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Twisted bilayer graphene (TBG): moiré superlattice

- Two graphene layers twisted by small angles. { ~14nm
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Twisted bilayer graphene (TBG): “flat” bands

- Nearly-flat bands at “magic angle”

Lopes dos Santos et al, PRL (2007)
Bistritzer and MacDonald, PNAS (2011) E/meV W ~ 10 meV
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- Interactions give rise to a rich phase diagram and superconductivity.

Cao, ..., Jarillo-Herrero, Nature (2018)
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TBG and beyond: twisted moiré systems
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Twisted moiré systems: common properties

- Are there “universal” features of the phase diagrams?
» Correlated insulating phases? Yes.
» Superconductivity? Maybe.
» Symmetry-breaking phases? Maybe.



Nematicity in twisted bilayer graphene

- Nematic order = breaking of 3-fold rotational symmetry. STM data:

+1.1 x 102 cm=2 (+0. 35n,)
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Nematicity in twisted bilayer graphene

- Nematic order = breaking of 3-fold rotational symmetry. Signatures in
transport measurements in the normal and superconducting states.
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Nematicity in other twisted moiré systems

T = s 5K s 1 5K s 20K
e 25K == 30K = 35K == 40K
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Nematicity in twisted moiré systems

- General low-energy model to study electronic nematicity in
generic moiré superlattices.

- Take-home message: nematicity in moiré superlattices is
fundamentally different than in rigid lattices. New effects
emerge and unexpected tuning knobs can be used.
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Electronic nematicity: phenomenology

- Nematic order in liquid crystals: orientational order without

translational symmetry-breaking.

Crystal SmecticC  SmecticA Nematic Isotropic Mbanga, PhD thesis (2012)

Heating 2> < Cooling

- Order parameter (2D): Q;; = Q (Xd)d; — d;;d°)

director



Electronic nematicity: phenomenology
- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)

Kivelson, Fradkin, and Emery, Nature (1998)



Electronic nematicity: phenomenology
- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)

» order parameter can be expressed in terms of quadrupolar charge densities:
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Electronic nematicity: phenomenology
- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)

» order parameter can be expressed in terms of quadrupolar charge densities:

(0) - ( e Pa ) puryp = (k2 = K20 (1)) (k) )
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» XY-nematic order parameter ®
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Electronic nematicity: phenomenology

- Electronic nematic free-energy: XY nematics \9
B cos 20 _Qzo Uy
(I)_q)(sin29> FO_Q(I)+4(I)

director space

- XY nematics has unique properties: Goldstone mode couples directly
(i.e. not via the gradient) to the electronic density, promoting non-Fermi

|IC|UId behavior. Oganesyan, Kivelson, and Fradkin, PRB (2001)
Watanabe and Vishwanath, PNAS (2014)

- Underlying crystal: introduces nematic-anisotropy terms.

Fnem:F0+Fcr




Electronic nematicity: impact of the lattice

- Square lattice: Ising-nematicity (cuprates and pnictides)

Fradkin et al, Ann. Rev. Cond. Matter Phys (2010)
RMF, Chubukov, Schmalian, Nature Phys (2014)
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Electronic nematicity: impact of the lattice

- Square lattice: Ising-nematicity (cuprates and pnictides)
- Nematic order always triggers a structural distortion.

oo =7 (CID% — <I>%) — 7<I>2 cos 46
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Electronic nematicity: impact of the lattice

- Triangular lattice: the two components of ® transform as the same
irreducible representation (E,,). Cubic term is allowed:

Fop= L&, (0% — 302) = gCI)?’cosGG

\9 3 \(9

v >0 v <0

Hecker & Schmalian, npj QM (2018)
Venderbos & RMF, PRB (2018)
Little et al, Nature Materials (2020)



Electronic nematicity: impact of the lattice

- Triangular lattice: 3-state Potts nematicity (twisted bilayer graphene,
Bi,Se;, Fe sNbS,)
- Nematic order always triggers a structural distortion.

gcpl((bQ _302) = 7<I>3 cos 60

S mpgy @

Hecker & Schmalian, npj QM (2018) .
Venderbos & RMF, PRB (2018) twofold rotational
Little et al, Nature Materials (2020) symmetries are preserved



Nematicity in TBG: static strain

- Build-in strain is unavoidable in TBG. Strain induces structural
distortions. How to distinguish effects caused by nematic order from
effects caused by strain?

