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Motivation

Solvable or simulatable models that capture 


Mott physics, nodal-SC and AFM all together?

[Kawaga et al 2005]
[Knebel et al 2009] [Doiron-Leyraud et al 2007]

YBCO



Not uncommon to find nodal SC close to pressure-tuned Mott transition…

Phase diag. of 𝜘-Cl Phase diag. of 𝜘-(CN)3

Thermal conductivity of 

𝜘-(NCS)2

[Kawaga et al 2005] [Lefebvre et al 2000] [Kurosaki et al 2005]

[Belin et al 1998]

NMR 1/T1 in 𝜘-Br

[Mayaffre et al 2000] [Shimizu et al 2010]

NMR 1/T1 in 𝜘-(CN)3



Simulatable Models?

“Fermion sign problem”: Repulsive onsite interactions (“Mottness”)+ 

Fermi surface makes Monte Carlo impossible.
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“De-signer” models  
Pick your poison…

Want Mott Physics… Want Fermi surfaces …

Typically (not always), multi-band Hubbard

 models with inter-band repulsion and 


intra-band onsite attraction.

Can capture some competing orders such as 

nematic, spin-density wave, non-nodal SC.

Main caveat: no Mott physics, no nodal 

SC, s-wave SC can lurk at low-T which


can obscure T = 0 QCP.

Main caveat: 

Restricted to half-filling and bipartite lattices.

• Fermi surface nesting, leading to 
immediate AFM instability.

→

• Dirac semi-metal competing with 
AFM.
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FIG. 1. (a) SEM honeycomb, semimetallic; (b) AFI honeycomb an-
tiferromagnetic insulator; (c) DIM dimerized Kekulé-like insulator;
(d) HEX distorted hexagonal insulator. There are two carbons per
unit cell in (a) and (b), six in (c) and (d). Following Ref. [18], tA, tB,
and tC schematically denote hopping integrals magnitudes.

ing therefore a description of the electron correlation better
than those based on any Jastrow-Slater ansatz [22]. The vari-
ational freedom contained in the  JAGP ground state naturally
permits a quantitative distinction between the spin and charge
correlations [23]. Parallel reference DFT calculations were
also performed with HSE6 exchange-correlation functional,
projector augmented-wave treatment of core levels [24] and a
plane-wave basis set [25] as implemented in the Vienna ab-
initio simulation package (VASP) [25, 26], with energy cuto↵
of 600 eV.

All calculations [27] were conducted with Natom = 24 car-
bon atoms forming four six-atom unit cells of a planar de-
formable honeycomb lattice whose average interatomic spac-
ing a was successively expanded relative to the zero-stress
value a0. A fully accurate k�point average is obtained by
boundary-condition twisting.

Figure 2(a) presents the total energy gain of all ordered or
distorted states relative to the undistorted, semimetallic, non-
magnetic SEM state, E�ESEM, as a function of isotropic strain
✏ = (a � a0)/a0, from both di↵usion Monte Carlo (DMC)
and DFT calculations. Figure 2(b) shows the DMC-calculated
tensile stress, yielding the 2D equations of state of expanded
graphene. In DFT, the AFI state [Fig. 1(b)] yields the lowest
energy above ✏ ⇡ 7%, and represents the ground state until
✏ ⇡ 15%. Near 15% strain, DFT energetics predicts a Kekulé
DIM state [Fig. 1(c)] to take over very briefly from AFI, just
before turning itself unstable and leading to mechanical fail-
ure, in agreement with earlier DFT phonon calculations [17].

The more accurate DMC result shows instead that, while
both DIM and AFI states appear around ✏ ⇡ 10%, DIM has
the lowest energy for all increasing strains until failure. Ac-

FIG. 2. (a) Ground state energy E relative to the SEM phase ESEM
obtained as a function of strain ✏ by DMC in comparison with DFT
for the DIM, AFI, (HEX) phases. (b) Stress (�)-strain (✏) equation of
state curve for strained graphene obtained by fitting DMC energies.
Dashed lines mark the transition stress values �l and �u for SEM-
DIM (continuous). (c) Enthalpy H of strained graphene relative to
that of the SEM phase HSEM for increasing tensile stress �. The
blue-shaded region indicates the error bars on the enthalpies for DIM
and AFI phases by DMC. Upper bounds of Eq. (2) for the DIM and
AFI enthalpies also shown (DIM UB and AFI UB) greatly reduce the
error bars. The corresponding strain ✏ at selected points and phases
(indicated by arrows) are also shown.

curate DMC therefore suggests that the charge instability is
dominant over the spin, which is just the opposite of what the
reference DFT calculation suggested. In line with that, the
prevalence of DIM over AFI is reduced in the less accurate
variational Monte Carlo calculations [27].

In addition, the lowest energy will not predict the experi-
mental phase diagram, where isotropic strain ✏ is obtained by
tensile stress �. The equilibrium state under stress, rather than
energy, minimizes the enthalpy H(�) = minS [E(S ) � �S ],
where � = @S E(S ) with S the mean area. The stress-area

QCP

U/t

[Assaad, Herbut 2013; Otsuka et al 2016,…]

[Wu, Zhang 2005]

[Berg et al 2012; Schattner et al 2015; Dumitrescu et al 2016;

 Li et al 2017; Lederer et al 2017; Wang et al 2017, …]
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Can one find any simulatable model at all that hosts these phases?

Assaad, Imada, Scalapino (1996)
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We will be interested in competing nodal SC and AFM.

Key observation: neither of these phases require any doping.



Can one find any simulatable model at all that hosts these phases?

Here we will introduce a new model that demonstrably 

hosts both nodal d-wave SC and AFM phases.

We will be interested in competing nodal SC and AFM.

Key observation: neither of these phases require any doping.



The model

H = Ht + HU + HV + HXY
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Unconventional superconductors such as cuprates often host competing nodal superconductivity
and antiferromagnetism. These systems are typically modeled as a repulsive Hubbard model whose
unbiased simulation su↵ers from the fermion sign problem at any non-zero doping. Here we will
exploit the fact that neither of these phases, the nodal d-wave superconductor or the antiferromagnet,
require any doping for their existence, and construct a sign-problem-free repulsive Hubbard model
with an additional bosonic field which hosts both of these phases. Using Quantum Monte Carlo
(QMC) simulations, supplemented with mean-field theory and continuum field-theory arguments,
we find that it hosts three distinct phases: a nodal d-wave phase, an antiferromagnet, and an
intervening phase which hosts coexisting antiferromagnetism and nodeless d-wave superconductivity.
The transition from the coexisting phase to the antiferromagnet is described by the 2+1-D XY
universality class, while the one from the coexisting phase to the nodal d-wave phase is described
by the chiral Gross-Neveu-Heisenberg theory.

Introduction— The interplay between unconventional
superconductivity and magnetism plays a crucial role in
a wide variety of strongly correlated systems [1] such
as cuprates [2, 3], heavy fermion materials [4–16], lay-
ered organic conductors [17–25], iron-based superconduc-
tors [26–30], Helium-3 [31] and even in recently stud-
ied twisted 2D materials [32]. Superconductors with
nodal quasiparticles are particularly interesting since the
fermionic quasiparticles cannot be neglected even for the
ground state properties of the superconductor, or for
understanding quantum phase transitions to proximate
phases. In this paper, we will introduce a model which
does not su↵er from the fermion sign problem, and which
demonstrably hosts both a nodal d-wave superconductor,
and an antiferromagnetic insulator on a 2d square lattice,
with an intermediate phase with coexisting antiferromag-
netic and a gapped d-wave superconducting order param-
eter. We will study the phase diagram of the model using
Quantum Monte Carlo (QMC) simulations.

One route to obtain an unconventional superconductor
is to dope a Mott insulator [3, 33], as is experimentally
the case for cuprates where nodal d-wave superconductor
(dSC) arises upon doping. From a numerical perspective,
this is rather challenging to pursue: the combination of
‘Mottness’ and continuously varying filling leads to the
fermion sign problem. In fact, to date, there does not ex-
ist any model which has repulsive onsite electron-electron
interactions at a generic filling which does not su↵er
from the fermion sign problem. However, one notes that
two of the most prominent symmetry breaking phases in
cuprates, namely the dSC or the AFM insulator in princi-
ple do not require doping for their existence: in the dSC,
the charge U(1) symmetry is spontaneously broken, and
therefore, there is no Luttinger theorem, while an AFM
insulator in fact requires one to be at a commensurate fill-
ing (such as zero doping). Furthermore, the dSC and the
AFM are ‘sign problem compatible’: both of these orders

are facilitated by an onsite repulsion. Finally, on a square
lattice at half-filling, the ordering wavevector Q = (⇡, ⇡)
for the AFM matches the momentum di↵erence between
the nodes of the dSC, and therefore the onset of AFM
will gap out the nodes in dSC. These observations sug-
gest that one should be able to find a model without sign-
problem which hosts these two competing phases. From
an experimental perspective, competing dSC and AFM
phases at half-filling are relevant to Mott insulators, such
as the layered organic material -ET2Cu[N(CN)2]Cl and
its derivatives [17–25], that undergo transition from an
AFM insulator to a superconductor under pressure.

Our model is partially motivated by the ideas pre-
sented in Ref.[34] where the phase diagram of competing
dSC and AFM at a half-filling was studied using field-
theoretic arguments. Through state-of-the-art Determi-
nantal Quantum Monte Carlo (DQMC) simulations, we
find three di↵erent phases in our model only by tuning
a single parameter. In between the nodal dSC and the
AFM, we find an intermediate phase with the coexistence
of gapped dSC and AFM (dSCg+AFM). The phase tran-
sition between dSCg+AFM and AFM appears to be con-
tinuous and in the 3D XY universality class. The phase
transition between nodal dSC and dSCg+AFM also ap-
pears to be continuous, while having more interesting
critical behavior.
Model— Our model is defined on a square lattice and

consists of four parts, H = Ht + HV + HU + HXY.
Here Ht +HU = �t

P
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =
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⌘
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P

hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4

P
i,j(�)i+j

D
~Si · ~Sj

E
and ↵2 =

 ~ fluctuating cooper paireiθ
[Xiao Yan Xu, TG 2020]
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Unconventional superconductors such as cuprates often host competing nodal superconductivity
and antiferromagnetism. These systems are typically modeled as a repulsive Hubbard model whose
unbiased simulation su↵ers from the fermion sign problem at any non-zero doping. Here we will
exploit the fact that neither of these phases, the nodal d-wave superconductor or the antiferromagnet,
require any doping for their existence, and construct a sign-problem-free repulsive Hubbard model
with an additional bosonic field which hosts both of these phases. Using Quantum Monte Carlo
(QMC) simulations, supplemented with mean-field theory and continuum field-theory arguments,
we find that it hosts three distinct phases: a nodal d-wave phase, an antiferromagnet, and an
intervening phase which hosts coexisting antiferromagnetism and nodeless d-wave superconductivity.
The transition from the coexisting phase to the antiferromagnet is described by the 2+1-D XY
universality class, while the one from the coexisting phase to the nodal d-wave phase is described
by the chiral Gross-Neveu-Heisenberg theory.

Introduction— The interplay between unconventional
superconductivity and magnetism plays a crucial role in
a wide variety of strongly correlated systems [1] such
as cuprates [2, 3], heavy fermion materials [4–16], lay-
ered organic conductors [17–25], iron-based superconduc-
tors [26–30], Helium-3 [31] and even in recently stud-
ied twisted 2D materials [32]. Superconductors with
nodal quasiparticles are particularly interesting since the
fermionic quasiparticles cannot be neglected even for the
ground state properties of the superconductor, or for
understanding quantum phase transitions to proximate
phases. In this paper, we will introduce a model which
does not su↵er from the fermion sign problem, and which
demonstrably hosts both a nodal d-wave superconductor,
and an antiferromagnetic insulator on a 2d square lattice,
with an intermediate phase with coexisting antiferromag-
netic and a gapped d-wave superconducting order param-
eter. We will study the phase diagram of the model using
Quantum Monte Carlo (QMC) simulations.

One route to obtain an unconventional superconductor
is to dope a Mott insulator [3, 33], as is experimentally
the case for cuprates where nodal d-wave superconductor
(dSC) arises upon doping. From a numerical perspective,
this is rather challenging to pursue: the combination of
‘Mottness’ and continuously varying filling leads to the
fermion sign problem. In fact, to date, there does not ex-
ist any model which has repulsive onsite electron-electron
interactions at a generic filling which does not su↵er
from the fermion sign problem. However, one notes that
two of the most prominent symmetry breaking phases in
cuprates, namely the dSC or the AFM insulator in princi-
ple do not require doping for their existence: in the dSC,
the charge U(1) symmetry is spontaneously broken, and
therefore, there is no Luttinger theorem, while an AFM
insulator in fact requires one to be at a commensurate fill-
ing (such as zero doping). Furthermore, the dSC and the
AFM are ‘sign problem compatible’: both of these orders

are facilitated by an onsite repulsion. Finally, on a square
lattice at half-filling, the ordering wavevector Q = (⇡, ⇡)
for the AFM matches the momentum di↵erence between
the nodes of the dSC, and therefore the onset of AFM
will gap out the nodes in dSC. These observations sug-
gest that one should be able to find a model without sign-
problem which hosts these two competing phases. From
an experimental perspective, competing dSC and AFM
phases at half-filling are relevant to Mott insulators, such
as the layered organic material -ET2Cu[N(CN)2]Cl and
its derivatives [17–25], that undergo transition from an
AFM insulator to a superconductor under pressure.

Our model is partially motivated by the ideas pre-
sented in Ref.[34] where the phase diagram of competing
dSC and AFM at a half-filling was studied using field-
theoretic arguments. Through state-of-the-art Determi-
nantal Quantum Monte Carlo (DQMC) simulations, we
find three di↵erent phases in our model only by tuning
a single parameter. In between the nodal dSC and the
AFM, we find an intermediate phase with the coexistence
of gapped dSC and AFM (dSCg+AFM). The phase tran-
sition between dSCg+AFM and AFM appears to be con-
tinuous and in the 3D XY universality class. The phase
transition between nodal dSC and dSCg+AFM also ap-
pears to be continuous, while having more interesting
critical behavior.
Model— Our model is defined on a square lattice and

consists of four parts, H = Ht + HV + HU + HXY.
Here Ht +HU = �t

P
hiji,�(c†i,�cj,� +h.c.)+ U
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bosonic fields ✓ living on the bonds of the square lat-
tice, HV = V
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Hamiltonian, describing the dynamics and interactions
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superconductivity and magnetism plays a crucial role in
a wide variety of strongly correlated systems [1] such
as cuprates [2, 3], heavy fermion materials [4–16], lay-
ered organic conductors [17–25], iron-based superconduc-
tors [26–30], Helium-3 [31] and even in recently stud-
ied twisted 2D materials [32]. Superconductors with
nodal quasiparticles are particularly interesting since the
fermionic quasiparticles cannot be neglected even for the
ground state properties of the superconductor, or for
understanding quantum phase transitions to proximate
phases. In this paper, we will introduce a model which
does not su↵er from the fermion sign problem, and which
demonstrably hosts both a nodal d-wave superconductor,
and an antiferromagnetic insulator on a 2d square lattice,
with an intermediate phase with coexisting antiferromag-
netic and a gapped d-wave superconducting order param-
eter. We will study the phase diagram of the model using
Quantum Monte Carlo (QMC) simulations.

One route to obtain an unconventional superconductor
is to dope a Mott insulator [3, 33], as is experimentally
the case for cuprates where nodal d-wave superconductor
(dSC) arises upon doping. From a numerical perspective,
this is rather challenging to pursue: the combination of
‘Mottness’ and continuously varying filling leads to the
fermion sign problem. In fact, to date, there does not ex-
ist any model which has repulsive onsite electron-electron
interactions at a generic filling which does not su↵er
from the fermion sign problem. However, one notes that
two of the most prominent symmetry breaking phases in
cuprates, namely the dSC or the AFM insulator in princi-
ple do not require doping for their existence: in the dSC,
the charge U(1) symmetry is spontaneously broken, and
therefore, there is no Luttinger theorem, while an AFM
insulator in fact requires one to be at a commensurate fill-
ing (such as zero doping). Furthermore, the dSC and the
AFM are ‘sign problem compatible’: both of these orders

are facilitated by an onsite repulsion. Finally, on a square
lattice at half-filling, the ordering wavevector Q = (⇡, ⇡)
for the AFM matches the momentum di↵erence between
the nodes of the dSC, and therefore the onset of AFM
will gap out the nodes in dSC. These observations sug-
gest that one should be able to find a model without sign-
problem which hosts these two competing phases. From
an experimental perspective, competing dSC and AFM
phases at half-filling are relevant to Mott insulators, such
as the layered organic material -ET2Cu[N(CN)2]Cl and
its derivatives [17–25], that undergo transition from an
AFM insulator to a superconductor under pressure.

