environment, Ru^{3+} , $J_{eff} = 1/2$
- zigzag order, tilted out of basal plane, $T_N \approx 7K$
- in-plane* critical fields $H_{c,a} \approx H_{c,b} \approx 6-7 \text{ T}$
- (*) so-called **cubic axes** are used (Kitaev-explicit)

S. M. Winter *etal.*, JPCM **29**, 493002 (2017).

minimal effective model

approach:

- o include all **symmetry-allowed** nearest-neighbor, add *minimal* non-NN terms
- o use **phenomenology**

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_3 = \sum_{\langle ij \rangle} \mathbf{S}_i^{\mathrm{T}} \hat{J}_{ij} \mathbf{S}_j + J_3 \sum_{\langle ij \rangle_3} \mathbf{S}_i \cdot \mathbf{S}_j \bigg|$$

["generalized Kitaev" or J-K- Γ - Γ -J₃ model, \approx consensus]

 $\gamma = \{\mathbf{X}, \mathbf{Y}, \mathbf{Z}\}$

$$\mathcal{H}_{1} = \sum_{\langle ij \rangle_{\gamma}} \left\{ J \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K S_{i}^{\gamma} S_{j}^{\gamma} \right\} + \Gamma \left(S_{i}^{\alpha} S_{j}^{\beta} + S_{i}^{\beta} S_{j}^{\alpha} \right) + \Gamma' \left(S_{i}^{\gamma} S_{j}^{\alpha} + S_{i}^{\gamma} S_{j}^{\beta} + S_{i}^{\alpha} S_{j}^{\gamma} + S_{i}^{\beta} S_{j}^{\gamma} \right) \right\}$$

- lattice symmetries* \Rightarrow four terms (+J₃) \Rightarrow 5D space
- cubic axis parametrization of J_{ij} (exchange matrix)

this approach:

- \neq but not \perp to DFT [DFT: many more terms, truncate, correlations?]
- \circ ≠ but not \perp to downfoldings [superexchange expansions: perturbative]
- parameters of the effective model ≠ DFT parameters [effective resummation]

KITP, 11-16-20

	Reference	Method	K	Γ	Γ'	J	J_3
	Banerjee et al. [22]	LSWT, INS fit	+7.0			-4.6	
		DFT+ t/U , P3	-6.55	5.25	-0.95	-1.53	
quidance from DFT/dow	Kim et al. [29]	DFT+SOC+t/U	-8.21	4.16	-0.93	-0.97	
overall values*		same+fixed lattice	-3.55	7.08	-0.54	-2.76	
 bierarchy of terms* 		same+U+zigzag	+4.6	6.42	-0.04	-3.5	
O merdicity of terms	Winter et al. [30]	DFT+ED, $C2$	-6.67	6.6	-0.87	-1.67	2.8
$\hat{\eta}_{i}$ $\hat{\eta}_{i}$ $\hat{\eta}_{i}$ $\hat{\eta}_{i}$ $\hat{\nabla} \mathbf{e}^{\mathrm{T}} \hat{\mathbf{i}}$		same, P3	+7.6	8.4	+0.2	-5.5	2.3
$\boldsymbol{\pi} = \boldsymbol{\pi}_1 + \boldsymbol{\pi}_3 = \sum \mathbf{S}_i \boldsymbol{J}_i$	Yadav et al. [24]	Quantum chemistry	-5.6	-0.87		+1.2	
$\langle ij angle$	Ran et al. $[34]$	LSWT, INS fit	-6.8	9.5			
		DFT+ t/U , $U = 2.5 \text{eV}$	-14.43	6.43		-2.23	2.07
$\mathcal{H}_1 = \sum \left\{ I \mathbf{S}_1 \cdot \mathbf{S}_2 + K \right\}$	Hou et al. $[31]$	same, $U = 3.0 \text{eV}$	-12.23	4.83		-1.93	1.6
$\int \mathcal{U}_{1} = \sum_{i=1}^{n} \left\{ \partial \mathcal{B}_{i} - \mathcal{B}_{j} + \mathcal{H}_{i} \right\}$		same, $U = 3.5 \text{eV}$	-10.67	3.8		-1.73	1.27
$\langle ij angle_{\gamma}$	Wang et al [32]	DFT+ t/U , P3	-10.9	6.1		-0.3	0.03
		same, $C2$	-5.5	7.6		+0.1	0.1
	Winter et al. [35]	Ab initio+INS fit	-5.0	2.5		-0.5	0.5
prior work: combination	Suzuki et al. [36]	ED, C_p fit	-24.41	5.25	-0.95	-1.53	
of various approaches and	Cookmeyer et al. [37]	thermal Hall fit	-5.0	2.5		-0.5	0.11
phenomenologies	Wu et al. [38]	LSWT, THz fit	-2.8	2.4		-0.35	0.34
prienenenegies	Ozel et al [39]	same, $K > 0$	+1.15	2.92	+1.27	-0.95	
		same, $K < 0$	-3.5	2.35		+0.46	
can do better:	Eichstaedt et al. $[33]$	DFT+Wannier+ t/U	-14.3	9.8	-2.23	-1.4	0.97
need strong constraints	Sahasrabudhe et al. $[42]$	ED, Raman fit	-10.0	3.75		-0.75	0.75
	Sears et al. [40]	Magnetization fit	-10.0	10.6	-0.9	-2.7	
KITP, 11-16-20	Laurell et al. [41]	ED, C_p fit	-15.1	10.1	-0.12	-1.3	0.9

