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Figure 1: ABC TLG/hBN Moiré superlattice and dual gate FET. a,
Schematic of ABC TLG/hBN Moiré superlattice. Only atoms of the top hBN
layer and the bottom graphene layer are shown for image clarity. In the Mott
insulating state at 1/4 filling, each electron (or hole) occupies one superlattice
site and they are separated by the dominating Coulomb repulsion. b, AFM
topography image of an exfoliated graphene with monolayer, bilayer and
trilayer segments on SiO2/Si substrate. c, The corresponding near-field
infrared nanoscopy image in which a large ABC domain exists. d, Optical
micrograph of a dual-gated ABC TLG encapsulated by hBN. The sample is
etched into Hall bar for four-probe measurement and contacted by Cr/Pd/Au
through the exposed edges. e, Schematic cross-sectional view of the device
shown in d. The Au bar and doped Si served as top and bottom gate,
respectively.
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Transition metal compounds

Kugel, Khomskii, 1973

110 YAMAURA ET AL.

the other is Ni0.77O, a black powder prepared by heating
Ni(OH)2 at 3008C in a flowing argon stream for 30 min
(use of oxygen instead of argon gives essentially the same
powder). The hydroxide was obtained as a deposit from
an aqueous solution of NiCl2 · 6H2O (0.5 N) to which an
aqueous solution of NaOH (1 N) was added. The precipi-
tate was filtered out, washed with distilled water, dried,
and thermally decomposed. Thermogravimetric analysis
showed that Ni0.77O was obtainable at relatively low tem-
peratures, while it was reduced to Ni1.0O at p6008C in the
same flowing argon atmosphere (at p7008C when oxygen
is used). This Ni0.77O is not hexagonal Ni2/3O (14) but is
a cubic rock salt-type oxide (15). According to our X-ray
powder diffraction (XRD) study, the unit cell volume of
Ni0.77O is larger by 1.2% than that of Ni1.0O. Furthermore,
remarkable peak broadening that suggested the particles
were very fine was observed in the XRD pattern. In consis-
tency with this, use of scanning and transmission electron
microscopes revealed a typical particle size of less than
1 em for Ni0.77O and on the order of 10 em for Ni1.0O.

Li2O2 and one of the nickel oxides were weighed, mixed,
and pelletized in a glove box filled with argon and then
heated at a fixed temperature between 400 and 9008C for
48 hr in moisture-free flowing oxygen. Because of a rela-
tively high fugacity of Li at elevated temperatures, Li2O2

was used in excess, by 5 at.% typically, in the starting
FIG. 1. a-NaFeO2 type structure (R3∑m). A hexagonal unit cell is mixtures. This Ni0.77O is proved to be quite reactive: Ni1.0Oshown with the solid and dotted lines (top). The lattice constants for x & does not react with Li2O2 below 6008C, but Ni0.77O does0.01 are a 5 2.876 Å and c 5 14.191 Å [2]. The Ni–O and Li–O bonds

even at 4008C.constituting the face centered rhombohedral lattice are also shown (mid-
Final compositions and structural parameters of thesedle). The NiO6 octahedra of trigonal symmetry share their edges to form

a triangular Ni lattice such as depicted at the bottom. samples were determined using XRD and neutron powder
diffraction (ND) at room temperature. The XRD patterns
were obtained with CuKa radiation using a specially de-
signed sample holder filled with argon to prevent moisturemight indicate the importance of such extrinsic effects re-
attack. ND measurements were made for several selectedsulting from difficulties in sample preparation. The electro-
samples, which were vacuum-sealed in vanadium cells, atchemical performance is also known to be seriously af-
Tokai Establishment of Japan Atomic Energy Researchfected by this kind of defect (3). To clarify the intrinsic
Institute using neutrons of 1.7691 Å monochromatizedmagnetism and intrinsic electrochemical properties, it is
with a pyrolytic graphite crystal. Rietveld analysis usingessentially important to suppress the disordering. For that
the RIETAN program (16) was done for refinements. Thepurpose we studied the phase relation between LiNiO2 and
XRD and ND data indicated the a-NaFeO2 structure inrelated compounds (2, 9), examining different synthesizing
which a small amount of Ni substitutes for Li at 3a site:conditions including heating process, atmosphere, and
The magnetic NLs were perfect within experimental error,starting materials. As a result we recently obtained a sam-
while the nonmagnetic LLs were contaminated slightlyple which showed the simplest magnetic behavior we ever
with Ni to form Li12xNix . The x values determined by theobserved. The magnetic properties of this and other sam-
Rietveld analysis for the samples prepared from Ni1.0Oples will be presented in this paper.
and Li2O2 are plotted against the synthesizing temperature
in Fig. 2, where the XRD and ND results are shown with2. SAMPLE PREPARATION AND
open circles and closed circles, respectively. The openCHARACTERIZATION
squares represent the values calculated from the XRD
intensity ratio of (I(006) 1 I(012))/I(101) as proposed byWe used 95.3% pure Li2O2 and two kinds of nickel oxides

as starting materials. The low purity of Li2O2 comes from Dahn et al. (1). These different estimations do not agree
exactly with each other but reveal consistently that Nithe presence of Li2O. One of the nickel oxides is a 99.9%

pure commercially available green powder of Ni1.0O, while content at 3a site increases from 0.01 or less (650 and
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SU(4) “spin” systems

ni = ∑
a=1,..,4

ni,a

ci,a=1,2,3,4

1 = ( ↑ , K )
2 = ( ↓ , K )