Our model is partially motivated by the ideas pre-
sented in Ref.[34] where the phase diagram of competing
dSC and AFM at a half-filling was studied using field-
theoretic arguments. Through state-of-the-art Determi-
nantal Quantum Monte Carlo (DQMC) simulations, we
find three di↵erent phases in our model only by tuning
a single parameter. In between the nodal dSC and the
AFM, we find an intermediate phase with the coexistence
of gapped dSC and AFM (dSCg+AFM). The phase tran-
sition between dSCg+AFM and AFM appears to be con-
tinuous and in the 3D XY universality class. The phase
transition between nodal dSC and dSCg+AFM also ap-
pears to be continuous, while having more interesting
critical behavior.
Model— Our model is defined on a square lattice and

consists of four parts, H = Ht + HV + HU + HXY.
Here Ht +HU = �t
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bosonic fields ✓ living on the bonds of the square lat-
tice, HV = V
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =
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hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4

P
i,j(�)i+j

D
~Si · ~Sj

E
and ↵2 =

 ~ fluctuating cooper paireiθ
[Xiao Yan Xu, TG 2020]
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require any doping for their existence, and construct a sign-problem-free repulsive Hubbard model
with an additional bosonic field which hosts both of these phases. Using Quantum Monte Carlo
(QMC) simulations, supplemented with mean-field theory and continuum field-theory arguments,
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Introduction— The interplay between unconventional
superconductivity and magnetism plays a crucial role in
a wide variety of strongly correlated systems [1] such
as cuprates [2, 3], heavy fermion materials [4–16], lay-
ered organic conductors [17–25], iron-based superconduc-
tors [26–30], Helium-3 [31] and even in recently stud-
ied twisted 2D materials [32]. Superconductors with
nodal quasiparticles are particularly interesting since the
fermionic quasiparticles cannot be neglected even for the
ground state properties of the superconductor, or for
understanding quantum phase transitions to proximate
phases. In this paper, we will introduce a model which
does not su↵er from the fermion sign problem, and which
demonstrably hosts both a nodal d-wave superconductor,
and an antiferromagnetic insulator on a 2d square lattice,
with an intermediate phase with coexisting antiferromag-
netic and a gapped d-wave superconducting order param-
eter. We will study the phase diagram of the model using
Quantum Monte Carlo (QMC) simulations.

One route to obtain an unconventional superconductor
is to dope a Mott insulator [3, 33], as is experimentally
the case for cuprates where nodal d-wave superconductor
(dSC) arises upon doping. From a numerical perspective,
this is rather challenging to pursue: the combination of
‘Mottness’ and continuously varying filling leads to the
fermion sign problem. In fact, to date, there does not ex-
ist any model which has repulsive onsite electron-electron
interactions at a generic filling which does not su↵er
from the fermion sign problem. However, one notes that
two of the most prominent symmetry breaking phases in
cuprates, namely the dSC or the AFM insulator in princi-
ple do not require doping for their existence: in the dSC,
the charge U(1) symmetry is spontaneously broken, and
therefore, there is no Luttinger theorem, while an AFM
insulator in fact requires one to be at a commensurate fill-
ing (such as zero doping). Furthermore, the dSC and the
AFM are ‘sign problem compatible’: both of these orders

are facilitated by an onsite repulsion. Finally, on a square
lattice at half-filling, the ordering wavevector Q = (⇡, ⇡)
for the AFM matches the momentum di↵erence between
the nodes of the dSC, and therefore the onset of AFM
will gap out the nodes in dSC. These observations sug-
gest that one should be able to find a model without sign-
problem which hosts these two competing phases. From
an experimental perspective, competing dSC and AFM
phases at half-filling are relevant to Mott insulators, such
as the layered organic material -ET2Cu[N(CN)2]Cl and
its derivatives [17–25], that undergo transition from an
AFM insulator to a superconductor under pressure.

Our model is partially motivated by the ideas pre-
sented in Ref.[34] where the phase diagram of competing
dSC and AFM at a half-filling was studied using field-
theoretic arguments. Through state-of-the-art Determi-
nantal Quantum Monte Carlo (DQMC) simulations, we
find three di↵erent phases in our model only by tuning
a single parameter. In between the nodal dSC and the
AFM, we find an intermediate phase with the coexistence
of gapped dSC and AFM (dSCg+AFM). The phase tran-
sition between dSCg+AFM and AFM appears to be con-
tinuous and in the 3D XY universality class. The phase
transition between nodal dSC and dSCg+AFM also ap-
pears to be continuous, while having more interesting
critical behavior.
Model— Our model is defined on a square lattice and
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intervening phase which hosts coexisting antiferromagnetism and nodeless d-wave superconductivity.
The transition from the coexisting phase to the antiferromagnet is described by the 2+1-D XY
universality class, while the one from the coexisting phase to the nodal d-wave phase is described
by the chiral Gross-Neveu-Heisenberg theory.

Introduction— The interplay between unconventional
superconductivity and magnetism plays a crucial role in
a wide variety of strongly correlated systems [1] such
as cuprates [2, 3], heavy fermion materials [4–16], lay-
ered organic conductors [17–25], iron-based superconduc-
tors [26–30], Helium-3 [31] and even in recently stud-
ied twisted 2D materials [32]. Superconductors with
nodal quasiparticles are particularly interesting since the
fermionic quasiparticles cannot be neglected even for the
ground state properties of the superconductor, or for
understanding quantum phase transitions to proximate
phases. In this paper, we will introduce a model which
does not su↵er from the fermion sign problem, and which
demonstrably hosts both a nodal d-wave superconductor,
and an antiferromagnetic insulator on a 2d square lattice,
with an intermediate phase with coexisting antiferromag-
netic and a gapped d-wave superconducting order param-
eter. We will study the phase diagram of the model using
Quantum Monte Carlo (QMC) simulations.

One route to obtain an unconventional superconductor
is to dope a Mott insulator [3, 33], as is experimentally
the case for cuprates where nodal d-wave superconductor
(dSC) arises upon doping. From a numerical perspective,
this is rather challenging to pursue: the combination of
‘Mottness’ and continuously varying filling leads to the
fermion sign problem. In fact, to date, there does not ex-
ist any model which has repulsive onsite electron-electron
interactions at a generic filling which does not su↵er
from the fermion sign problem. However, one notes that
two of the most prominent symmetry breaking phases in
cuprates, namely the dSC or the AFM insulator in princi-
ple do not require doping for their existence: in the dSC,
the charge U(1) symmetry is spontaneously broken, and
therefore, there is no Luttinger theorem, while an AFM
insulator in fact requires one to be at a commensurate fill-
ing (such as zero doping). Furthermore, the dSC and the
AFM are ‘sign problem compatible’: both of these orders

are facilitated by an onsite repulsion. Finally, on a square
lattice at half-filling, the ordering wavevector Q = (⇡, ⇡)
for the AFM matches the momentum di↵erence between
the nodes of the dSC, and therefore the onset of AFM
will gap out the nodes in dSC. These observations sug-
gest that one should be able to find a model without sign-
problem which hosts these two competing phases. From
an experimental perspective, competing dSC and AFM
phases at half-filling are relevant to Mott insulators, such
as the layered organic material -ET2Cu[N(CN)2]Cl and
its derivatives [17–25], that undergo transition from an
AFM insulator to a superconductor under pressure.

Our model is partially motivated by the ideas pre-
sented in Ref.[34] where the phase diagram of competing
dSC and AFM at a half-filling was studied using field-
theoretic arguments. Through state-of-the-art Determi-
nantal Quantum Monte Carlo (DQMC) simulations, we
find three di↵erent phases in our model only by tuning
a single parameter. In between the nodal dSC and the
AFM, we find an intermediate phase with the coexistence
of gapped dSC and AFM (dSCg+AFM). The phase tran-
sition between dSCg+AFM and AFM appears to be con-
tinuous and in the 3D XY universality class. The phase
transition between nodal dSC and dSCg+AFM also ap-
pears to be continuous, while having more interesting
critical behavior.
Model— Our model is defined on a square lattice and

consists of four parts, H = Ht + HV + HU + HXY.
Here Ht +HU = �t

P
hiji,�(c†i,�cj,� +h.c.)+ U

2

P
i(⇢i," +

⇢i,# � 1)2 is the standard Hubbard model with near-

est neighbor hopping, with ⇢i,� = c†i,�ci,�. HV is
the coupling between d-wave pairing and rotor type
bosonic fields ✓ living on the bonds of the square lat-
tice, HV = V

P
hiji(⌧i,jei✓ij (c†i,"c

†
j,#�c†i,#c

†
j,")+h.c.) with

⌧i,i±x̂ = 1, ⌧i,i±ŷ = �1. HXY is a quantum rotor
Hamiltonian, describing the dynamics and interactions
of fields ✓: HXY = K

P
hiji n2

ij � J
P

hij,ili cos(✓ij � ✓il),

2
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =

�t
P

hiji,�

⇣
c†i,�cj,� + h.c.

⌘
� Um

P
i(�)i(⇢i," � ⇢i,#) �

V ↵
P

hiji

⇣
�̂ij + h.c.

⌘
, and HMF

✓ = K
P

hiji n2
ij �

J
P

hij,ili cos(✓ij � ✓kl) � V �
P

hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4

P
i,j(�)i+j

D
~Si · ~Sj

E
and ↵2 =

AFM Insulator

nodal dx2−y2 SC

(π, π)
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B. Sti↵ness of interacting model and finite temperature transition

The sti↵ness of our full, interacting model with �t = 2L is shown in Figs. 3(a) and (b), which is still well collapsed
with 3D XY exponents, indicating that the transition is continuous and belongs to the 3D XY universality. The charge
sti↵ness is also a good quantity to characterize finite temperature Berezinskii–Kosterlitz–Thouless (BKT) transition
phase boundary. Based on the free energy argument of a single vortex, the BKT transition is determined by ⇢c = 2Tc

⇡
,

see Figs. S2(a)-(g). The BKT phase boundary is plotted in Fig. S2(h).

FIG. S2. Using charge sti↵ness to determine BKT phase transition boundary. (a)-(g) Charge sti↵ness for K/J =
1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2. (h) BKT phase transition boundary.

IV. DETERMINING ZERO TEMPERATURE PHASE DIAGRAM

A. dSC order parameters

The dSC order parameter ↵ defined as ↵ = h↵̂iji can be measured through the static correlation function

↵2 =
1

4L4

X

hiji,hkli

hei✓ijei✓kli. (S29)

We perform a finite size scaling of ↵2 to estimate its value in the thermodynamic limit, as shown in Fig. S3. We find
that the dSC order parameter vanishes for K/J � 2.40(5).
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FIG. S3. Finite size scaling of ↵2.
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B. AFM order parameters

The AFM order parameter defined as ~m = h(�)i ~Sii can be measured through static correlation function

m2 =
1

L4

X

i,j

(�)i+j

D
~Si · ~Sj

E
. (S30)

Again, we perform a finite size scaling of m2 to estimate its value in the thermodynamic limit, as shown in Fig. S4.
The AFM order parameter vanishes for K/J  1.92(5).
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FIG. S4. Finite size scaling of m2.

C. Single-particle gap

The single-particle gap Eg(~k) can be measured by extracting the slope of the decay of the time-displaced single
particle Green’s functions, based on the equation

hc(~k, ⌧)c†(~k, 0)i ⇠ e�Eg(~k)⌧ , (S31)

where a sum over spin index is implicit. After we obtain the single-particle gap for each finite size L, we perform a
1/L extrapolation to obtain its value in the thermodynamic limit. In Fig. S5 we show the single particle gap at the K
point. The single-particle gap opens around K/J = 1.92(5) where the AFM order parameter starts to rise. Therefore,
between K/J = 1.92(5) and K/J = 2.40(5), we have a coexistence of gapped dSC and AFM, which is denoted as the
dSCg+AFM phase in the main text.

FIG. S5. Finite size scaling of the single-particle gap at the K point.

On the other hand, we still need to confirm that the dSC phase with K/J less than 1.92(5) is nodal, and that a
full Fermi surface is absent. We explore the single-particle gap along di↵erent momentum paths, and confirm that
only the four K points are gapless, as shown in Fig. 2(c). We also perform a more rigorous finite size scaling of the
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d-wave

order 


parameter

AFM

order 


parameter



3

�⇡ 0 ⇡

kx�⇡

0

⇡

k y(a)

� X

M

K1K2

qx�qy�

1 2 3

K/J

0

1

E
g
/t

(b)

Eg(X)

Eg(K)

K � X M K X
0

2

4

6

E
g
/t

K/J =1.0(c)

K � X M K X

K/J =2.2

K � X M K X

K/J =3.0

K � X M K X
0

1

2

3

E
s/

t

(d)

K � X M K X K � X M K X 1 2 3

K/J

0

1

2

3

4

5

6

�
/t

(e)

fit 1, �F

fit 1, �s

fit 1, ��

fit 2, �F

fit 2, �s

fit 2, ��

FIG. 2. Single-particle and spin gaps and velocities. (a) The first Brillouin zone (BZ) of the square lattice. Four light points

are the location of nodes, and the lightness of the color denotes integrated spectral weight A(~k, !) over a small energy window
near the Fermi level (0, 0.5t). (b) Single-particle gap at the nodal point (K) and the anti-nodal point (X) extrapolated to
thermodynamic limit. (c) Single-particle gap along the path K-�-X-M-K-X of BZ at L = 16. (d) Spin gap along the same path
of BZ at L = 16. (e) Fermi velocity, spin-wave velocity and pairing velocity extracted using two di↵erent fitting schemes.

1
4L4

P
hiji,hklihei✓ijei✓kli. Fig. 1(b) shows these order pa-

rameters extrapolated to the thermodynamic limit, see
[44] for technical details. For K/J < 1.92(5), only ↵ 6= 0,
which corresponds to the nodal dSC phase. This is
also evident from the spectral function integrated over
a small energy window, Fig.2(a), which shows four dis-
tinct nodes. For 1.92(5) < K/J < 2.40(5), we have both
↵ 6= 0 and m 6= 0, and therefore this is the dSCg+AFM
phase. For K/J > 2.40(5), we enter the pure AFM phase
where only m 6= 0.

The phase diagram is also consistent with the results
for the single-particle gap as well as the spin-gap, see
Figs. 2(b), (c), (d). As shown in Fig. 2(c), in the nodal
dSC region K/J < 1.92(5), we have nodes at the K
points, while the antinodal points X are gapped. The sin-
gle particle gaps open both in the dSCg+AFM and the
AFM regions. Similarly, the gap to spinful-excitations
remains zero at � and M points in the dSCg+AFM and
the AFM regions, due to the Goldstone modes resulting
from the spin-rotation symmetry breaking.

Phase transitions— The transitions from the dSC to
the dSCg+AFM and from the dSCg+AFM to the AFM
both appear to be continuous. The transition from the
dSCg+AFM to the AFM is the conventional XY transi-
tion, and the data for the charge sti↵ness can be collapsed
quite well with 3D XY exponents, as shown in Fig. 3(a)
and (b). The transition from the dSC to the dSCg+AFM
is a more interesting one, which on theoretical ground we
believe to be in the chiral Gross-Neveu-Heisenberg uni-
versality class (see below). Using data collapse, we ex-
tract the critical exponents for this transition, as shown
in Figs. 3(c) and (d). We estimate the correlation length
exponent ⌫ = 0.99(8) and the anomalous dimension of
the AFM order-parameter ⌘m = 0.55(2).

We also measured the Fermi velocity �F , the dSC pair-
ing velocity �� defined via the nodal dispersion Eg(~q0) =

FIG. 3. Data collapse to obtain critical exponents. (a) Charge
sti↵ness ⇢c for di↵erent system sizes near the second phase
transition from the coexistence phase to the AFM phase. (b)
Data collapse of the charge sti↵ness in (a) with Kc2 = 2.40(5)
leads to ⌫ ⇡ 0.67. (c) Squared AFM order parameter m2 near
the transition from the nodal dSC phase to the coexistence
phase. (d) Data collapse of m2 in (c) with Kc1 = 1.92(5)
leads to ⌫ = 0.99(8) and ⌘ = 0.55(2).

q
�2

F q02x + �2
�q02y + E2

g(K), and the spin-wave velocity �s

defined via the dispersion of Goldstone modes at the
M point through Es(~q0) =

p
�2

sq02 + E2
s (M). To ex-

tract these velocities, we considered two di↵erent finite
size scaling schemes. In scheme 1, we fix �q = 2⇡

Lmax
,

and for system sizes less than Lmax = 20, Eg(K + ~dk1),
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =

�t
P

hiji,�

⇣
c†i,�cj,� + h.c.

⌘
� Um

P
i(�)i(⇢i," � ⇢i,#) �

V ↵
P

hiji

⇣
�̂ij + h.c.

⌘
, and HMF

✓ = K
P

hiji n2
ij �

J
P

hij,ili cos(✓ij � ✓kl) � V �
P

hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4

P
i,j(�)i+j

D
~Si · ~Sj

E
and ↵2 =

QPT1 QPT2
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =

�t
P

hiji,�

⇣
c†i,�cj,� + h.c.

⌘
� Um

P
i(�)i(⇢i," � ⇢i,#) �

V ↵
P

hiji

⇣
�̂ij + h.c.