plan

I. "strong" constrains on the parameter space

II. consequences: better model(s)

III. more consequences: common features

ideal world ... [Radu Coldea version]

- strong polarizing field
 - \Rightarrow fit spin-flip dispersion in the "FM" state
 - ⇒ parameters
- \circ α-RuCl₃ ⇒ difficulties:
 - -- fields somewhat too high
 - -- neutron experiments limited
 - -- fluctuations above H_c 's
 - -- still, high-field regime is profoundly instructive

K. A. Ross *etal.*, 2011; J. D. Thompson *etal.*, 2017.

#1: ESR, THz, Raman (high field)

- strong in-plane field, probe k=0 spin-flip excitation
 LSWT?
 - -- $E_{\mathbf{k}=0}$ depends **only** on Γ and Γ' [via $\Gamma_{tot}=\Gamma+2\Gamma'$]

$$\varepsilon_0^{(0)} = \sqrt{h(h + 3S(\Gamma + 2\Gamma'))}, \quad h = g\mu_B H$$

-- fluctuations renormalize $E_{k=0}$ down [ED] -- **most** prior parameter choices [table] fail $\Gamma_{tot}=\Gamma+2\Gamma'$ **must be** at least 8 meV

0

S. M. Winter *etal.*, 2018.

#2: [exp.] in-plane critical fields H_{c,a} ≈ H_{c,b}

- H_{c,a} ≈ H_{c,b}, what's a big deal? (if g_a ≈ g_b)
 not true due to anisotropic exchanges: H_{c,a} ≠ H_{c,b} even if g_a = g_b
- LSWT? (1/S, small or is not affecting ΔH_c)
 ΔH_c depends <u>only</u> on K, Γ, and Γ'
- -- small ΔH_c is **impossible** to reconcile without Γ' > 0 [!] and ≥ Γ/2
 - -- none of the prior works predicted that

$$h_{c}^{(a)} = J + 3J_{3} + \frac{1}{12} (5K - 5\Gamma - 16\Gamma') + \frac{1}{12} \sqrt{(K + 5\Gamma + 4\Gamma')^{2} + 24(K - \Gamma + \Gamma')^{2}}, h_{c}^{(b)} = J + 3J_{3} + \frac{1}{4} (2K - \Gamma - 6\Gamma') + \frac{1}{12} \sqrt{(2K + 7\Gamma + 2\Gamma')^{2} + 32(K - \Gamma + \Gamma')^{2}},$$

KITP, 11-16-20

P. Lampen-Kelley etal., 2018.

#3: critical fields H_{c,a}, H_{c,b}, #4: tilt angle α

- $H_{c,a}$ and $H_{c,b}$, by far the **strongest** dependence is on a combination of J and J₃: J+3J₃, \Rightarrow fixing $H_{c,a(b)}$ fixes J+3J₃
- (LSWT) out-of-plane tilt angle α also depends <u>only</u> on K, Γ, and Γ'
 -- experimentally, α ≈ 35°, ED suggest modest quantum corrections

$$\Rightarrow$$
 #3 = strong constraint

- \circ #4 = not too strong [exp]
- #5 = "soft" constraint, total spectral bandwidth W₀ helps with overall scale