AA ; K
stacking

AB
stacking
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Huder et al, PRL (2018)



Nematicity in TBG: static strain
- Build-in strain is unavoidable in TBG. Can the nematic transition survive?

tetragonal lattice:
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Nematicity in TBG: static strain
- Build-in strain is unavoidable in TBG. Can the nematic transition survive?

tetragonal lattice: 5
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Nematicity in TBG: static strain

- Build-in strain is unavoidable in TBG. Can the nematic transition survive?
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Nematicity in TBG: static strain

- Build-in strain is unavoidable in TBG. Can the nematic transition survive?

0 <0
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S RE

residual Ising symmetry related to in-plane rotations

triangular lattice:
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Nematicity in TBG: static strain

- Nemato-elastic coupling: formalism &, = &; 4- D,

Snem [®] = So [@] + % / (@5 + @)

x

1 . .
eij = = (Oyu; + 0ju;) : static strain u : relative displacement
2 between the two layers

S [®,4 = -\ / (en — Eyy) Bt + 26y o]

uniaxial strain: frustration of the nematic director



Nematicity in TBG: static strain

- Example: strain along y axis with A<0 and y>0. .
minima 0 maxima
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Nematicity in TBG: static strain

- Ising-like nematic-flop transition in the presence of uniaxial strain

temperature @

&

Tﬂop

nem

RMF & Venderbos, Sci. Adv. (2020)
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strain

can be used to establish long-range nematic order experimentally



Nematicity in TBG: static strain

- Ising-like nematic-flop transition in the presence of static strain
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bond-order pattern can establish long-range nematic order experimentally
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Nematicity in the superconducting state of TBG

- Nematic director rotates as a function of doping inside the
superconducting state: evidence for spontaneous nematic order.
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Nematicity in TBG: fluctuating strain

- Finite-momentum strain fluctuations: acoustic phonons
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Sanders et al, J Phys: Cond Matt (2013)

triangular lattice: purely transversal and purely longitudinal modes




Nematicity in TBG: fluctuating strain

- Acoustic phonons mediate long-range anisotropic nematic interactions

N /
55 I' r)q)J(r)

r—r’|

Cowley, PRB (1976)
Karahasonovic and Schmalian, PRB (2016)
Paul and Garst, PRL (2017)



Nematicity in TBG: fluctuating strain

- Acoustic phonons mediate long-range anisotropic nematic interactions

oA /
55 I' r)q)J (I’)
|1‘—1"|

- In momentum-space, this corresponds to a nemato-orbital coupling

)\2 2 N\ 2 ~
552—2( —v—g)/(q)D) DZ(ﬁi_qA; 26/]\33(]/\’!/)
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Up vr,




Nematicity in TBG: nemato-orbital coupling

- Nemato-orbital coupling ties the orientation of the nematic director to
certain directions in momentum space.
2

_ v
Xnom (@5 Cq) =10 + ¢° + (1 -~ %) cos® (20 — 2(q)

Y pern(@)

restriction of phase space is
expected to render the transition
mean-field and first-order (d,=3)

RMF & Venderbos, Sci. Adv. (2020)




Nematicity in TBG: coupling to electrons

- Hot spots: electrons efficiently exchange soft nematic fluctuations

wn
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Nematicity in TBG: coupling to electrons

- Hot spots: electrons efficiently exchange soft nematic fluctuations

V>V,



Nematicity in TBG: coupling to electrons

- Cold spots: vanishing of the nematic form factor.