⌘
, and HMF

✓ = K
P

hiji n2
ij �

J
P

hij,ili cos(✓ij � ✓kl) � V �
P

hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4
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FIG. 3. Data collapse to obtain critical exponents. (a) Charge
sti↵ness ⇢c for di↵erent system sizes near the second phase
transition from the coexistence phase to the AFM phase. (b)
Data collapse of the charge sti↵ness in (a) with Kc2 = 2.40(5)
leads to ⌫ ⇡ 0.67. (c) Squared AFM order parameter m2 near
the transition from the nodal dSC phase to the coexistence
phase. (d) Data collapse of m2 in (c) with Kc1 = 1.92(5)
leads to ⌫ = 0.99(8) and ⌘ = 0.55(2).

become equal at this transition [34].

Low energy theory— The transition from the nodal
dSC to the dSCg+AFM is of particular interest since
it hosts gapless nodal fermions. The corresponding low
energy theory is already discussed in Ref. [34]. In the fol-
lowing we will show that it can be mapped to the chiral
Gross-Neveu-Heisenberg theory. The nodal dSC phase
has nodes located at (±⇡

2 , ±⇡

2 ), as shown in Fig. 2. These
four nodes are divided into two pairs, and form two four-
component Dirac fermions. At the transition from the
nodal dSC to the dSCg+AFM, in addition to the gapless
nodal Dirac fermions, we also have gapless AFM modes
~N , which couple linearly to the Dirac fermion bilinear
possessing the same symmetry. After several steps of ba-
sis transformations [34], while ignoring the di↵erence be-
tween the three velocities �F , ��, �s, and rescaling them
to unity, one arrives at the following Lagrangian:

L =  ̄/@ +
1

2
(@µ

~N)2+u( ~N2)2+g ~N ·( †⌧y~��y †+h.c.),

(5)
where /@ = �µ@µ, and the Pauli matrices ~⌧ act in the
particle-hole space of the original microscopic fermions
c. The 4 � ✏ RG calculations predict that the dif-
ference between velocities eventually flows to zero, so
that the above isotropic description is valid for a con-
tinuous transition. The isotropic free Dirac fermions in

fact have an O(8) symmetry, which can be made man-
ifest by employing Majorana basis ( = ⌘1 + i⌘2). We
will now exploit this O(8) symmetry to transform the
critical theory into a well-known form. The coupling
term in the Majorana basis becomes g ~N · (⌘T ⌧y~⌃⌘) with
~⌃ = (�z⇢x, ⇢z, ��x⇢x), where the Pauli matrices ⇢x,y,z

act in the Majorana space (⌘1, ⌘2). With an orthogo-
nal transformation O = ip

2
(�y⇢z � ⇢y) 2 O(8) of the

free theory, it can be transformed into g ~N · (⌘0T ⌧y~⌃0⌘0)
with ⌘0 = O⌘ and ~⌃0 = (�x, ��y⇢y, �z), which if written
in terms of complex fermions, is nothing but the stan-
dard Gross-Neveu-Heisenberg coupling g ~N · ( 0†⌧y~� 0)
where  0 = ⌘0

1 + i⌘0
2. Therefore, the low energy the-

ory is equivalent to the chiral Gross-Neveu-Heisenberg
model, and the transition should also belong to the chiral
Heisenberg universality class with two four-component
Dirac fermions [48–57]. The critical exponents we found,
namely ⌫ ⇡ 0.99 and ⌘m ⇡ 0.55, are consistent with
these previous works, although it’s worth noting that the
value of ⌘m reported in previous numerical works di↵er
from each other considerably, and lies in a window rang-
ing from 0.45 to 1.2, which likely signals strong finite-size
corrections for this exponent.

Discussion and conclusion— Very broadly, the struc-
ture of our model is in the similar spirit as Refs.[58–62],
where a desired ordered phase is obtained by coupling the
corresponding fermionic bilinear to a fluctuating bosonic
field, and then tuning the kinetic energy of the boson
to obtain an order-disorder quantum critical point. The
novelty of our model is that it allows one to access a
spontaneously symmetry broken nodal SC phase, and its
competition with AFM, which is the setting central to
a large class of materials [1–16, 26–32], and especially
pressure tuned SC to AFM transition in layered organic
Mott insulators [17–25]. Although our Hamiltonian in-
volves terms that are not conventional, owing to univer-
sality we expect aspects such as the nature of quantum
criticality as well as the topology of the phase diagram
to correctly capture more realistic Hamiltonians (which
typically su↵er from the sign problem), as long as the
symmetries of the underlying Hamiltonian and the filling
match with our model.

The competition between d-wave superconductivity
and AFM is also explored in Monte Carlo studies of vari-
ous multiband models [63–68]. In contrast to our model,
where we obtain nodal superconductivity with repulsive
onsite Hubbard-U , in the models considered in Refs.[63–
68], the pairing order-parameter is in fact onsite, and
the superconductivity is generically not nodal. This is
related to the fact that the repulsive onsite Hubbard-U
would lead to sign problem in these models. The d-wave-
like form factor in these models resulted from a pairing of
the form c†

i"x
c†
i#x

�c†
i"y

c†
i#y

, where i denotes a lattice site,
and x, y denote two di↵erent bands, which have stronger
hopping along the x and y directions respectively. We
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
✓ : HMF

f =

�t
P

hiji,�

⇣
c†i,�cj,� + h.c.

⌘
� Um

P
i(�)i(⇢i," � ⇢i,#) �

V ↵
P

hiji

⇣
�̂ij + h.c.

⌘
, and HMF

✓ = K
P

hiji n2
ij �

J
P

hij,ili cos(✓ij � ✓kl) � V �
P

hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
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FIG. 3. Data collapse to obtain critical exponents. (a) Charge
sti↵ness ⇢c for di↵erent system sizes near the second phase
transition from the coexistence phase to the AFM phase. (b)
Data collapse of the charge sti↵ness in (a) with Kc2 = 2.40(5)
leads to ⌫ ⇡ 0.67. (c) Squared AFM order parameter m2 near
the transition from the nodal dSC phase to the coexistence
phase. (d) Data collapse of m2 in (c) with Kc1 = 1.92(5)
leads to ⌫ = 0.99(8) and ⌘ = 0.55(2).

become equal at this transition [34].

Low energy theory— The transition from the nodal
dSC to the dSCg+AFM is of particular interest since
it hosts gapless nodal fermions. The corresponding low
energy theory is already discussed in Ref. [34]. In the fol-
lowing we will show that it can be mapped to the chiral
Gross-Neveu-Heisenberg theory. The nodal dSC phase
has nodes located at (±⇡

2 , ±⇡

2 ), as shown in Fig. 2. These
four nodes are divided into two pairs, and form two four-
component Dirac fermions. At the transition from the
nodal dSC to the dSCg+AFM, in addition to the gapless
nodal Dirac fermions, we also have gapless AFM modes
~N , which couple linearly to the Dirac fermion bilinear
possessing the same symmetry. After several steps of ba-
sis transformations [34], while ignoring the di↵erence be-
tween the three velocities �F , ��, �s, and rescaling them
to unity, one arrives at the following Lagrangian:

L =  ̄/@ +
1

2
(@µ

~N)2+u( ~N2)2+g ~N ·( †⌧y~��y †+h.c.),

(5)
where /@ = �µ@µ, and the Pauli matrices ~⌧ act in the
particle-hole space of the original microscopic fermions
c. The 4 � ✏ RG calculations predict that the dif-
ference between velocities eventually flows to zero, so
that the above isotropic description is valid for a con-
tinuous transition. The isotropic free Dirac fermions in

fact have an O(8) symmetry, which can be made man-
ifest by employing Majorana basis ( = ⌘1 + i⌘2). We
will now exploit this O(8) symmetry to transform the
critical theory into a well-known form. The coupling
term in the Majorana basis becomes g ~N · (⌘T ⌧y~⌃⌘) with
~⌃ = (�z⇢x, ⇢z, ��x⇢x), where the Pauli matrices ⇢x,y,z

act in the Majorana space (⌘1, ⌘2). With an orthogo-
nal transformation O = ip

2
(�y⇢z � ⇢y) 2 O(8) of the

free theory, it can be transformed into g ~N · (⌘0T ⌧y~⌃0⌘0)
with ⌘0 = O⌘ and ~⌃0 = (�x, ��y⇢y, �z), which if written
in terms of complex fermions, is nothing but the stan-
dard Gross-Neveu-Heisenberg coupling g ~N · ( 0†⌧y~� 0)
where  0 = ⌘0

1 + i⌘0
2. Therefore, the low energy the-

ory is equivalent to the chiral Gross-Neveu-Heisenberg
model, and the transition should also belong to the chiral
Heisenberg universality class with two four-component
Dirac fermions [48–57]. The critical exponents we found,
namely ⌫ ⇡ 0.99 and ⌘m ⇡ 0.55, are consistent with
these previous works, although it’s worth noting that the
value of ⌘m reported in previous numerical works di↵er
from each other considerably, and lies in a window rang-
ing from 0.45 to 1.2, which likely signals strong finite-size
corrections for this exponent.

Discussion and conclusion— Very broadly, the struc-
ture of our model is in the similar spirit as Refs.[58–62],
where a desired ordered phase is obtained by coupling the
corresponding fermionic bilinear to a fluctuating bosonic
field, and then tuning the kinetic energy of the boson
to obtain an order-disorder quantum critical point. The
novelty of our model is that it allows one to access a
spontaneously symmetry broken nodal SC phase, and its
competition with AFM, which is the setting central to
a large class of materials [1–16, 26–32], and especially
pressure tuned SC to AFM transition in layered organic
Mott insulators [17–25]. Although our Hamiltonian in-
volves terms that are not conventional, owing to univer-
sality we expect aspects such as the nature of quantum
criticality as well as the topology of the phase diagram
to correctly capture more realistic Hamiltonians (which
typically su↵er from the sign problem), as long as the
symmetries of the underlying Hamiltonian and the filling
match with our model.

The competition between d-wave superconductivity
and AFM is also explored in Monte Carlo studies of vari-
ous multiband models [63–68]. In contrast to our model,
where we obtain nodal superconductivity with repulsive
onsite Hubbard-U , in the models considered in Refs.[63–
68], the pairing order-parameter is in fact onsite, and
the superconductivity is generically not nodal. This is
related to the fact that the repulsive onsite Hubbard-U
would lead to sign problem in these models. The d-wave-
like form factor in these models resulted from a pairing of
the form c†

i"x
c†
i#x

�c†
i"y

c†
i#y

, where i denotes a lattice site,
and x, y denote two di↵erent bands, which have stronger
hopping along the x and y directions respectively. We
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij

and �̂ij ⌘ ⌧i,j(c
†
i,"c

†
j,# � c†i,#c

†
j,"), we are led to two

coupled mean-field Hamiltonians, one for the fermions,
HMF

f and the other for the rotors, HMF
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hiji (↵̂ij + h.c.). Here

↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4

P
i,j(�)i+j

D
~Si · ~Sj

E
and ↵2 =

Nodal dirac fermions gapped out by Neel order parameter.
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FIG. 3. Data collapse to obtain critical exponents. (a) Charge
sti↵ness ⇢c for di↵erent system sizes near the second phase
transition from the coexistence phase to the AFM phase. (b)
Data collapse of the charge sti↵ness in (a) with Kc2 = 2.40(5)
leads to ⌫ ⇡ 0.67. (c) Squared AFM order parameter m2 near
the transition from the nodal dSC phase to the coexistence
phase. (d) Data collapse of m2 in (c) with Kc1 = 1.92(5)
leads to ⌫ = 0.99(8) and ⌘ = 0.55(2).

become equal at this transition [34].

Low energy theory— The transition from the nodal
dSC to the dSCg+AFM is of particular interest since
it hosts gapless nodal fermions. The corresponding low
energy theory is already discussed in Ref. [34]. In the fol-
lowing we will show that it can be mapped to the chiral
Gross-Neveu-Heisenberg theory. The nodal dSC phase
has nodes located at (±⇡

2 , ±⇡

2 ), as shown in Fig. 2. These
four nodes are divided into two pairs, and form two four-
component Dirac fermions. At the transition from the
nodal dSC to the dSCg+AFM, in addition to the gapless
nodal Dirac fermions, we also have gapless AFM modes
~N , which couple linearly to the Dirac fermion bilinear
possessing the same symmetry. After several steps of ba-
sis transformations [34], while ignoring the di↵erence be-
tween the three velocities �F , ��, �s, and rescaling them
to unity, one arrives at the following Lagrangian:

L =  ̄/@ +
1

2
(@µ

~N)2+u( ~N2)2+g ~N ·( †⌧y~��y †+h.c.),

(5)
where /@ = �µ@µ, and the Pauli matrices ~⌧ act in the
particle-hole space of the original microscopic fermions
c. The 4 � ✏ RG calculations predict that the dif-
ference between velocities eventually flows to zero, so
that the above isotropic description is valid for a con-
tinuous transition. The isotropic free Dirac fermions in

fact have an O(8) symmetry, which can be made man-
ifest by employing Majorana basis ( = ⌘1 + i⌘2). We
will now exploit this O(8) symmetry to transform the
critical theory into a well-known form. The coupling
term in the Majorana basis becomes g ~N · (⌘T ⌧y~⌃⌘) with
~⌃ = (�z⇢x, ⇢z, ��x⇢x), where the Pauli matrices ⇢x,y,z

act in the Majorana space (⌘1, ⌘2). With an orthogo-
nal transformation O = ip

2
(�y⇢z � ⇢y) 2 O(8) of the

free theory, it can be transformed into g ~N · (⌘0T ⌧y~⌃0⌘0)
with ⌘0 = O⌘ and ~⌃0 = (�x, ��y⇢y, �z), which if written
in terms of complex fermions, is nothing but the stan-
dard Gross-Neveu-Heisenberg coupling g ~N · ( 0†⌧y~� 0)
where  0 = ⌘0

1 + i⌘0
2. Therefore, the low energy the-

ory is equivalent to the chiral Gross-Neveu-Heisenberg
model, and the transition should also belong to the chiral
Heisenberg universality class with two four-component
Dirac fermions [48–57]. The critical exponents we found,
namely ⌫ ⇡ 0.99 and ⌘m ⇡ 0.55, are consistent with
these previous works, although it’s worth noting that the
value of ⌘m reported in previous numerical works di↵er
from each other considerably, and lies in a window rang-
ing from 0.45 to 1.2, which likely signals strong finite-size
corrections for this exponent.

Discussion and conclusion— Very broadly, the struc-
ture of our model is in the similar spirit as Refs.[58–62],
where a desired ordered phase is obtained by coupling the
corresponding fermionic bilinear to a fluctuating bosonic
field, and then tuning the kinetic energy of the boson
to obtain an order-disorder quantum critical point. The
novelty of our model is that it allows one to access a
spontaneously symmetry broken nodal SC phase, and its
competition with AFM, which is the setting central to
a large class of materials [1–16, 26–32], and especially
pressure tuned SC to AFM transition in layered organic
Mott insulators [17–25]. Although our Hamiltonian in-
volves terms that are not conventional, owing to univer-
sality we expect aspects such as the nature of quantum
criticality as well as the topology of the phase diagram
to correctly capture more realistic Hamiltonians (which
typically su↵er from the sign problem), as long as the
symmetries of the underlying Hamiltonian and the filling
match with our model.

The competition between d-wave superconductivity
and AFM is also explored in Monte Carlo studies of vari-
ous multiband models [63–68]. In contrast to our model,
where we obtain nodal superconductivity with repulsive
onsite Hubbard-U , in the models considered in Refs.[63–
68], the pairing order-parameter is in fact onsite, and
the superconductivity is generically not nodal. This is
related to the fact that the repulsive onsite Hubbard-U
would lead to sign problem in these models. The d-wave-
like form factor in these models resulted from a pairing of
the form c†

i"x
c†
i#x

�c†
i"y

c†
i#y

, where i denotes a lattice site,
and x, y denote two di↵erent bands, which have stronger
hopping along the x and y directions respectively. We
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FIG. 1. Phase diagram of our model. (a) Mean-field phase
diagram. dSC stands for the nodal dx2�y2 superconductor,
AFM for the antiferromagnetic insulator, and dSCg+AFM for
the coexisting gapped d-wave superconductor and antiferro-
magnetic insulator. (b) Quantum Monte Carlo phase diagram
for U/t = 4.0. ↵ is the dSC order parameter, m is the AFM
order parameter.

where [nij , e±i✓ij ] = ±e±i✓ij , and
P

hij,ili denotes sum-
mation over all pairs of nearest neighbor bonds, i.e.,
bonds that share a site. The model has the conventional
spin-rotation SU(2) symmetry and a charge U(1) sym-
metry given by ci,� ! ci,�ei', ✓ ! ✓ + 2'. It also

has a particle-hole symmetry ci,� ! ✏ic
†
i,�, ✓ ! �✓,

at half-filling, where ✏i = (�)i. Perhaps most impor-
tantly, the model also hosts an anti-unitary symmetry
U : ci," ! ✏ic

†
i,#, ci,# ! �✏ic

†
i,", i ! �i and U2 = �1,

which makes the model sign problem-free [35], so that it
can be simulated with large-scale DQMC methods.