J. Chaloupka and G. Khaliullin, 2016.

H. B. Cao *etal.*, 2016.

A. Banerjee *etal.*, 2017, 2018; A. Sahasrabudhe *etal.*, 2019.

a taste of it ... : "rigid constraints"

$$\{K, \Gamma, \Gamma'\} = \{-7.567, 4.276, 2.362\} \text{ meV}$$

- fix [rigid constraints approach]:
 Γ+2Γ' = 9 meV
- $\Delta H_c = 1 T$
- \circ $\alpha = 35^{\circ}$
- $H_{c,a} = 7 T$ $\Rightarrow J_{03} = J + 3J_3 = 4.768 \text{ meV}$
- 4 out of 5 parameters are fixed

KITP, 11-16-20

2D sections of 5D, varying constraints

where are we?

- representative points from realistic, generous, and outrageous regions
- o agree with some/most DFT guidance
- **Г'** is the most significant difference
- **tight parameter space**, interrelated
- ranges do not do full justice

		(K,	Γ,	$\Gamma',$	J,	$J_3)$	$\{\Gamma_{tot},$	J_{03}
	Point 1:	(-4.8,	4.08,	2.5,	-2.56, 2	2.42)	$\{9.08,$	$4.70\}$
	Point 2:	(-10.8,	5.2,	2.9,	-4.0, 3	3.26)	$\{11.0,$	5.78
	Point 3:	(-14.8,	6.12,	3.28,	-4.48, 3	B. 66)	$\{12.7,$	$6.50\}$
"reali	stic" range	[-11,-3.8]	[3.9, 5.0]	[2.2, 3.1]	[-4.1, -2.1]	[2.3, 3.1]	[9.0, 11.4]	[4.4, 5.7]

 \circ K < 0, leading term</th> \checkmark \circ $0 < \Gamma \leq |K|,$ \checkmark \circ J < 0, subleading, $\thickapprox \checkmark$ but larger \circ $0 < J_3 \leq |J|,$ $\thickapprox \boxtimes J_3 \approx |J|$ \circ $0 > \Gamma' \sim 0,$ $\boxtimes \boxtimes \Gamma' \gtrsim \Gamma/2$

KITP, 11-16-20

insights?: 2D cut of a 4D space

- o fix Γ' , and J_3 [5D \Rightarrow 3D]
- introduce global scale $\sqrt{J^2 + K^2 + \Gamma^2} \Rightarrow 2D$
- \circ α-RuCl₃ ⇒ ZZ in a proximity of IC phase

self-consistency, RPA

- proximity to the IC phase ⇒
 strong fluctuations:
 ordered moment in H=0, (S) = 0.22
- [in agreement with exp.]

	$\langle S \rangle$
Point 1	0.219
Point 2	0.220
Point 3	0.225

KITP, 11-16-20

we are not in Kansas anymore ...

o and, arguably, never been ...

 \Rightarrow why do we need **k** ubic axes? scaffolding that was never ideal...

→ use "natural" axes instead (honeycomb plane)

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_1 + \hat{\mathcal{H}}_3 = \sum_{\langle ij \rangle} \mathbf{S}_i^{\mathrm{T}} \hat{J}_{ij} \mathbf{S}_j + J_3 \sum_{\langle ij \rangle_3} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\begin{aligned} \mathcal{H}_{1} &= \sum_{\langle ij \rangle} \left\{ J_{1} \left[\Delta S_{i}^{z} S_{j}^{z} + S_{i}^{x} S_{j}^{x} + S_{i}^{y} S_{j}^{y} \right] \right\} \text{XXZ} \qquad \stackrel{\left[\tilde{\varphi}_{\alpha} = \{0, 2\pi/3, -2\pi/3\} \right]}{\left[-2J_{\pm\pm} \left[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{x} - S_{i}^{y} S_{j}^{y} \right) - \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{y} + S_{i}^{y} S_{j}^{x} \right) \right] \right\} \\ & -2J_{\pm\pm} \left[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{z} + S_{i}^{z} S_{j}^{x} \right) + \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{y} S_{j}^{z} + S_{i}^{z} S_{j}^{y} \right) \right] \right\} \\ & -J_{z\pm} \left[\cos \tilde{\varphi}_{\alpha} \left(S_{i}^{x} S_{j}^{z} + S_{i}^{z} S_{j}^{x} \right) + \sin \tilde{\varphi}_{\alpha} \left(S_{i}^{y} S_{j}^{z} + S_{i}^{z} S_{j}^{y} \right) \right] \right\} \\ & \text{bond orientation is coupled to spin orientation} \\ \mathcal{KITP, 11-16-20} \\ P. A. Maksimov and SC, ``Rethinking \alpha-RuCl_{3}'', PRResearch 2, 033011 (2020). \end{aligned}$$