3 = ( ↑ , K′�)
4 = ( ↓ , K′�)

H = − t ∑
⟨i, j⟩,a=1,..,4

c†
i,acj,a + U∑

i

(ni − n̄)2

Hubbard model

SU(4) fermions

“flavor” = (spin, valley/orbit)

H = J∑
⟨i, j⟩

4

∑
a,b=1

Tab
i Tba

j

SU(4) Antiferromagnetic 
“Heisenberg” model

Tab
i = c†

i,aci,bJ ∼
t2

U
> 0

U ≫ t

SU(4) “spin” 
operators

n̄ ∈ ℤ

Different 
representations 
of SU(4)



SU(4) antiferromagnet

H = J∑
⟨i, j⟩

4

∑
a,b=1

Tab
i Tba

j Tab
i = c†

i,aci,b SU(4) “spin” operators

S+
i = c†

i,↑ci,↓

H = 2J∑
⟨i, j⟩ [S+

i S−
j + S−

i S+
j + ni,↑nj,↑ + ni,↓nj,↓] = J∑

⟨i, j⟩

⃗S i ⋅ ⃗S j + const .

=
1
2

Sz
i Sz

j + const .

SU(2) Heisenberg:

Taa
i = c†

i,aci,a = ni,a

H = J ∑
⟨ij⟩,α,β

(Sα
i Sα

j + Vβ
i Vβ

j + 4(SαVβ)i(SαVβ)j)
S̃i = {c†

i,s,vσ
α
s,s′�δv,v′ �ci,s′�,v′�, c†

i,s,vδs,s′�τ
β
v,v′ �ci,s′�,v, c†

i,s,vσ
α
s,s′�τ

β
v,v′�ci,s′�,v′�}

An equivalent form:


SU(4) symmetric point 
of the SU(2)xSU(2) 
Kugel-Khomskii model 3         +           3          +          9  =  15 operators



Outline - SU(4) “spins” on the triangular lattice

• Half filling - dimer description and valence bond states

• Quarter filling - evidence for a gapless quantum liquid

AK, Lucile Savary, Leon Balents, SciPost 2019

AK, Bela Bauer, Cenke Xu, Chao-Ming Jian, PRL 2020
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SU(4) “spins” at half filling 

|ab⟩i = c†
i,ac

†
i,b|0⟩i

6 possible states per site {|12⟩, |13⟩, |14⟩, |23⟩, |24⟩, |34⟩}

2 particles per site

Classical (mean-field) limit

120° order! 

(up to  SU(4) rotations)

Ψ⟩ = ∏
i

ψ⟩
i



~r0

JH = 0

⃗B
= ↑
= ↓

Probing long range order in the SU(4) model 

Expectation value 
of the spin along 
the field direction

Cylinder with pinning fields at the boundaries

Sz( ⃗r0) = 0.015



~r0

JH = 0

⃗B
= ↑
= ↓

Probing long range order in the SU(4) model 

In agreement with a recent PF-FRG study by Kiese et al. PRR 2020

No long range 
“magnetic” order

Expectation value 
of the spin along 
the field direction

Cylinder with pinning fields at the boundaries

Sz( ⃗r0) = 0.015



|ab⟩i = c†
i,ac

†
i,b|0⟩i

|s⟩ij =
1

2 6 ∑
a,b,c,d=1,..,4

ϵabcd|ab⟩i|cd⟩j
|ab⟩i |cd⟩j

SU(4) singlet

SU(4) spins at half-filling

Singlet coverings are 
candidates for the ground 
state on a lattice! 

2 particles per site



• Classical order vs dimer covering -

🙁
🙁
🙁
🙁
🙁

🙂 🙂
🙂
🙂🙂

🙂

From SU(4) spins to dimers

Can the nearest-neighbor singlet coverings capture 
the low energy physics of the SU(4) spin model? 

• Large N limit - 

             For SU(N) at half-filling ground state description 

             in terms of dimer coverings is exact Rokhsar 1990

😃
ESU(4)

dimer

Nbonds
= −

5
6

J < −
1
2

J =
ESU(4)

120∘

Nbonds

For SU(2), spin-1/2: ESU(2)
dimer = ESU(2)

120∘

For SU(4):

Dimer coverings have significantly lower energy!