One may obtain some features of the global phase dia-
gram of our model without detailed calculations. Setting
U = 0, when K/J ⌧ 1, the charge-U(1) symmetry will
be spontaneously broken, and therefore, the fermion-part
of the Hamiltonian reduces to the BCS mean-field theory
for a nodal dx2�y2 superconductor, which we denote as
dSC. The dSC phase is expected to be stable at small U
since weak interactions are irrelevant for the nodal Dirac
fermions. When K/J increases, eventually the charge-
U(1) symmetry is expected to get restored due to fluctu-
ations of the ✓ field. Since the unit-cell of H contains an
odd number of fermions, a gapped trivial paramagnet is
ruled out [36, 37], and energetically, we expect that the
phase at U/t � 1 and K/J � 1 to be a conventional
antiferromagnet. Furthermore, since the nodes in dSC
are separated by (⇡, ⇡), which is the ordering wavevec-

tor for AFM, one may also expect a phase where AFM
coexists with a gapped d-wave superconductor. As well
we see, these expectations are born out by the DQMC
calculations, but first, we consider a mean-field theory.
Mean-field phase diagram— Defining ↵̂ij ⌘ �ei✓ij
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↵ = h↵̂iji, � = h�̂iji and m = h(�)i(⇢i," � ⇢i,#)i, and
we have chosen the antiferromagnetic order parameter
to point along the z-axis in the spin-space. We can solve
the two coupled mean-field Hamiltonian self-consistently.
The HMF

✓ part is still an interacting rotor lattice prob-
lem which we solve using numerical exact diagonaliza-
tion (ED) on a small cluster consisting of four bonds of
a square lattice. After we obtain the value of ↵, we solve
the fermion part HMF

f , and find a self-consistent solu-
tion. We set t = 1, J = 1, V/t = 0.5, and explore the
U/t�K/J phase diagram as shown in Fig. 1(a). At small
U/t, the (nodal) dSC is a stable phase, while at larger
U/t, we enter a phase with coexisting gapped d-wave su-
perconductivity (dSCg) and antiferromagnetism (AFM).
At still larger U/t, a pure AFM phase without any super-
conductivity is stabilized. Tuning K/J changes the rela-
tive sizes of these three phases. Overall, when we increase
K/J , the pure AFM region becomes larger, while the co-
existence phase region (dSCg+AFM) shrinks. We note
that a variational cluster perturbation theory and clus-
ter dynamical mean-field theory calculations on doped
repulsive Hubbard model also find a coexistence phase
similar to ours (dSCg+AFM) [38–43].

Quantum Monte Carlo phase diagram— The model
can be simulated with the DQMC method without sign
problem (See Refs. [44–46] for additional technical de-
tails of DQMC). In DQMC, the imaginary time evolu-
tion is Trotter decomposed into L⌧ slices, �t = L⌧�⌧ ,
where imaginary time step �⌧ = 0.1 is used in our simu-
lations. We employ the standard Hubbard-Stratonovich
(HS) transformation to decouple the repulsive Hubbard
interaction into fermion bilinears coupled to auxiliary
fields [47]. To explore the ground state properties, we
scale the inverse temperature with the linear system size
L, in particular, we fix �t = 2L and perform simu-
lations up to L = 20. Motivated by the mean-field
phase diagram in the U/t-K/J plane, one only needs to
tune one parameter to explore all three possible phases.
We fix parameters U/t = 4.0, V/t = 0.5, and explore
possible phases by tuning only K/J . The AFM or-
der parameter, ~m = h(�)i ~Sii, and the dSC order pa-
rameter, ↵ = h↵̂iji, are extracted from static correla-

tion functions m2 = 1
L4
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We have set all three velocities 
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as implied by the RG flow.
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Mapping the field theory to more well-known form

Consider the unitary transformation:

Ψ′ ↑ =
1

2 (Ψ↑ − i Ψ†
↓) Ψ′ ↓ =

1

2 (Ψ↓ + i Ψ†
↑)

In new variables, one obtains standard Chiral Gross-Neveu-Heisenberg:

Technically same as the theory for transition between neutral Graphene and AFM.

Well-studied using various techniques ( -expansion, large-N, QMC, …)ϵ
Our exponents consistent with previous work.
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on the honeycomb lattice (hereinafter referred to as the
honeycomb lattice model) [3, 5–8, 10, 11, 36–39, 42],
which is closely related to the graphene [12–14, 52]. Thus
the same critical exponents are expected as those for the
honeycomb lattice model.

This is remarkable because the Hubbard model with
the d-wave pairing field studied here, is apparently dif-
ferent from the honeycomb lattice model. First, the
former model has four independent Dirac cones with-
out sublattice in contrast to two Dirac cones with two
sublattices for the latter model, while the total num-
ber of the fermion components is the same, i.e., N = 8
for both models. Second, in the d-wave SC, the Dirac
cone is in general anisotropic, because the velocity at the
Dirac point depends on the chosen direction in momen-
tum space. From the point of view of renormalization
group, the relativistic invariance may emerge at the crit-
ical point. However, the e↵ect of the anisotropy on the
quantum criticality can not be studied in the honeycomb
lattice model which has the isotropic Dirac cones. Ac-
cording to the notion of the universality class stating that
the criticality does not depend on the details of the mod-
els, the critical exponents for both models should be in
principle the same. Therefore we expect that our work
represents a nontrivial test of this universality assump-
tion for the exponents.

The rest of the paper is organized as follows. In the
next section, the model is defined and the QMC method
is briefly explained. In Sec. III, the results of the QMC
simulations are analyzed by various methods such as a
crossing-point analysis based on the phenomenological
renormalization argument and a data-collapse method of
the finite-size scaling ansatz. The obtained critical ex-
ponents are discussed in comparison with the previous
estimations, before concluding the paper, in Sec. IV.

II. MODEL AND METHOD

A. Model

We study the two-dimensional Hubbard model at half
filling with the d-wave BCS SC order parameter de-
scribed by the following Hamiltonian:

H = HBCS +HU , (1)

where

HBCS =
X

hi,ji

⇢⇣
c†
i" c

i#

⌘✓
�t �ij

�⇤
ij

t

◆✓
c
j"
c†
j#

◆
+ h.c

�
(2)

and

HU = U
X

i

ni"ni#. (3)

Here, c†
i�

creates an electron with spin � (=", #) at site i

of position ri and ni� = c†
i�
ci� is a number operator. In

the noninteracting part, HBCS, t represents the transfer
integral chosen as an energy unit, i.e., t = 1, and �ij

the BCS SC order parameter, with the sum indicated
by hi, ji running over all pairs of nearest neighbor sites
i and j. We consider the model on a square lattice of
linear dimension L. The BCS order parameter �ij with
the d-wave symmetry is set to have a uniform amplitude
� between the nearest neighbor sites: �ij = � (��) for
sites i and j aligned along the x (y) direction. In the
interacting part of Eq. (3), U(> 0) denotes the repulsive
interaction, which triggers the quantum phase transition
from the semimetal (SM) [53] to the antiferromagnetic
(AF) insulator.

The noninteracting Hamiltonian of Eq. (2) is expressed
in momentum space as follows:

HBCS =
X

k

⇣
c†k" c�k#

⌘✓
✏k �k

�⇤
k �✏k

◆✓
ck"
c†�k#

◆
, (4)

where

✏k = �2t (cos kx + cos ky) (5)

and

�k = 2� (cos kx � cos ky) . (6)

The energy dispersion of Bogoliubov quasiparticles is
then obtained as E(k) = ±

p
✏2k + |�k|2, which has

four independent Dirac points at k = (±⇡/2,±⇡/2) and
(±⇡/2,⌥⇡/2) as shown in Fig. 1. Together with the spin
degrees of freedom, the e↵ective model in the continuum
limit is the GN model with a total number of fermion
components N = 8 [54–56], which is the same as the
honeycomb lattice model or the Hubbard model on the
square lattice with ⇡-flux (referred to as the ⇡-flux model
in the following) [4, 9, 10, 37, 38], although the counting
of the fermion components is di↵erent: two Dirac cones,
two sublattices, and two spin components in the latter
models.
The Dirac cones described by HBCS are in general

anisotropic, i.e. elliptic cones, and the ellipticity is de-
termined by |�/t|. To be concrete, let us focus on the
low-lying excitations around one Dirac point at kD =
(⇡/2,⇡/2). The energy dispersion can be expanded with
a small wave vector �k = k � kD = (�kx, �ky) as
E(kD + �k) ⇡ ±E(�k), where

E(�k) =

s

v2F

✓
�kx + �kyp

2

◆2

+ v2�

✓
�kx � �kyp

2

◆2

(7)

and the nodal Fermi velocity vF ⌘ 2
p
2t (the gap ve-

locity v� ⌘ 2
p
2|�|) is the velocity perpendicular (par-

allel) to the Fermi surface of HBCS with � = 0 at half
filling. The Dirac cone becomes isotropic if and only if
|�/t| = 1, as shown in Fig. 1(c), and otherwise it is el-
liptic, as shown in Fig. 1(d) [57]. Therefore, our model
is considered as a tunable model, where the velocity is
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|�/t| = 1, as shown in Fig. 1(c), and otherwise it is el-
liptic, as shown in Fig. 1(d) [57]. Therefore, our model
is considered as a tunable model, where the velocity is
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FIG. 2. Single-particle and spin gaps and velocities. (a) The first Brillouin zone (BZ) of the square lattice. Four light points
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near the Fermi level (0, 0.5t). (b) Single-particle gap at the nodal point (K) and the anti-nodal point (X) extrapolated to
thermodynamic limit. (c) Single-particle gap along the path K-�-X-M-K-X of BZ at L = 16. (d) Spin gap along the same path
of BZ at L = 16. (e) Fermi velocity, spin-wave velocity and pairing velocity extracted using two di↵erent fitting schemes.

up to L = 20. Motivated by the mean-field phase dia-
gram in the U/t-K/J plane, one only needs to tune one
parameter to explore all three possible phases. We fix
parameters U/t = 4.0, V/t = 0.5, and explore possible
phases by tuning only K/J . We define the AFM order
parameter as ~m = h(�)i ~Sii, and dSC order parameter as
↵ = h↵̂iji. In the simulation we can extract these order
parameters from static correlation functions

m2 =
1

L4

X

i,j

(�)i+j

D
~Si · ~Sj

E
, (3)

↵2 =
1

4L4

X

hiji,hkli

hei✓ijei✓kli (4)

Fig. 1(b) shows these order parameters extrapolated to
the thermodynamic limit, see [44] for technical details.
For K/J < 1.92(5), only ↵ 6= 0, which corresponds to the
nodal dSC phase. This is also evident from the spectral
function integrated over a small energy window, Fig.2(a),
which shows four distinct nodes. For 1.92(5) < K/J <
2.40(5), we have both ↵ 6= 0 and m 6= 0, and therefore
this is the dSCg+AFM phase. For K/J > 2.40(5), we
enter the pure AFM phase where only m 6= 0.

The phase diagram is also consistent with the results
for the single-particle gap as well as the spin-gap, see
Figs. 2(b), (c), (d). As shown in Fig. 2(c), in the nodal
dSC region K/J < 1.92(5), we have nodes at the K
points, while the antinodal points X are gapped. The sin-
gle particle gaps open both in the dSCg+AFM and the
AFM regions. Similarly, the gap to spinful-excitations
remains zero at � and M points in the dSCg+AFM and
the AFM regions, due to the Goldstone modes resulting
from the spin-rotation symmetry breaking.

Phase transitions— The transitions from the dSC to
the dSCg+AFM and from the dSCg+AFM to the AFM
both appear to be continuous. The transition from the
dSCg+AFM to the AFM is the conventional XY transi-
tion, and the data for the charge sti↵ness can be collapsed
quite well with 3D XY exponents, as shown in Fig. 3(a)
and (b). The transition from the dSC to the dSCg+AFM
is a more interesting one, which on theoretical ground we
believe to be in the chiral Gross-Neveu-Heisenberg uni-
versality class (see below). Using data collapse, we ex-
tract the critical exponents for this transition, as shown
in Figs. 3(c) and (d). We estimate the correlation length
exponent ⌫ = 0.99(8) and the anomalous dimension of
the AFM order-parameter ⌘m = 0.55(2).

We also measured the Fermi velocity �F , the dSC pair-
ing velocity �� defined via the nodal dispersion Eg(~q0) =q

�2
F
q02
x

+ �2
�q02

y
+ E2

g(K), and the spin-wave velocity �s

defined via the dispersion of Goldstone modes at the
M point through Es(~q0) =

p
�2

s
q02 + E2

s (M). To ex-
tract these velocities, we considered two di↵erent finite
size scaling schemes. In scheme 1, we fix �q = 2⇡

Lmax
,

and for system sizes less than Lmax = 20, Eg(K + ~dk1),

Eg(K + ~dk2) and Es(� + ~dk1) are obtained by interpo-
lation. After we obtain gap functions for each system
size, we perform an 1/L extrapolation of the gap, and
finally use the above formulas to obtain the velocities.
In scheme 2, we first calculate the velocities based on
the above formulas, and then perform the 1/L extrap-
olation of the velocities. The velocities obtained from
these schemes are shown in Fig. 2(e). Although our data
su↵ers from finite-size e↵ects due to the curvature of the
dispersion [44], we see a tendency for the velocity dif-
ferences to decrease on approaching the transition from
dSC to dSCg+AFM. This is in line with the field the-
ory prediction that at long distances, all three velocities

Some tendency visible for velocities

 to become equal at transition.


The RG flow is logarithmically slow, 

so most likely need very large sizes


 to see equality of velocities.
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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Atomic spin-chain realization of a model for
quantum criticality
R. Toskovic1†, R. van den Berg2†, A. Spinelli1, I. S. Eliens2, B. van den Toorn1, B. Bryant1, J.-S. Caux2

and A. F. Otte1*
The ability to manipulate single atoms has opened up the door
to constructing interestinganduseful quantumstructures from
the ground up1. On the one hand, nanoscale arrangements of
magnetic atoms are at the heart of future quantum computing
and spintronic devices2,3; on the other hand, they can be used
as fundamental building blocks for the realization of textbook
many-body quantum models4, illustrating key concepts such
as quantum phase transitions, topological order or frustration
as a function of system size. Here, we use low-temperature
scanning tunnellingmicroscopy toconstruct arraysofmagnetic
atoms on a surface, designed to behave like spin-1/2 XXZ
Heisenberg chains in a transverse field, for which a quantum
phase transition from an antiferromagnetic to a paramagnetic
phase is predicted in the thermodynamic limit5. Site-resolved
measurementson thesefinite-size realizations revealanumber
of sudden ground state changes when the field approaches
the critical value, each corresponding to a new domain wall
entering the chains. We observe that these state crossings
becomecloser for longer chains, suggesting theonsetof critical
behaviour.Our resultspresentopportunities for furtherstudies
on quantum behaviour of many-body systems, as a function of
their size and structural complexity.

Since the birth of quantummechanics, lattice spin systems6 have
represented a natural starting point for understanding collective
quantum dynamics. Today, scanning tunnelling microscopy (STM)
techniques allow one to experimentally build and probe realizations
of exchange-coupled lattice spins in different geometries7–9. In linear
arrangements, quantum effects are strongest10 and notions such
as quantum phase transitions11 are most easily understood, the
simplest illustration being the Ising model in a transverse field12,13.
In this work, using STM, we construct finite-size versions of amodel
in the same universality class, namely the spin-1/2 XXZ chain in
a transverse field5, which has previously been realized in the bulk
material Cs2CoCl4 (refs 14,15). Our set-up allows us to probe the
chainswith single-spin resolutionwhile tuning an externally applied
transverse field through the critical regime.

The chains are created by manipulating Co atoms evaporated
onto a Cu2N/Cu(100) surface (see Methods), which provides
efficient decoupling for the magnetic d-shell electrons from
the underlying bulk electrons7. Employing inelastic electron
tunnelling spectroscopy (IETS)16,17 at sufficiently low temperature
(330mK) allows us to determine the magnetic anisotropy vector
of each atom18 as well as the strength of the exchange coupling
between neighbouring atoms19. It was previously demonstrated
that Co atoms on this surface behave as spin S = 3/2 objects

experiencing a strong uniaxial hard-axis anisotropy pointing in-
plane, perpendicular to the bond with the neighbouring N atoms20.
As a result, the mz =±3/2 states split off approximately 5.5meV
above the mz =±1/2 doublet (see Fig. 1a). As we will show below,
by exploiting themagneto-crystalline anisotropy, we thus effectively
reduce the spins from 3/2 to 1/2. The Cu2N islands were kept small
(∼6 nm) to ensure limited variation in anisotropy and substrate
coupling between different atoms inside the chains21.