@ H = Z COS (29 — 2(91{) (I)q 2;1Jr<_ol/22;k—q/2
k,q



Nematicity in TBG: coupling to electrons

- When the transverse sound velocity is smaller than the longitudinal one,
hot spots overlap with cold spots: decoupling between low-energy

nematic fluctuations and the electrons.
e

V<V

similar to Ising-nematic case:
Paul & Garst, PRL (2017)

cold spots hot spots
vanishing of nematic form factor exchange of nematic fluctuations



Nematicity in TBG: coupling to electrons

- When the transverse sound velocity is larger than the longitudinal one,
hot spots do not overlap with cold spots: maximum coupling between
low-energy nematic fluctuations and the electrons.

V>V

cold spots hot spots
vanishing of nematic form factor exchange of nematic fluctuations



Nematicity in TBG: coupling to electrons
- Rigid lattice: lattice stability requires v < vy,

_Cu

Fs(u) 5 (832537 + 5:334) + Cl2gxx5yy + (Cll — C12) eiy
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» in the rigid lattice, electrons are nearly
decoupled from low-energy nematic fluctuations




Nematicity in TBG: coupling to electrons
- Rigid lattice: lattice stability requires v < vy,

- But the moiré superlattice is not a rigid lattice.
» adhesion potential favors AB stacking

U = Utop — Upot

V3a AA vad
V3a BA i wi
N armchair
A
Uy 0 y I
: BA NN\ )
AA-stacked AB-stacked _V3a \ !
2 \ VI sofiton [
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_\/— | 4 - 4 - ] I// L \\ L
e o YE VY 0 iV
Huang et al, 2 oy, 2 ? Uy (Us)

Current Graphene Science (2018) Ochoa, PRB (2019)



Nematicity in TBG: coupling to electrons
- Rigid lattice: lattice stability requires v < vy,

- But the moiré superlattice is not a rigid lattice: v > vy,
1.05° [wy = 2.55meV]

K
M ->M 5
Rs G2 Ec
3
G} 2

Koshino, PRB (2019)

Ochoa, PRB (2019) ok

» in the moiré superlattice, electrons

are maximally coupled to low-energy
nematic fluctuations
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Nematicity in TBG: elastic degrees of freedom

- Adhesion potential favors sharp domain walls between AB/BA stacking regions.
- In contrast to a rigid crystal, rotations of the moiré superlattice cost energy.
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Nematicity in TBG: elastic degrees of freedom

- Adhesion potential favors sharp domain walls between AB/BA stacking regions.
- In contrast to a rigid crystal, rotations of the moiré superlattice cost energy.

C K
Fs(u) = % ( :2,333 + 532;3/) + C12€$x€yy + (011 — 012) Siy + Ewgy
g C
v = % er, = (cos(q, sinCy)
< Ci1—Crz+ &
e \/ - S er = (—sin¢q, cos(q)
U = Utop — Ubot 2'0
-

» rotation term contributes only to
the transverse phonon velocity
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Nematicity in TDBG: electric field control

6 = 1.05°

- Band structure of twisted double-bilayer graphene can
be efficiently tuned by a perpendicular electric field.

w=0,A0=0 w#£0,A0 =0 w=0,A0 %0 Ww£0, A £0

Chebrolu et al, PRB (2019)
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Nematicity in TDBG: electric field control

- Perpendicular electric field lowers the symmetry from D; to C..

Snem[@]=So[¢]+%L(¢i+¢i)+“EZL(¢1_¢3)

61

00

— 00
o » nematic director is no longer
- pinned to high-symmetry
24 [ directions

akF,
-4 -2 2 4 Y » nematic director (and related

| thermodynamic quantities) can
24 be rotated by the electric field
T
12

Samajdar, Scheurer, Venderbos, and RMF, in preparation
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@ Conclusions
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Nematic order in twisted moiré systems belongs to the 3-state Potts-model
universality class.

Nematic transition can survive in the presence of static strain, becoming an
Ising-like nematic-flop transition.

Impact of the nematic-acoustic phonon coupling on the electronic properties is
fundamentally different in moiré superlattices as compared to rigid lattices.

Electric control of the nematic director may be possible in twisted double-bilayer
graphene