parameter conversion and better model

$$\begin{split} \mathsf{J}_1 &= J + \frac{1}{3} \left(K - \Gamma - 2\Gamma' \right), \\ \Delta \mathsf{J}_1 &= J + \frac{1}{3} \left(K + 2\Gamma + 4\Gamma' \right) \\ 2\mathsf{J}_{\pm\pm} &= -\frac{1}{3} \left(K + 2\Gamma - 2\Gamma' \right), \\ \sqrt{2}\mathsf{J}_{\mathsf{z}\pm} &= \frac{2}{3} \left(K - \Gamma + \Gamma' \right). \end{split}$$

$$(J_1, \Delta, J_{\pm\pm}, J_{z\pm}, J_3)$$

"ice" Point 1: (-7.20, -0.26, 0.3, -3.0, 2.42)
"ice" Point 2: (-11.3, 0.02, 1.0, -6.2, 3.26)
"ice" Point 3: (-13.6, 0.07, 1.5, -8.3, 3.66)

- conversion table:
 K, J < 0, Γ, Γ' > 0
- $\circ \quad \mathsf{J}_1 \twoheadrightarrow \mathsf{all} \; \mathsf{add} \; \mathsf{up}, \Delta \; \twoheadrightarrow \mathsf{cancel} \; \mathsf{out}$
- $\circ \quad J_{z\pm} \ \ \Rightarrow \ partially \ add \ up$
- $J_{\pm\pm}$ ⇒ partially cancel
- $_{\odot} \quad \Rightarrow J_{1} \text{ is the largest, } J_{z\pm} \Rightarrow \text{ second largest}$
- \Rightarrow neglect Δ , $J_{\pm\pm}$ is similar to $J_{z\pm}$, keep $J_{z\pm}$ only

altogether:

- $\circ \quad \alpha \text{-RuCl}_3 \text{ parameters imply a much simpler} \\ J_1 \text{-} J_{z\pm} \text{-} J_3 \text{ model}$
- easy-plane FM J₁, AFM J₃/ $|J_1| = 0.3-0.4$, and large anisotropic J_{z±}/ $|J_1| = 0.5$
- [J_{z±} yields spins' out-of-plane tilt]

italians, or back to the future ...

P. A. Maksimov and **SC**, "**Re**thinking α -RuCl₃", PR**Re**search **2**, 033011 (2020).

P. A. Maksimov, unpublished

ZZ proximity to IC that is near FM

J_1 - $J_{z\pm}$ - J_3 model

- refreshing perspective on α-RuCl₃
- similarity to J_1 - J_3 is staggering
- offers a connection to a large body of work on $J_1-J_2-J_3$ models

P. A. Maksimov, unpublished

KITP, 11-16-20

more consequences ...

KITP, 11-16-20

S(q,ω), includes both strong decays and large continuum contribution
 decays for other model parameters, similarity with experiments

inevitable anharmonic terms

- inevitable magnon coupling \Rightarrow decays, continuum
- $\circ \Rightarrow$ key features:

well-defined low-energy modes and broad continuum at higher energy

- \circ \Rightarrow broad features in the spectrum **do not** require fine tuning of parameters
- the question is not "why?", but "why not?"

an aftertaste of it ...

- ☑ "strong" constrains on the parameter space of anisotropicexchange systems can be inferred from phenomenology
- ☑ common features include broad continuum coexisting with welldefined modes at low energies