The Co atoms are manipulated into the arrangement shown
in Fig. 1b, such that their interaction is governed by the spin-
3/2 nearest neighbour antiferromagnetic isotropic Heisenberg
exchange:

H3/2= J
N−1∑

i=1

Si ·Si+1+D
N∑

i=1

(Szi )2 −gµBBx

N∑

i=1

Sxi (1)

with interaction strength J = 0.24meV (ref. 22), subjected to an
external magnetic field B (with g -factor g = 2.3 (ref. 20)) applied
perpendicular to the surface. This weak interaction was chosen
specifically from a set of possible configurations22 to provide a
critical point at an accessible field value. Because J and all other
relevant energy scales (kBT , µBB) stay well below the anisotropy
energy 2D≈5.5meV, excitations to±3/2 doublets can be projected
out through a Schrieffer–Wolff transformation up to first order
in 1/D (refs 15,23,24). This results in an effective spin-1/2
Hamiltonian:

H1/2 =
N−1∑

i=1

J⊥(Sxi Sxi+1+Syi S
y
i+1)+ JzSzi Szi+1

+ J nnn⊥

N−2∑

i=1

Sxi Sxi+2+Syi S
y
i+2 −µBBx

N∑

i=1

giSxi (2)

with nearest and next-nearest neighbour exchange parameters and
bulk/boundary g -factors given by:

J⊥=4J , Jz = J − 39J 2
8D , J nnn⊥ =−3J 2

D ,

gi=






2g
(
1− 3J

2D

)
if i=2, . . . ,N −1

2g
(
1− 3J

4D

)
if i=1,N

(3)
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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[Toskovic et al (2016)]

Coupling with Cu substrate leads to an effective

Kondo lattice model.

[Danu, Assaad, Mila (2019)]

Intermediate setting between a single-purity Kondo model, and 

conventional 2D Kondo lattice model.



Part-II: More motivation

Evidence of spin-1/2 spinons despite

good 3D metal. Apparent “Kondo breakdown”.

[Wu et al 2016;

Classen et al 2018;

Gannon et al 2019] 



“De-signer” models  
Pick your poison…

Want Mott Physics… Want Fermi surfaces …

Typically (not always), multi-band Hubbard

 models with inter-band repulsion and 


intra-band onsite attraction.

Can capture some competing orders such as 

nematic, spin-density wave, non-nodal SC.

Main caveat: no Mott physics, no nodal 

SC, s-wave SC can lurk at low-T which


can obscure T = 0 QCP.

Main caveat: 

Restricted to half-filling and bipartite lattices.

• Fermi surface nesting, leading to 
immediate AFM instability.

→

• Dirac semi-metal competing with 
AFM.

2

(d)(c)

(a) (b)

tA = tB > tCtA = tB < tC

SEM AFI

DIM HEX

tA
tB

tC
tB

tA

tC

FIG. 1. (a) SEM honeycomb, semimetallic; (b) AFI honeycomb an-
tiferromagnetic insulator; (c) DIM dimerized Kekulé-like insulator;
(d) HEX distorted hexagonal insulator. There are two carbons per
unit cell in (a) and (b), six in (c) and (d). Following Ref. [18], tA, tB,
and tC schematically denote hopping integrals magnitudes.

ing therefore a description of the electron correlation better
than those based on any Jastrow-Slater ansatz [22]. The vari-
ational freedom contained in the  JAGP ground state naturally
permits a quantitative distinction between the spin and charge
correlations [23]. Parallel reference DFT calculations were
also performed with HSE6 exchange-correlation functional,
projector augmented-wave treatment of core levels [24] and a
plane-wave basis set [25] as implemented in the Vienna ab-
initio simulation package (VASP) [25, 26], with energy cuto↵
of 600 eV.

All calculations [27] were conducted with Natom = 24 car-
bon atoms forming four six-atom unit cells of a planar de-
formable honeycomb lattice whose average interatomic spac-
ing a was successively expanded relative to the zero-stress
value a0. A fully accurate k�point average is obtained by
boundary-condition twisting.

Figure 2(a) presents the total energy gain of all ordered or
distorted states relative to the undistorted, semimetallic, non-
magnetic SEM state, E�ESEM, as a function of isotropic strain
✏ = (a � a0)/a0, from both di↵usion Monte Carlo (DMC)
and DFT calculations. Figure 2(b) shows the DMC-calculated
tensile stress, yielding the 2D equations of state of expanded
graphene. In DFT, the AFI state [Fig. 1(b)] yields the lowest
energy above ✏ ⇡ 7%, and represents the ground state until
✏ ⇡ 15%. Near 15% strain, DFT energetics predicts a Kekulé
DIM state [Fig. 1(c)] to take over very briefly from AFI, just
before turning itself unstable and leading to mechanical fail-
ure, in agreement with earlier DFT phonon calculations [17].

The more accurate DMC result shows instead that, while
both DIM and AFI states appear around ✏ ⇡ 10%, DIM has
the lowest energy for all increasing strains until failure. Ac-

FIG. 2. (a) Ground state energy E relative to the SEM phase ESEM
obtained as a function of strain ✏ by DMC in comparison with DFT
for the DIM, AFI, (HEX) phases. (b) Stress (�)-strain (✏) equation of
state curve for strained graphene obtained by fitting DMC energies.
Dashed lines mark the transition stress values �l and �u for SEM-
DIM (continuous). (c) Enthalpy H of strained graphene relative to
that of the SEM phase HSEM for increasing tensile stress �. The
blue-shaded region indicates the error bars on the enthalpies for DIM
and AFI phases by DMC. Upper bounds of Eq. (2) for the DIM and
AFI enthalpies also shown (DIM UB and AFI UB) greatly reduce the
error bars. The corresponding strain ✏ at selected points and phases
(indicated by arrows) are also shown.

curate DMC therefore suggests that the charge instability is
dominant over the spin, which is just the opposite of what the
reference DFT calculation suggested. In line with that, the
prevalence of DIM over AFI is reduced in the less accurate
variational Monte Carlo calculations [27].

In addition, the lowest energy will not predict the experi-
mental phase diagram, where isotropic strain ✏ is obtained by
tensile stress �. The equilibrium state under stress, rather than
energy, minimizes the enthalpy H(�) = minS [E(S ) � �S ],
where � = @S E(S ) with S the mean area. The stress-area

QCP

U/t

[Assaad, Herbut 2013; Otsuka et al 2016,…]

[Wu, Zhang 2005]

[Berg et al 2012; Schattner et al 2015; Dumitrescu et al 2016;

 Li et al 2017; Lederer et al 2017; Wang et al 2017, …]
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A model for Kondo breakdown in metal
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We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional
Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed-point, leading to the
existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a
phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group
analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations.
We extract quantities such as the zero-bias tunneling conductance which will be relevant to future
experiments involving adatoms on semimetals such as graphene.

The antiferromagnetic Kondo coupling, Jk, between a
spin-1/2 degree of freedom and a Fermi sea with finite
density of states at the Fermi energy is (marginally) rel-
evant: Jk flows to strong coupling and the impurity is
screened. If, in contrast, the density of states shows
a power-law pseudogap behavior, the Kondo coupling
is irrelevant at the decoupled fixed point, and the spin
remains unscreened at weak coupling. Since for large
Kondo coupling screening is present, a novel Kondo-
breakdown quantum critical point emerges [1, 2, 3]. The
decoupled as well as Kondo-screened phase share the
same symmetry properties.

In the context of Kondo lattices, the numbers of both
conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened para-
magnetic (i.e. heavy Fermi liquid) phase, the volume
enclosed by the Fermi surface (i.e. Luttinger volume)
counts both spins and electrons. A Kondo-breakdown
transition (equivalently, an orbital-selective Mott tran-
sition [4]), which, as above, does not involve symmetry
breaking, implies that the spins drop out from the Lut-
tinger count. For the case of an odd number of electrons
and spins per unit cell, this leads to a violation of the Lut-
tinger sum rule. Oshikawa’s flux-threading argument [5,
6] shows that a specific family of the resulting states of
matter can be achieved via topological degeneracy in the
spin sector [7]. Such states, coined fractionalized Fermi
liquid (FL⇤) phases, have been realized numerically [8].
Kondo breakdown has also been proposed to understand
the phenomenology of heavy-Fermion systems [7, 9, 10],
especially in the context of materials such as YbRh2Si2
and CeCu6�xAux [11, 12].

In this article, we consider a situation intermediate
between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo-
coupled to Dirac electrons. Dimensional analysis shows
that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to
that of the pseudogap Kondo e↵ect discussed above, see
Fig. 1. The motivation to study such systems equally
stems from scanning tunneling microscopy (STM) experi-

Jk/t=∞Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

Jk/t=∞Jk/t=0

Decouple spin chain Kondo screened

Kondo breakdown  
critical point

FIG. 1. Renormalization group flow of the Kondo coupling,
Jk, for a spin-1/2 chain on a semimetallic substrate.

ments of Co adatoms on a Cu2N/Cu(100) surfaces. Here,
recent experiments show an impressive ability to tune the
exchange coupling between adatoms as well as the cou-
pling of adatoms to the surface [13–19]. As shown in
Ref. [20], simple models amenable to negative-sign-free
quantum Monte Carlo (QMC) simulations are able to
provide a detailed account of the experiments. Another
experimental system that has qualitative resemblance
with our setup is Yb2Pt2Pb, where neutron scattering
indicates the presence of 1D spinons, and apparent ab-
sence of Kondo screening, despite the presence of three-
dimensional conduction electrons [21, 22]. In our study,
we consider conduction electrons in two dimensions with
Dirac spectrum since this choice unambiguously leads to
a Kondo-breakdown phase and phase transition, while
also allowing RG and large-N calculations and explicit
comparison to QMC numerics.

Model Hamiltionian: We consider a spin-1/2 Heisen-
berg chain on a semimetallic substrate:

Ĥ = �t
X

hi,ji,�

⇣
e

2⇡i
�0

R j
i A.dl ĉ†i ĉj + h.c.

⌘

+
Jk

2

LX

l=1

ĉ†l�ĉl · Ŝl + Jh

LX

l=1

Ŝl · Ŝl+�l. (1)

Here, t is the hopping parameter of the conduction elec-
trons, the summation

P
hi,ji runs over a square lattice

and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is a spinor where ĉ†i,"(#) creates an

electron at site i with z-component of spin 1/2 (�1/2).
We use the Landau gauge, A = B(�y, 0, 0), and tune
B such that half a flux quantum (⇡-flux) pierces each
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Figure 1 | Construction of XXZ chains. a, IETS spectra taken on a single Co
atom on Cu2N at 0T and 2T applied along the hard axis. Left inset: atomic
arrangement near the Co atom. Right inset: energy diagram indicating the
separation between the±1/2 and±3/2 doublets. b, Atomic design for XXZ
chains and indication of the transverse field direction. Large (small) grey
circles represent Cu (N) atoms. c, Lowest excitation energies of an N=8
chain for a transverse field up to 9 T. EG and Bcrit are indicated, as well as
the transverse magnetizationM and average number of domain walls n
between each ground state change. d, Same as c for N=9.

The model H1/2 with J nnn⊥ = 0, uniform gi and Jz/J⊥ ≈ 1/8 has
a phase transition at giµBBx ≈ 1.5J⊥ from an antiferromagnetic
to a paramagnetic phase5. The additional next-nearest neighbour
coupling J nnn⊥ generated by the Schrieffer–Wolff transformation
affects neither the qualitative features of the spectrum nor the
existence of the phase transition, effectively reducing H1/2 to an
XXZ Hamiltonian in a transverse field. For finite-size realizations
the antiferromagnetic phase is characterized by a number of level
crossings, where the ground state switches between sectors of
even and odd total magnetization, reflecting the Z2 symmetry
corresponding to a π-rotation of all spins around the field axis25.

Figure 1c,d shows the calculated lowest excitation energies
of H1/2 for an even-numbered (N = 8) and an odd-numbered
(N =9) chain, respectively, for a transverse field up to 9 T. Below
the transition to the paramagnetic phase, just below 6T, several
ground state crossings are predicted, with their number increasing
with chain length. Starting from a state with Néel-like order
near zero field, each crossing corresponds to a stepwise increase
of the total magnetization M along the field and the average
number of antiferromagnetic domain walls n inside the chain
(Supplementary Fig. 1).

The lowest excited state is energetically distinguishable in
finite chains, but becomes degenerate with the ground state
in the thermodynamic limit, where it corresponds (through a
Jordan–Wigner transformation26,27) to the topological edge states
recently observed in ferromagnetic chains on a superconducting
surface28. Below the critical field Bcrit, the ground state and this zero
mode are separated from the higher excited states by an energy
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Figure 2 | Comparison to theory. a, IETS spectra taken on atom 1 of an
N=5 chain in transverse fields ranging from 0T to 9T, in increments of
200mT. b, Same as a, but taken on atom 1 of an N=6 chain. IETS curves
were normalized to correct for tip height variations. Conductance values
listed at the colour bars are indicative only: owing to normalization, scaling
between spectra may vary by ∼20%. c,d, Theoretical spectra
corresponding to a,b, respectively, calculated using a spin-3/2model
(equation (1)). The Kondo peak appearing at the first ground state crossing
in b is under-represented in the theory (d). e,f, Same as c,d, but calculated
using a spin-1/2 XXZ model (equation (2)).

gap EG. As the length of the chain increases, EG remains finite and
forms the characteristic energy separating the ground state from the
continuum—except at Bcrit, where it vanishes. Just below this point,
spin liquid behaviour is predicted5.

We constructed chains of Co atoms of various length
and performed low-temperature IETS measurements
(T=330mK<EG/kB) on each atom in a chain while varying
the strength of the transverse field. To obtain an extensive data
set, a fully automated measurement sequence was employed (see
Methods). Figure 2a,b shows measurements taken on the first atom
of an odd-length (5 atoms) and an even-length chain (6 atoms),
respectively, recorded for every 200mT from 0 to 9 T. At voltages
below 5.5mV, transitions within the manifold of mz = ±1/2
states are observed; excitations at higher voltages correspond to
transitions to the mz =±3/2 manifold. The spectra show sudden
changes in both excitation energy and intensity at field values
corresponding to expected ground state crossings: near 3.5 T for
N =5 and near 1.5 T and 4.0 T for N =6.
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1d spin-chain on a Dirac semi-metal.

Low energy theory:

1

L =  ̄0 /@ 0 +
1

2
(@µ ~N)2 + u( ~N2)2 + 2g ~N ·  ̄0~� 0 S =

Z
d2x d⌧  ̄/@ + JK

Z
dx d⌧ ~N · ̄~� +S1d Heisenberg

Power-counting shows that  irrelevant at the decoupled fixed-point.JK

Kondo breakdown in a spin-1/2 chain of adatoms on a Dirac semimetal
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We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional
Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed-point, leading to the
existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a
phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group
analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations.
We extract quantities such as the zero-bias tunneling conductance which will be relevant to future
experiments involving adatoms on semimetals such as graphene.

The antiferromagnetic Kondo coupling, Jk, between a
spin-1/2 degree of freedom and a Fermi sea with finite
density of states at the Fermi energy is (marginally) rel-
evant: Jk flows to strong coupling and the impurity is
screened. If, in contrast, the density of states shows
a power-law pseudogap behavior, the Kondo coupling
is irrelevant at the decoupled fixed point, and the spin
remains unscreened at weak coupling. Since for large
Kondo coupling screening is present, a novel Kondo-
breakdown quantum critical point emerges [1, 2, 3]. The
decoupled as well as Kondo-screened phase share the
same symmetry properties.

In the context of Kondo lattices, the numbers of both
conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened para-
magnetic (i.e. heavy Fermi liquid) phase, the volume
enclosed by the Fermi surface (i.e. Luttinger volume)
counts both spins and electrons. A Kondo-breakdown
transition (equivalently, an orbital-selective Mott tran-
sition [4]), which, as above, does not involve symmetry
breaking, implies that the spins drop out from the Lut-
tinger count. For the case of an odd number of electrons
and spins per unit cell, this leads to a violation of the Lut-
tinger sum rule. Oshikawa’s flux-threading argument [5,
6] shows that a specific family of the resulting states of
matter can be achieved via topological degeneracy in the
spin sector [7]. Such states, coined fractionalized Fermi
liquid (FL⇤) phases, have been realized numerically [8].
Kondo breakdown has also been proposed to understand
the phenomenology of heavy-Fermion systems [7, 9, 10],
especially in the context of materials such as YbRh2Si2
and CeCu6�xAux [11, 12].

In this article, we consider a situation intermediate
between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo-
coupled to Dirac electrons. Dimensional analysis shows
that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to
that of the pseudogap Kondo e↵ect discussed above, see
Fig. 1. The motivation to study such systems equally
stems from scanning tunneling microscopy (STM) experi-

Jk/t=∞Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

Jk/t=∞Jk/t=0

Decouple spin chain Kondo screened

Kondo breakdown  
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FIG. 1. Renormalization group flow of the Kondo coupling,
Jk, for a spin-1/2 chain on a semimetallic substrate.

ments of Co adatoms on a Cu2N/Cu(100) surfaces. Here,
recent experiments show an impressive ability to tune the
exchange coupling between adatoms as well as the cou-
pling of adatoms to the surface [13–19]. As shown in
Ref. [20], simple models amenable to negative-sign-free
quantum Monte Carlo (QMC) simulations are able to
provide a detailed account of the experiments. Another
experimental system that has qualitative resemblance
with our setup is Yb2Pt2Pb, where neutron scattering
indicates the presence of 1D spinons, and apparent ab-
sence of Kondo screening, despite the presence of three-
dimensional conduction electrons [21, 22]. In our study,
we consider conduction electrons in two dimensions with
Dirac spectrum since this choice unambiguously leads to
a Kondo-breakdown phase and phase transition, while
also allowing RG and large-N calculations and explicit
comparison to QMC numerics.

Model Hamiltionian: We consider a spin-1/2 Heisen-
berg chain on a semimetallic substrate:

Ĥ = �t
X

hi,ji,�

⇣
e

2⇡i
�0

R j
i A.dl ĉ†i ĉj + h.c.

⌘

+
Jk

2

LX

l=1

ĉ†l�ĉl · Ŝl + Jh

LX

l=1

Ŝl · Ŝl+�l. (1)

Here, t is the hopping parameter of the conduction elec-
trons, the summation

P
hi,ji runs over a square lattice

and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is a spinor where ĉ†i,"(#) creates an

electron at site i with z-component of spin 1/2 (�1/2).
We use the Landau gauge, A = B(�y, 0, 0), and tune
B such that half a flux quantum (⇡-flux) pierces each
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RG for Kondo breakdown transition
1

L =  ̄0 /@ 0 +
1

2
(@µ ~N)2 + u( ~N2)2 + 2g ~N ·  ̄0~� 0 S =

Z
ddx d⌧  ̄/@ + JK

Z
dx d⌧ ~N · ̄~� +S1d Heisenberg

Kondo coupling marginal in d = 3/2 dimensions. Physical case: d = 2.

Perform RG using -expansion where  = d-3/2, and finally set  = 1/2.ε ε ε

2

plaquette. This gauge choice allows for translation sym-
metry by one lattice site in the x-direction. Jk > 0 is
the antiferromagnetic Kondo coupling between magnetic
adatoms and conduction electrons, Jh > 0 the Heisen-
berg coupling between magnetic adatoms, L the length
of the Heisenberg chain and linear length of the square
conduction electron lattice, and Ŝl represents the spin-
1/2 operators. We use an array of adatoms at interatomic
distance �l = (1, 0) on the substrate and choose periodic
boundary conditions along the spin chain and on the sub-
strate to access the thermodynamic limit.

RG analysis: Consider the Hamiltonian in Eq. (1) at
Jk = 0. At low energies, this describes two decoupled
conformal field theories (CFT): a (2+1)-D CFT corre-
sponding to Dirac fermions, and a (1+1)-D CFT cor-
responding to SU(2)1 WZW description of the spin-1/2
Heisenberg chain (we ignore the marginal perturbations
that lead to multiplicative logarithmic corrections to the
power-law correlations in the chain). The scaling di-
mension of Dirac fermions in d space dimensions reads
� = d

2 and for the spin-1/2 chain, �S = 1
2 . At this

decoupled fixed point, the Kondo coupling has a scaling
dimension 2�2� ��S = 2�d� 1

2 = � 1
2 and is thereby

irrelevant. On the other hand, in the limit Jk ! 1
each spin-1/2 degree of freedom binds in a singlet with a
conduction electron. This one-dimensional singlet prod-
uct state, corresponding to the strong-coupling limit of
the one-dimensional Kondo lattice model [23], decouples
from the conduction electrons, and e↵ectively changes
the boundary condition in the y-direction from periodic
to open. At large but finite Jk, we expect the system to
be locally described by a heavy Fermi liquid. Assuming
these two regimes are separated by a single phase transi-
tion motivates us to find a suitable renormalization group
(RG) description of the critical point separating the two
regimes. The approach we follow is to consider (d + 1)-
dimensional Dirac fermions coupled to (1+1)-D Heisen-
berg chain. By power-counting, the Kondo coupling is
marginal in d = 3/2, which allows for an expansion in
✏ = d � 3/2, where the physical case of interest corre-
sponds to d = 2, i.e., ✏ = 1/2. Perturbing around the
Jk = 0 fixed point, the RG flow of dimensionless Kondo
coupling jk = Jk⇤✏ is given by:

djk

d ln ⇤
= ✏jk � j2

k

2
(2)

where ⇤ is an ultraviolet cuto↵, and we have kept terms
to O(j2

k
) (see Sec. I of Ref. [24] for details). The re-

sulting flow diagram is shown in Fig. 1 and the Kondo-
breakdown critical fixed point is given by jc

k
= 2✏, which

yields the correlation length exponent ⌫ = 1/✏. Due to
Lorentz invariance, the critical theory will exhibit !/T
scaling in all observables.

Large-N approximation: To formulate the large-N ap-
proximation, we use a fermion representation of the
spin degree of freedom, Ŝl = 1

2 d̂†l�d̂l and impose the

constraint d̂
†
l d̂l = 1 with d̂

†
l =

�
d̂†l,", d̂

†
l,#
�
. The in-

teraction part of the Hamiltonian can then be written
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Jh/t
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Decoupled spin chain

Kondo singlet

Spinons

FIG. 2. The zero-temperature mean-field phase diagram in
a parameter space of Jk/t and Jh/t. The critical line with
symbols separates the two phases.

as: �Jk
4

P
l

�
ĉ†l d̂l + h.c.

�2 � Jh
4

P
l

�
d̂
†
l d̂l+�l + h.c.

�2
+

U

2

P
l

�
d̂
†
l d̂l � 1

�2
. We now let the spin-index run from

1 to N , and take N to infinity, which allows us to ob-
tain the phase diagram in Fig. 2 using the saddle-point
approximation. The saddle-point variables are deter-
mined by: V =

P
�
hĉ†

l,0,�
d̂l,0,�i, � =

P
�
hd̂†

l,�
d̂

l+1,�
i

and
P
�
hd̂†

l,�
d̂l,�i = 1. The details of the calculations

are presented in Secs. II and III of Ref. [24]. Within
this approximation, Kondo breakdown corresponds to
the solution V = 0 and � 6= 0 and Kondo screening
to V 6= 0 and � 6= 0. As apparent, for each value of
Jh the mean-field solution shows a single transition. In
the limit Jh = 0, the critical value of Jk corresponds to
that of the single-impurity pseudogap Kondo problem.
Aside from the mean-field order parameters, the transi-
tion can be detected by considering the spin-spin correla-
tions along the chain. In the decoupled phase spinons are
confined to chain and the spin-spin correlations – at the
mean-field level – decay as 1/r2. In the Kondo-screened
phase, spins hybridize with the Dirac electrons. Since
the spin system is sub-extensive, the properties of the
Dirac electrons remain unchanged and the spin-spin cor-
relations along the chain inherit the 2D Dirac 1/r4 decay
(see Fig. S3 of Ref. [24]). Introducing particle-hole asym-
metry by adding next-nearest hopping (while keeping a
half-filled semimetallic state) was found to lead to similar
results within large-N [24].

QMC simulations: We have used the Algorithms for
Lattice Fermions (ALF) [25] implementation of the finite-
temperature auxiliary-field QMC algorithm [26–28]. The
perfect square form of the interaction used to formu-
late the large-N calculation complies with the standards
of the ALF-library and the model can be readily im-
plemented by decoupling the perfect square terms with
a Hubbard Stratonovich transformation. The absence
of negative sign problem follows by first carrying out

2

plaquette. This gauge choice allows for translation sym-
metry by one lattice site in the x-direction. Jk > 0 is
the antiferromagnetic Kondo coupling between magnetic
adatoms and conduction electrons, Jh > 0 the Heisen-
berg coupling between magnetic adatoms, L the length
of the Heisenberg chain and linear length of the square
conduction electron lattice, and Ŝl represents the spin-
1/2 operators. We use an array of adatoms at interatomic
distance �l = (1, 0) on the substrate and choose periodic
boundary conditions along the spin chain and on the sub-
strate to access the thermodynamic limit.

RG analysis: Consider the Hamiltonian in Eq. (1) at
Jk = 0. At low energies, this describes two decoupled
conformal field theories (CFT): a (2+1)-D CFT corre-
sponding to Dirac fermions, and a (1+1)-D CFT cor-
responding to SU(2)1 WZW description of the spin-1/2
Heisenberg chain (we ignore the marginal perturbations
that lead to multiplicative logarithmic corrections to the
power-law correlations in the chain). The scaling di-
mension of Dirac fermions in d space dimensions reads
� = d

2 and for the spin-1/2 chain, �S = 1
2 . At this

decoupled fixed point, the Kondo coupling has a scaling
dimension 2�2� ��S = 2�d� 1

2 = � 1
2 and is thereby

irrelevant. On the other hand, in the limit Jk ! 1
each spin-1/2 degree of freedom binds in a singlet with a
conduction electron. This one-dimensional singlet prod-
uct state, corresponding to the strong-coupling limit of
the one-dimensional Kondo lattice model [23], decouples
from the conduction electrons, and e↵ectively changes
the boundary condition in the y-direction from periodic
to open. At large but finite Jk, we expect the system to
be locally described by a heavy Fermi liquid. Assuming
these two regimes are separated by a single phase transi-
tion motivates us to find a suitable renormalization group
(RG) description of the critical point separating the two
regimes. The approach we follow is to consider (d + 1)-
dimensional Dirac fermions coupled to (1+1)-D Heisen-
berg chain. By power-counting, the Kondo coupling is
marginal in d = 3/2, which allows for an expansion in
✏ = d � 3/2, where the physical case of interest corre-
sponds to d = 2, i.e., ✏ = 1/2. Perturbing around the
Jk = 0 fixed point, the RG flow of dimensionless Kondo
coupling jk = Jk⇤✏ is given by:

djk

d ln ⇤
= ✏jk � j2

k

2
(2)

where ⇤ is an ultraviolet cuto↵, and we have kept terms
to O(j2

k
) (see Sec. I of Ref. [24] for details). The re-

sulting flow diagram is shown in Fig. 1 and the Kondo-
breakdown critical fixed point is given by jc

k
= 2✏, which

yields the correlation length exponent ⌫ = 1/✏. Due to
Lorentz invariance, the critical theory will exhibit !/T
scaling in all observables.

Large-N approximation: To formulate the large-N ap-
proximation, we use a fermion representation of the
spin degree of freedom, Ŝl = 1

2 d̂†l�d̂l and impose the

constraint d̂
†
l d̂l = 1 with d̂

†
l =

�
d̂†l,", d̂

†
l,#
�
. The in-

teraction part of the Hamiltonian can then be written
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FIG. 2. The zero-temperature mean-field phase diagram in
a parameter space of Jk/t and Jh/t. The critical line with
symbols separates the two phases.

as: �Jk
4

P
l

�
ĉ†l d̂l + h.c.

�2 � Jh
4

P
l

�
d̂
†
l d̂l+�l + h.c.

�2
+

U

2

P
l

�
d̂
†
l d̂l � 1

�2
. We now let the spin-index run from

1 to N , and take N to infinity, which allows us to ob-
tain the phase diagram in Fig. 2 using the saddle-point
approximation. The saddle-point variables are deter-
mined by: V =

P
�
hĉ†

l,0,�
d̂l,0,�i, � =

P
�
hd̂†

l,�
d̂

l+1,�
i

and
P
�
hd̂†

l,�
d̂l,�i = 1. The details of the calculations

are presented in Secs. II and III of Ref. [24]. Within
this approximation, Kondo breakdown corresponds to
the solution V = 0 and � 6= 0 and Kondo screening
to V 6= 0 and � 6= 0. As apparent, for each value of
Jh the mean-field solution shows a single transition. In
the limit Jh = 0, the critical value of Jk corresponds to
that of the single-impurity pseudogap Kondo problem.
Aside from the mean-field order parameters, the transi-
tion can be detected by considering the spin-spin correla-
tions along the chain. In the decoupled phase spinons are
confined to chain and the spin-spin correlations – at the
mean-field level – decay as 1/r2. In the Kondo-screened
phase, spins hybridize with the Dirac electrons. Since
the spin system is sub-extensive, the properties of the
Dirac electrons remain unchanged and the spin-spin cor-
relations along the chain inherit the 2D Dirac 1/r4 decay
(see Fig. S3 of Ref. [24]). Introducing particle-hole asym-
metry by adding next-nearest hopping (while keeping a
half-filled semimetallic state) was found to lead to similar
results within large-N [24].

QMC simulations: We have used the Algorithms for
Lattice Fermions (ALF) [25] implementation of the finite-
temperature auxiliary-field QMC algorithm [26–28]. The
perfect square form of the interaction used to formu-
late the large-N calculation complies with the standards
of the ALF-library and the model can be readily im-
plemented by decoupling the perfect square terms with
a Hubbard Stratonovich transformation. The absence
of negative sign problem follows by first carrying out

Note: RG is being done by perturbing an interacting fixed-point,

conformal perturbation theory useful.
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Bimla Danu,1, ⇤ Matthias Vojta,2, † Fakher F. Assaad,1, ‡ and Tarun Grover3, §

1Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat,
Universität Würzburg, 97074 Würzburg, Germany

2Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat,
Technische Universität Dresden, 01062 Dresden, Germany

3Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
(Dated: May 22, 2020)

We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional
Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed-point, leading to the
existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a
phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group
analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations.
We extract quantities such as the zero-bias tunneling conductance which will be relevant to future
experiments involving adatoms on semimetals such as graphene.

The antiferromagnetic Kondo coupling, Jk, between a
spin-1/2 degree of freedom and a Fermi sea with finite
density of states at the Fermi energy is (marginally) rel-
evant: Jk flows to strong coupling and the impurity is
screened. If, in contrast, the density of states shows
a power-law pseudogap behavior, the Kondo coupling
is irrelevant at the decoupled fixed point, and the spin
remains unscreened at weak coupling. Since for large
Kondo coupling screening is present, a novel Kondo-
breakdown quantum critical point emerges [1, 2, 3]. The
decoupled as well as Kondo-screened phase share the
same symmetry properties.

In the context of Kondo lattices, the numbers of both
conduction electrons and impurity spins scale with the
volume of the system. In the Kondo-screened para-
magnetic (i.e. heavy Fermi liquid) phase, the volume
enclosed by the Fermi surface (i.e. Luttinger volume)
counts both spins and electrons. A Kondo-breakdown
transition (equivalently, an orbital-selective Mott tran-
sition [4]), which, as above, does not involve symmetry
breaking, implies that the spins drop out from the Lut-
tinger count. For the case of an odd number of electrons
and spins per unit cell, this leads to a violation of the Lut-
tinger sum rule. Oshikawa’s flux-threading argument [5,
6] shows that a specific family of the resulting states of
matter can be achieved via topological degeneracy in the
spin sector [7]. Such states, coined fractionalized Fermi
liquid (FL⇤) phases, have been realized numerically [8].
Kondo breakdown has also been proposed to understand
the phenomenology of heavy-Fermion systems [7, 9, 10],
especially in the context of materials such as YbRh2Si2
and CeCu6�xAux [11, 12].

In this article, we consider a situation intermediate
between Kondo impurity and Kondo lattice: a one-
dimensional (1D) Heisenberg chain which is Kondo-
coupled to Dirac electrons. Dimensional analysis shows
that, at the decoupled fixed point, the Kondo coupling
is irrelevant, thus leading to an RG flow very similar to
that of the pseudogap Kondo e↵ect discussed above, see
Fig. 1. The motivation to study such systems equally
stems from scanning tunneling microscopy (STM) experi-

Jk/t=∞Jk/t=0

Decoupled spin chain Kondo screened

Kondo breakdown  
critical point

Jk/t=∞Jk/t=0

Decouple spin chain Kondo screened

Kondo breakdown  
critical point

FIG. 1. Renormalization group flow of the Kondo coupling,
Jk, for a spin-1/2 chain on a semimetallic substrate.

ments of Co adatoms on a Cu2N/Cu(100) surfaces. Here,
recent experiments show an impressive ability to tune the
exchange coupling between adatoms as well as the cou-
pling of adatoms to the surface [13–19]. As shown in
Ref. [20], simple models amenable to negative-sign-free
quantum Monte Carlo (QMC) simulations are able to
provide a detailed account of the experiments. Another
experimental system that has qualitative resemblance
with our setup is Yb2Pt2Pb, where neutron scattering
indicates the presence of 1D spinons, and apparent ab-
sence of Kondo screening, despite the presence of three-
dimensional conduction electrons [21, 22]. In our study,
we consider conduction electrons in two dimensions with
Dirac spectrum since this choice unambiguously leads to
a Kondo-breakdown phase and phase transition, while
also allowing RG and large-N calculations and explicit
comparison to QMC numerics.

Model Hamiltionian: We consider a spin-1/2 Heisen-
berg chain on a semimetallic substrate:

Ĥ = �t
X

hi,ji,�

⇣
e

2⇡i
�0

R j
i A.dl ĉ†i ĉj + h.c.

⌘

+
Jk

2

LX

l=1

ĉ†l�ĉl · Ŝl + Jh

LX

l=1

Ŝl · Ŝl+�l. (1)

Here, t is the hopping parameter of the conduction elec-
trons, the summation

P
hi,ji runs over a square lattice

and ĉ†i =
�
ĉ†i,", ĉ

†
i,#

�
is a spinor where ĉ†i,"(#) creates an

electron at site i with z-component of spin 1/2 (�1/2).
We use the Landau gauge, A = B(�y, 0, 0), and tune
B such that half a flux quantum (⇡-flux) pierces each
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QMC simulations for Kondo breakdown
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FIG. 3. Equal-time spin-spin correlation function, C(r), as a
function of distance r along the spin chain on a log-log scale
for various values of Jk/t at Jh/t = 1 and Lx = Ly = L =
�. The grey dashed line corresponds to 1/r decay and the
corresponding static spin structure factors S(k) are shown in
the insets.

a partial particle-transformation, d̂†l," ! eiQ·ld̂l,", and

ĉ†l," ! �eiQ·lĉl,", and then using time reversal symme-
try to prove that the eigenvalues of the fermion matrix
occur in complex conjugate pairs. For a given system of
linear length L, the QMC simulations are performed at
an inverse temperature �(= 1/kBT ) = L and at a fix
Jh/t = 1. At L = 20 we checked that the the choice
� = 2L shows similar results as � = L. For the con-
sidered periodic boundary conditions, L = 4n + 2 corre-
sponds to open-shell configurations and is known to show
less finite-size e↵ects than L = 4n + 4 sized systems.

QMC results: Fig. 3 plots the spin-spin correlations
C(r) = 4hŜz

0 Ŝz

r
i as a function of distance r for various

values of Jk/t. In the limit of vanishing Kondo coupling,
our results are consistent with the exact asymptotic form:
C(r) / (�1)r

p
ln r/r. The 1/r decay of the spin-spin

correlations in the Heisenberg model, is tied to SU(2)
spin symmetry. If the Kondo coupling is irrelevant, then
we expect

P
l Ŝl to remain a good quantum number of

the low-energy e↵ective theory. Thereby the asymptotic
form of the spin-spin correlations should equally follow a
(�1)r/r form. Remarkably, the data supports this point
of view up to Jk/t . 2. On the other hand, in the Kondo-
screened phase for Jk/t & 2, the equal-time correlations
decay with a power larger than unity. In this phase, we
expect the spin-spin correlations to inherit the power-law
of the Dirac fermions hŜz,c

l Ŝz,c

l+ri / 1/r4. (see Fig. S3
of Ref. [24]). The insets of Fig. 3 plot the static spin
structure factor S(k) = 1

L

P
r
e�ik·rC(r) as a function of

momentum k. Noticeably, both at Jk = 0 and Jk/t = 1.5
we observe systematic growth of S(k) at k = ⇡, reflecting
the (�1)r/r real space decay. At Jk/t = 2 we observe a
cusp feature but a saturation of S(k = ⇡) with system
size thus suggesting a power law with exponent 1 < K� <
2. Finally, in the Kondo-screened phase at Jk/t = 3,
S(k) converges to a smooth function implying K� > 2.
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FIG. 4. Left: Magnetic susceptibility �(k = ⇡) as a function
of Jk/t for Jh/t = 1 and � = L. Right: Plots @F/@Jk as a
function of Jk/t.
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FIG. 5. Dynamical spin structure factor, S(k, !), along spin
chain as a function of energy (!/t) and momentum (k) for
L = � = 44 at Jh/t = 1.

A detailed overview of the QMC data is given in Sec. IV
of Ref. [24].

To confirm the above, we have computed the spin sus-

ceptibility �(k) =
R

�

0 d⌧S(k, ⌧) with S(k, ⌧) given as:

S(k, ⌧) =
X

r

e�ik·rhSz(r, ⌧)Sz(r = 0, ⌧ = 0)i. (3)

Lorentz invariance, inherent to spin chains, renders space
and time interchangeable such that the time displaced
correlation function scales as 1/

p
r2 + (vs⌧)2 with vs the

spin velocity. Setting � = L, we hence expect �(k = ⇡)
to diverge as L. Fig. 4 (a) plots �(k = ⇡) at � = L =
4n + 2. A similar data at L = 4n + 4 can be found in
Fig. S8 of Ref. [24]. For both cases we see two phases,
one in which �(k = ⇡) scales as L and one in which it
scales to a L-independent constant. In Fig. 4 (b) we plot
1
L

@F

@Jk
= 2

3L

P
L

l=1hĉ
†
l�ĉl · Ŝli so as to inquire the nature

of the transition. The data favors a smooth curve, and
hence a continuous quantum phase transition.

We now consider the dynamical spin structure factor,
that relates to the imaginary-time correlation functions
through S(k, ⌧) = 1

⇡

R
d! e

�⌧!

1�e��! �00(k, !). To extract

S(k, !) = �
00(k,!)

1�e��! , we use the ALF-implementation of the
stochastic analytical continuation algorithm [29]. The

Spin-spin correlations decay as  for 


and as  for 

(−1)r log(r) /r JK < JK,c

(−1)r /r4 JK > JK,c
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FIG. S10. Dynamical spin structure factor, S(k, !), as a function of energy (!/t) and momentum (k) along the spin chain for
various values of Jk/t on � = L = 34 size systems.
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FIG. S11. Single particle excitations, A0(k, !), as a function of energy (!/t) and momentum (k) along Kondo coupled row of
conduction electrons for various values of Jk/t on � = L = 34 size systems.
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FIG. 6. Conduction-electron spectral function, A0(k, !), as a
function of energy (!/t) and momentum (k) on L = � = 44
lattice at Jh/t = 1.

excitation spectrum of the isolated spin-1/2 Heisenberg
chain is well understood and consists of a two-spinon con-
tinuum bounded by ⇡

2 Jh sin(k)  !(k)  ⇡Jh sin
�

k

2

�
.

Fig. 5 plots the dynamical spin spectral function for dif-
ferent values of Jk/t. Remarkably, the spin dynamics of
the Heisenberg chain remains una↵ected by conduction
electron for Jk/t . 2. In the screened phase at Jk/t > 2
spinons bind and low-energy spectral weight is depleted.

In Kondo lattices, a Kondo-breakdown transition im-
plies an abrupt change of the Luttinger volume. In
our setup such a notion cannot be applied since the lo-
calized spin-1/2 moments are sub-extensive. Neverthe-
less, we can consider the spectral function of the con-
duction electrons that directly couple to the localized
spin-1/2 moments and investigate how it evolves across
the transition. Let An(k, !) = � 1

⇡
ImGret

n
(k, !) with

Gret
n

(k, !) = �i
R1
0 dtei!t

P
�
h{ĉk,n,�(0), ĉ†

k,n,�
(t)}i. In

the considered Landau gauge, translation symme-
try is present along the x-direction and ĉk,n,� =
1p
L

P
L

m=1 eikmĉi=(m,n),� is the partial Fourier transform.

Fig. 6 plots A0(k, !) corresponding to the conduction
electrons that couple to the Heisenberg chain. At Jk = 0
the spectral function shows a dominant ✏(k) = 2t cos(ka)
dispersion. In the Kondo-breakdown phase and even at
relatively large values of Jk/t = 1.5 we observe no signs
of hybridization with the spins. In contrast in the Kondo-
screened phase, Jk/t & 2, a clear signature of hybridiza-
tion is apparent.

STM experiments of magnetic adatoms on metallic
surfaces, separated by an insulating bu↵er layer shown
in Ref. [13, 14], measure tunneling between tip and
substrate occurring through the localized orbitals. In
our setup we can access this quantity by carrying out
a Schrie↵er-Wol↵ transformation of the localized elec-
tron creation operator in the realm of the Anderson
model [20, 30, 31]. In particular, Al(!) = �ImGret

l (!)

with Gret
l (!) = �i

R1
0 dtei!t

P
�

⌦�
c̃l,�(t), c̃†l,�(0)

 ↵
and

c̃†l,� = ĉ†l,��
Ŝ�

l + �ĉ†l,�Ŝz

l . Here � = ± runs over the
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FIG. 7. Zero-bias tunneling through the magnetic adatom.

two spin polarizations and Ŝ±
l = Ŝx

l ± iŜy

l . To evaluate
the zero-bias tunneling signal we estimate Al(! = 0) '
1
⇡
�Gl(⌧ = �/2). Fig. 7 plots this quantity. Remarkably,

in the Kondo-breakdown phase, we are not able to dis-
tinguish the signal from zero. This supports the notion
that spins and conduction electrons decouple at low en-
ergies. As Jk ! 1 the spin binds in a singlet with the
conduction electron and the tunneling signal through the
adatom drops. A more detailed numerical analysis [32,
33] of the STM signal across the transition is certainly of
great interest.

Conclusion: We have shown that a one-dimensional
spin chain coupled via a Kondo interaction to 2D Dirac
fermions provides a realization of a continuous Kondo-
breakdown transition. Weak coupling Jk is irrelevant and
gapless spinons exist while propagating along the one-
dimensional chain. The reason for the absence of Kondo
screening in this phase is qualitatively similar to its ab-
sence at deconfined quantum critical points in 2D [34]: in
both cases, the anomalous dimension of the spin operator
is ‘large’ due to fractionalization, which makes conduc-
tion electrons ine↵ectual at Kondo screening. Beyond the
transition, Kondo screening appears and gapless spinons
bind. The Kondo-screened phase is adiabatically con-
nected to the strong-coupling limit, where each spin binds
with a conduction electron into a spin singlet. Larger sys-
tems will be needed to determine the critical exponents
such as the anomalous dimension of the local moments.
In addition, since the number of adatoms in experiments
is tunable [14–16], it will be very useful to determine how
many of them are needed to resolve Kondo breakdown in
an interacting spin chain.

The choice of Dirac fermions which only possess Fermi
points simplifies the problem and allows for an RG anal-
ysis. This is in contrast to the conventional Hertz-Millis-
Moriya approach [35–37] where one integrates out the
fermions to obtain an e↵ective non-local action for local
moments. Indeed, past work on Fermi surface coupled
to a spin-chain employed Hertz-Millis-Moriya approach,
and concluded that the Kondo interaction is relevant
(marginal) for an XXZ (Heisenberg) chain, thus desta-
bilizing the Luttinger liquid for infinitesimal Kondo cou-
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is realized by Kondo coupling a variant of the Balents-Fisher-
Girvin (BFG) model [25–27], first introduced in Ref. [28],
to conduction electrons. The BFG model supports a transi-
tion from a ferromagnetic phase to a gapped Z2 spin-liquid
(Fig. 1(a)). When this model is weakly coupled to conduction
electrons, the spin-liquid gives way to an FL* phase where
the conduction electrons form a Dirac semi-metal, while the
local moments continue to form a Z2 spin-liquid (Fig.1(b)).
Since our unit cell contains two c-electrons and three f-spins,
this result stands at odds with the Luttinger sum rule. As the
Kondo coupling is increased beyond a threshold, one loses the
topological order of local moments, and enters a conventional
phase with electron like quasiparticles. We will characterize
the Kondo breakdown by studying the spectral function of the
conduction electrons, and also via the mutual information be-
tween the conduction electrons and local moments.

Model and limiting cases: We investigate the following
generalized Kondo lattice model (KLM) described by Ĥ =
Ĥc + ĤS + ĤK with:

Ĥc = �t

X

hxxx,yyyi,�

ĉ
†
xxx,� ĉyyy,� + h.c. (1)

ĤS = �J
?
X

hiii,jjji

⇣
Ŝ
f,+
iii Ŝ

f,�
jjj + h.c.

⌘
+ J

z
X

7

⇣
Ŝ
f,z
7

⌘2

ĤK = JK

X

hxxx,iiii

h
Ŝ
c,z
xxx Ŝ

f,z
iii � (�1)xxx

⇣
Ŝ
c,+
xxx Ŝ

f,�
iii + h.c.

⌘i
.

Here, ĉ
†
xxx,� creates a conduction electron in a Wannier

state centered at xxx with a z-component of spin �, SSS
c
xxx =

1
2

P
s,s0 ĉ

†
xxx,s�s,s0 ĉxxx,s0 is the spin operator and hxxx,yyyi are the

nearest neighbors of a honeycomb lattice. SSS
f
iii is a spin-1/2

degree of freedom located on the kagome lattice correspond-
ing to the median of the honeycomb lattice (see Fig.2). The
Hamiltonian ĤS is a variant of the BFG model (Ref. [25, 28])
with nearest neighbor, hiii, jjji, spin flip amplitude J

? and in-
teraction, Jz that minimizes the total z-component of spin on
a hexagon: Ŝ

f,z
7 =

P
iii27 Ŝ

f,z
iii . The conduction electrons

and the local moments are Kondo coupled, according to ĤK ,
along nearest neighbor bonds hxxx, iiii between the kagome and
Honeycomb lattices (Fig. 2). The factor (�1)xxx that takes the
value 1 (�1) on the A (B) sublattice of the Honeycomb lattice
is necessary to avoid the negative sign problem. In particular
it cannot be gauged away since the kagome lattice is not bipar-
tite. Referring back to Fig.1, Jz plays the role of frustration,
and JK is the Kondo coupling.

Let us consider various limiting cases of the Hamiltonian
Ĥ . When J

? � J
z
, JK , the local moments order in an

an XY -ferromagnetic ground state. Taking into account the
(�1)xxx factor in the Kondo coupling, we see that this terms
induces an anti-ferromagnetic in-plane mass term for the con-
duction electrons. Hence, in this limit one obtains a magneti-
cally ordered insulating phase.

Next, consider JK � J
? & J

z
, t. First, let us set all

couplings except JK to zero. Performing the unitary transfor-
mation ĉxxx,# ! �(�1)xxxĉx,# maps the Kondo interaction to an

FIG. 2. (color online) Left: The model - The conduction (c-
) electrons hop, with matrix element t, between nearest neighbor
sites of the honeycomb lattice denoted by the red and blue circles.
The kagome lattice (black) supports impurity spins described by the
Balents-Fisher-Girvin model with nearest neighbor spin-flip J? and
interactions on hexagons of strength Jz (green). The two systems
are Kondo-coupled with strength JK for each bond in the elemental
triangles (thick red and blue bonds). For details see Eq. (1). Right:

Various patches � used to extract the Renyi mutual information. Sub-
sets (b) and (c) belong to the triangle sequence, (d) and (e) are built
out of unit cells.

anti-ferromagnetic Heisenberg coupling between the conduc-
tion electrons and the local moments. This interaction is not
frustrated, and the ground state is AFM ordered with opposite
polarizations on the kagome sites and the Honeycomb lattice.
Undoing the above transformation, the in-plane magnetization
of the conduction electrons will be parallel for one honeycomb
sublattice and anti-parallel for the other, relative to the local
moments. Next, turning on a small J?

, J
z with J

? & J
z , the

local moments will preferably order in the XY plane. Com-
paring to the limit J? � J

z
, JK , one finds that the in-plane

symmetry breaking pattern is identical and in the absence of
any out-of-plane component, this phase is expected to be adi-
abatically connected to the aforementioned magnetically or-
dered insulating phase in the J

? � J
z
, JK limit. Note that

an out-of-plane component will spontaneously break the sym-
metry Ŝ

f,z
iii ! �Ŝ

f,z
iii , Ŝ

f,x
iii ! Ŝ

f,x
iii , Ŝ

f,y
iii ! Ŝ

f,y
iii (see the

supplemental material for a detailed discussion of the symme-
tries). Due to symmetry breaking and associated stiffness, this
phase is stable also to switching on a small hopping t.

Most interesting is the limit J
z � J

? � JK . When
only J

z and t are non-zero, the conduction electrons form a
Dirac semimetal while the local moments can be described as
a classical system with a ground state degeneracy that scales
exponentially with the system size [25]. Allowing a small
J
?
/J

z ⌧ 1 lifts this macroscopic degeneracy and leads to
a Z2 topologically ordered spin liquid of the local moments
[25]. Remarkably, as discussed in Refs. [7, 8], introducing a
small Kondo coupling JK leaves the state unchanged because
perturbatively the Kondo coupling is irrelevant at the renor-
malization group fixed point where conduction electrons form
a Dirac semimetal while the local moments are in a gapped Z2

topologically ordered state. Therefore, at low energies, the lo-
cal moments decouple from the conduction electrons and one
obtains a non-Fermi liquid FL* phase with a ‘small’ Fermi
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Ĥ . When J

? � J
z
, JK , the local moments order in an

an XY -ferromagnetic ground state. Taking into account the
(�1)xxx factor in the Kondo coupling, we see that this terms
induces an anti-ferromagnetic in-plane mass term for the con-
duction electrons. Hence, in this limit one obtains a magneti-
cally ordered insulating phase.

Next, consider JK � J
? & J

z
, t. First, let us set all

couplings except JK to zero. Performing the unitary transfor-
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f,y
iii ! Ŝ
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xxx,� ĉyyy,� + h.c. (1)
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Ŝ
c,z
xxx Ŝ
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a classical system with a ground state degeneracy that scales
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a Z2 topologically ordered spin liquid of the local moments
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perturbatively the Kondo coupling is irrelevant at the renor-
malization group fixed point where conduction electrons form
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Kondo Breakdown via Fractionalization in a Frustrated Kondo Lattice Model
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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† assaad@physik.uni-wuerzburg.de
‡ tagrover@ucsd.edu

Ko
nd

o	
co
up

lin
g

Magne/c	
insulator	

Frustra/on

Gapped								spin-liquid

FL*

	Ferromagnet

Frustra/on
(a)

(b)

FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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= Fractionalized Fermi liquid

FL* phase has a small Fermi surface, i.e. violates Luttinger theorem,

 and has no non-trivial quadratic mean-field description.


The spins enter a Z2 spin-liquid, and decouple from the conduction electrons 

which form a Dirac semi-metal.

[Hofmann, Assaad, TG 2018]



Cartoon of fractionalized Fermi liquid (FL*)

Spins form a gapped RVB state. The fermions

decouple from spins and form a small Fermi surface.

[Senthil, Vojta, Sachdev (2003)]
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FIG. 3. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at Jz = 7.5 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) Same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
cient of the Renyi mutual information at the transition.

Conclusion and discussion: In this paper we introduced a
model amenable to negative sign free Monte Carlo simula-
tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the

FIG. 4. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at JK = 1 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
cient of the Renyi mutual information at the transition.

Conclusion and discussion: In this paper we introduced a
model amenable to negative sign free Monte Carlo simula-
tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the
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as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.
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proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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surface which was introduced in Refs.[7, 8]. Physically, in this
phase the local moments are highly entangled with each other
such that the formation of Kondo singlets or the tendency to
magnetically order is suppressed.

The phases discussed above, especially the FL* phase,
should be contrasted with the conventional heavy Fermi liq-
uid that satisfies the Luttinger sum rule. Since our model has
two electrons and three spins per unit cell, the most prominent
feature is that this state has a ‘large’ Fermi surface which en-
closes half of the BZ whereas the Fermi volume of the afore-
mentioned fractionalized FL* phase vanishes. The nature of
the Fermi liquid state strongly depends on symmetries. If par-
ticle hole-symmetry (PHS) is imposed in the paramagnetic
phase, then one would expect a flat-band pinned at the Fermi
level, a generically unstable state [29–37]. A hybridization be-
tween c- and f -electrons necessarily breaks either PHS - with
uniform hybridization - or TRS - when the (�1)xxx phase in the
Kondo coupling is carried over to the hybridization. The latter
requires fine-tuning to remain paramagnetic whereas the for-
mer can generate a non-magnetic heavy Fermi liquid. In the
range of parameters considered in this paper, we do not find
such a phase. A more detailed discussion can be found in the
supplemental material.

Method and observables: We simulate the Hamiltonian in
Eq. (1) using the auxiliary field quantum Monte Carlo (QMC)
method [38–40]. We follow the strategy outlined in Ref. [24]
where it was shown that Hamiltonians of the form Ĥ do not
suffer from fermion sign problem when J

? � 0 and the con-
duction bands are particle-hole symmetric. In this approach
local moments are fermionized, SSSf

iii = 1
2

P
s,s0 f̂

†
iii,s�s,s0 f̂iii,s0 ,

with the constraint
P

s f̂
†
iii,sf̂iii,s = 1. As in simulations of the

generic Kondo lattice model [41, 42] this constraint can be
imposed very efficiently since it corresponds to a local con-
servation law. The details of our implementation are sum-
marized in the supplemental material and we have used the
ALF package [43] to carry out the simulations. Despite the
absence of sign problem, the simulations of this model are
challenging. Fermionization leads to a large number of aux-
iliary fields (33 per unit cell), and the condition number on
scales corresponding to the ratio of band width to the small-
est relevant scale (e.g. vison gap in the Z2 spin liquid phase)
is large. As a consequence, we have used an imaginary time
step �⌧ t = 0.01. The biggest challenge turns out to be large
autocorrelation times. We tried to improve this issue by using
global moves that mimic vison excitations, as well as by im-
plementing parallel tempering schemes. Nevertheless, these
long autocorrelation times remain the limiting factor to ac-
cess system sizes bigger than those presented here, in partic-
ular 3 ⇥ 3 and 6 ⇥ 3 unit cells. For both lattices sizes, and
the considered periodic boundary conditions, Dirac points are
present. However, only the 6 ⇥ 3 allows to satisfy Ŝ

f,z
7 = 0

for all hexagons.
We compute spin-spin correlations SAFM =

1/L
P

IIIJJJhŜx
III Ŝ

x
JJJ + Ŝ

y
III Ŝ

y
JJJi where the net spin per unit

cell III , ŜSSIII =
P

iii2III ŜSS
f

iii +
P

xxx2III(�1)xxxŜSS
c

xxx, captures the

aforementioned ferromagnetic-antiferromagnetic order of the
f-spins and conduction electrons. The spectral function of the
conduction electrons Ac(kkk,!) = � 1

⇡ Im G
ret
c (kkk,!) can be

extracted from the imaginary time resolved Greens function
Gc(kkk, ⌧) =

P
↵,�hĉ

†
kkk,↵,�(⌧)ĉkkk,↵,�(0)i using the MaxEnt

method [44, 45]. Here ↵ is the orbital index. The auxiliary
field QMC method also allows to study the entanglement
properties of fermionic models [46–51]. In particular, as
shown in Refs. [47, 48], the second Renyi entropy S2 can
be computed from the knowledge of Greens-functions GA,
restricted to subsystem A for two independent Monte Carlo
samples. An alternative approach exploits the replica trick,
e.g. for fermionic [52–55], bosonic [28], and spin systems
[56, 57]. For a given subsystem of conduction electrons �c

and of spins �f , the Renyi mutual information between �c

and �f is I2(�c,�f ) ⌘ S2(�c [ �f ) � S2(�c) � S2(�f ).
We use the two sequences for � as shown in Fig. 2(b), (c)
and, Fig. 2(d),(e). In the calculation of the Renyi mutual
information we restore the C3 lattice symmetry by averaging
over rotationally equivalent �s.

Results: From here on, we fix J
? = t and use t = 1 as

the unit of energy. The BFG model shows a transition from
the ferromagnetic state to the Z2 spin liquid at Jz

c ' 7.07
[28]. Alongside with spin excitations, the Z2 spin liquid hosts
vison excitations. Recent simulations of the dynamics of the
BFG model [58] estimate the spin and vison gaps at Jz = 8.3
to �s ' 7.12 and �v ' 0.2. We expect that the vison gap
remains non-zero at the transition and that the spin gap scales
as (Jz � J

z
c )

⌫z with dynamical critical exponent z = 1 and
⌫ ' 0.67, which correspond to the exponents of the 3D XY*
model [26, 59, 60].

Fig. 3 shows a scan at Jz = 7.5 as a function of JK . We
have set the temperature to � = 12. From the above dis-
cussion, this choice of temperature places us well below the
spin gap and allows us to resolve the vison gap. As apparent
in Fig. 3(c), the single particle spectral function at the Dirac
point remains gapless. As a function of JK it looses spectral
weight and a full gap opens sightly before JK = 1.5. At this
energy scale the spin-spin correlations SAFM show a marked
upturn (see Fig. 3(a)). In the presence of long ranged magnetic
order SAFM scales as the volume of the system. Comparison
between the 3⇥ 3 and 3⇥ 6 lattices shows that SAFM grows
as a function of system size beyond JK = 1.5.

Small values of JK are associated with small energy scales
which may be difficult to resolve on our finite sized systems
at finite temperatures. To confirm above result, we present a
scan at fixed JK = 1 and vary J

z in Fig. 4. Upon analysis
of Figs. 4(a) and 4(c) one concludes that the magnetic order
and the single particle gap track each other. In particular the
single particle gap closes in the Z2 spin liquid phase.

Signatures of the Z2 spin liquid phase can be picked up in
the spectrum of the conduction electrons. In Fig. 3(d) and
Fig. 4(d) we plot the single particle spectral function at the �
point. One notices that in the FL* phase, spectral weight at
low energies is apparent. We associate this feature with the
vison excitations of the Z2 spin liquid.
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Kondo Breakdown via Fractionalization in a Frustrated Kondo Lattice Model
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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FIG. 3. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at Jz = 7.5 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) Same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

It is interesting to consider other measures for Kondo
screening. The Renyi mutual information I2 between the c-
electrons and the f-spins introduced above provides one such
measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
tion between two Hilbert spaces that overlap in real space.
Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
couple. In the opposite limit when the c-electrons and f-spins
are maximally entangled, the Renyi mutual information will
attain its maximum possible value of 4 log(2)/5 per site (re-
call that the unit cell of our model contains three f-spins and
two c-electrons ). In the magnetically ordered phase, one ex-
pects that the Renyi mutual information will not be close to
this maximum due to the entanglement between the local mo-
ments themselves. From Fig. 3 (b) and Fig. 4 (b) we see that
the QMC data is consistent with this expectation. The most
notable feature is that the Renyi mutual information per site is
an order of magnitude smaller in the FL* phase compared to
the magnetically ordered phase. Furthermore, even on a lim-
ited size lattices such as ours, one can already see signatures
of the transition from the magnetically ordered phase to the
FL* phase as evidenced by the change of slope in the coeffi-
cient of the Renyi mutual information at the transition.

Conclusion and discussion: In this paper we introduced a
model amenable to negative sign free Monte Carlo simula-
tions that can host a fractionalized Fermi liquid (FL*) phase.
The most prominent feature of this phase is a violation of the

FIG. 4. (color online) We consider lattices L = 3⇥3 and L = 3⇥6
unit cells at an inverse temperature � = 12 and at JK = 1 (a) Spin-
spin correlations SAFM (See text), (b) Renyi mutual informations
I2(�c,�f ) per site of the patch �c [ �f for L = 3 ⇥ 6. Here we
consider the patches listed in Fig. 2(b)-(e). (c) Conduction electron
spectral function at the Dirac point KKK for the 3⇥ 6 lattice. (d) same
as (c), but at the �-point. The imaginary time data from which panels
(c) and (d) stem are presented in the supplemental material.

Luttinger theorem due to the onset of topological order. This
proof of principle calculation paves the way to many other in-
vestigations. We have considered a model where the fraction-
alization inherent to topological order is ‘emergent’ i.e. the
lattice model is written in terms of spins. A different, and pos-
sibly numerically more tractable approach would be to simu-
late directly a theory of spinons coupled to Z2 gauge fields
following Refs. [61–63] and where spinons are also Kondo
coupled to conduction electrons. Such an approach might be
particularly useful for studying the quantum phase transition
between the FL* phase and the magnetically ordered phase.
A field theory description of this transition was provided in
Ref.[60] where it was found that the Kondo coupling is irrele-
vant at the critical point due to the large anomalous exponent
of the spins, and therefore one expects that the conduction
electrons have a well defined electron-like quasiparticle even
at the critical point, while the local moments will inherit the
critical exponents of the 3D XY* transition [26, 59].

It might be also interesting to explore the possibility of ob-
taining non-trivial symmetry protected topological phases in
frustrated Kondo models along the lines of Ref. [64] where it
was shown that under certain conditions, one can obtain sym-
metric states without any topological order even when the unit
cell contains an odd number of spins but the magnetic unit cell
has an integral number of spins.

Another avenue to explore would be the universal sublead-
ing contribution of the Renyi entanglement entropy for a spa-
tial bipartition. In the FL* phase one expects that this contri-
bution is given as � = �topo + �Dirac, where �topo = log(2)
is the topological entanglement entropy corresponding to the
topological order of the local moments, while �Dirac is the
shape-dependent universal contribution from the Dirac con-
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measure. It is important to note that this quantity is both IR
and UV sensitive since we are considering mutual informa-
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Despite the decoupling of conduction electrons and local mo-
ments at low energies in the FL* phase, one therefore doesn’t
except that the mutual information will be exactly zero in this
phase. It vanishes only at the RG fixed point corresponding
to JK = 0, where these two Hilbert spaces completely de-
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are maximally entangled, the Renyi mutual information will
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We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the
kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model
that is known to host a Z2 spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary
field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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the critical point is rather unconventional, and


has a rather large anomalous dimension.

⟨S+( ⃗r, τ)S−(0,0)⟩ ∼
1

(r2 + τ2)1+η

 𝜂 1.37 > 1 

(for Wilson-Fisher fixed point, 𝜂  0.03)

≈
≈

[Chubukov, Senthil, Sachdev, 1994; 
Isakov, Hastings, Melko, 2011]



Nature of Quantum Critical Point?

In the presence of conduction electrons,

Kondo coupling irrelevant at the transition


⇒ Kondo breakdown.
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field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap,
they remain massless in the Z2 spin liquid phase due to the breakdown of Kondo screening. Since our model
has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger
theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid
is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions.
We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral
function, and also by studying the mutual information between the electrons and the spins.

Introduction: Electron-electron interactions can localize
charge carriers and generate insulating states with local mo-
ments [1]. What happens when these local moments (f-spins)
are Kondo coupled with magnitude JK to extended Bloch
conduction (c-) electrons? For a single local moment, the
answer is known: the Kondo coupling is relevant and the f-
electron is screened by the conduction electrons [2, 3]. For
a lattice of f-electrons i.e. Kondo lattice systems, the prob-
lem is much harder, and the answer is not known in gen-
eral. However, in the absence of any magnetic ordering, Lieb-
Shultz-Mattis-Hastings-Oshikawa theorem [4–6] puts strong
constraints on the possible outcomes. Specifically, in addi-
tion to a heavy Fermi liquid phase where the Fermi surface is
‘large’ since it includes the local moments, there exists a dis-
tinct possibility where f-spins decouple from the conduction
electrons at low-energies and enter a spin-liquid phase [7, 8].
In such a ‘fractionalized Fermi liquid’ phase (henceforth de-
noted as ‘FL* phase’ following Refs.[7, 8]), the conduction
electron Fermi surface is ‘small’ in that it does not include
local moments, and therefore the conventional Luttinger the-
orem [9] is violated.

From an experimental standpoint, a possible breakdown of
Kondo screening is relevant to some of the most challeng-
ing issues in heavy fermion materials [7, 10, 11]. There are
at least two conceptually different scenarios where a break-
down of Kondo screening might play a role: in materials
such as YbRh2Si2 [12] and CeCu6�xAux [13], one observes
signatures that indicate that Kondo screening might abruptly
change across the transition from a heavy Fermi liquid phase
to a magnetically ordered phase. For example, in YbRh2Si2,
one observes a jump in the Hall coefficient across the phase
transition while in CeCu6�xAux, one finds that the single ion
Kondo energy scale TK exhibits an abrupt change close the
quantum critical point. A different scenario, which is per-
haps more closely related to this paper is the transition from
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FIG. 1. (color online) (a) Schematic phase diagram of the BFG
model in the absence of Kondo coupling. (b) Schematic phase dia-
gram of the BFG model in the presence of Kondo coupling.

a heavy Fermi liquid to a non-magnetic phase across which
Kondo screening breaks down. Signatures of such a phase
were seen in Co and Ir doped YbRh2Si2 [14]. Following
Refs. [4, 7, 8] and as discussed above briefly, in the ab-
sence of any other symmetry breaking (e.g. lattice translation)
such a non-magnetic phase is inconsistent with a Fermi liquid
ground state if the Kondo screening is not operative and the
unit cell contains an odd number of spin-1/2 spins. The local
moments in such a phase are then forced to either have a gap-
less spectrum or topological order [5]. We also note that as
discussed in Ref. [15], the Kondo breakdown is also closely
related to the concept of ‘orbital selective Mott transition’.
In addition, there are several other heavy fermionic materials
such as CePdAl [16–19], -(ET)4Hg2.89Br8 [20], YbAgGe
[21], YbAl3C3 [22] and Yb2Pt2Pb [23] whose phenomenol-
ogy seems to be poorly understood, and where microscopic
considerations suggest that the geometric frustration between
local moments plays an important role.

In this paper we will introduce a generalized Kondo lat-
tice model which hosts the aforementioned Kondo breakdown
transition between a conventional phase with electron like
quasiparticles, and an FL* phase with Z2 topological order.
From a technical standpoint, the most salient feature of our
model is that it does not suffer from fermion sign problem
even in the presence of the Kondo coupling [24]. Our model
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Kondo coupling irrelevant at the critical point due to  𝜂 > 1.

dJK

dl
= (1 − η)JK

[TG, Senthil 2010]

Critical magnetic fluctuations will show 𝜔/T scaling.



Summary and Questions

• Broad message: possible to construct sign-problem-free models that 
sometime allow unbiased simulation of strong correlation physics, e.g., Mott 
transition between superconductor and AFM on square lattice, non-Fermi 
liquids in certain Kondo systems, etc.


• Nodal superconductivity model as a starting point for DMRG to study doped 
phenomena e.g. pseudogap, strange metal etc.?


• Deconfined criticality between SC and AFM?


• Higher dimensional analogs of “mixed-dimension” Kondo lattice systems, 
e.g., 3d metal coupled to 2d local moments at or away from criticality?


• Detailed understanding of Kondo breakdown in Yb2PT2Pb?


• Sign problem forces us to think more deeply about the “sign structure” of 
many-body wavefunctions, which may be “universal” in a meaningful way.