Quantum dimer models

Rokhsar, Kivelson 1988

Projecting the spin Hamiltonian onto the 
nearest-neighbor singlet-coverings subspace

|ψ⟩ = ∑
C

ψC |C⟩

*singlet coverings are not orthogonal! 

x = =
1
6

E(ψ) =
⟨ψ |H |ψ⟩

⟨ψ |ψ⟩
Hproj,C′�C = ⟨C′�|H |C⟩, SC′�C = ⟨C′�|C⟩

Hprojψ = E0Sψ

Effective Hamiltonian for 
orthogonal dimers

Hdimerψ = E0ψ,

Hdimer = S−1/2HprojS−1/2

singlet covering
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final result for the quantum dimer model Hamiltonian:

Hdimer =

0X
�
�
1� x+ x

2
� ⇣

| i h |+ | i h |
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+ x(1� x)

⇣
| i h |+ | i h |

⌘

� x(1� x)

⇣
| i h |+ | i h |+

���
E D ���+

���
E D ���

⌘

+
1

2
x
2
⇣ ���

E D ���+
���

E D ���
⌘

+ x
2
⇣ ���

E D ���+
���

E D ���
⌘

� 1

2
x
2
⇣ ���

E D ���+
���

E D ���
⌘

� x
2
⇣ ���

E D ���+
���

E D ���+
���

E D ���+
���

E D ���

+

���
E D ���+

���
E D ���

⌘

� 1

2
x
2
⇣
| i h |+ | i h |+

���
E D ���+

���
E D ���

+

���
E D ���+

���
E D ���

⌘

+
1

2
x
2
⇣
| i h |+ | i h |+ | i h |+ | i h |

+

���
E D ���+

���
E D ���+

���
E D ���+

���
E D ���

⌘

� 4x
2
⇣ ���

E D ���+
���

E D ���
⌘

where the prime on the sum indicates a sum over all the symmetry-equivalent plaquettes

shown in the bras and kets, throughout the lattice.
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1212 x staggeredcolumnar RVB

? 0 ~ 0.7 1 v/t
FIG. 1: Phase diagram of the QDM on the triangular lattice
as a function of v/t after Ref. 6.

cent to it called the
√
12 ×

√
12 phase where the struc-

ture factor develops a low-temperature peak at an in-
termediate value of the wave-vector and which probably
consists of resonating plaquettes which make a 12-site
unit-cell pattern; iv) A liquid phase with a featureless
and temperature-independent structure factor. This last
phase has been interpreted as a short-range resonating
valence bond (RVB) phase in which all correlations de-
cay exponentially, even at low temperature.7 It is sepa-
rated from the staggered phase by a special point, the
Rokhsar–Kivelson (RK) point (v/t = 1). At this point,
the ground-state manifold contains all staggered configu-
rations plus another configuration of zero energy, the sum
of all possible configurations. In that particular state,
the dimer-dimer correlation function has been shown to
decay exponentially with distance at zero temperature.6

While the arguments put forward by Moessner and
Sondhi in favor of this phase diagram are quite convinc-
ing, this proposal calls for further investigation for several
reasons. First of all, this zero-temperature phase dia-
gram was inferred from finite-temperature results, and a
direct analysis of ground-state properties would be wel-
come. Besides, the location of the phase boundaries is to
a large extent unknown, as well as the nature of the quan-
tum phase transitions between the different phases. Fi-
nally, and more importantly, a direct investigation of the
RVB phase would help to understand its physical proper-
ties. In particular, this phase is expected to be liquid in
the strong sense of the word, and, as such, to have topo-
logical degeneracy, but this could not be checked by the
finite temperature calculation of Moessner and Sondhi.
In fact, this property, which lies at the root of Ioffe et al’s
proposal for q-bits,8 has never been directly observed. As
noticed by Ioffe and collaborators on the basis of exact
diagonalizations of small clusters, the finite-size effects
are still huge for the small cluster sizes accessible with
that technique, and no conclusion regarding the thermo-
dynamic limit could be reached.

In this paper, we address all these issues, and answer
most of them, by a careful investigation of the zero-
temperature properties of the model essentially based on
the implementation of a Green’s function Monte Carlo
(GFMC) algorithm. The huge finite-size effects are
shown to be a natural consequence of the subtle inter-
play between the cluster geometry, the order parameter
of the underlying phase (if any) and the topological sec-

tor. This analysis turns the finite-size effects into a very
powerful tool to investigate the ground-state properties
of the model as a function of v/t. In particular, we have
obtained strong evidence in favor of topological degen-
eracy close to the RK point, and we have been able to
locate the transition between the two ordered phases with
a reasonable accuracy.
The paper is organized as follows. In section II, we

present the minimal technical background necessary to
understand the results presented in the following sec-
tions. To keep this technical section as small as possi-
ble, some details have been relegated into Appendices.
We then discuss the various phases and the transitions
between them in Section III, and finally we conclude in
Section IV.

II. TECHNICAL BACKGROUND

A. Topological sectors

On the triangular lattice, the QDM has conserved
quantities defining topological sectors (TS).6,9,10 On fi-
nite clusters, these conserved quantities are defined by
the parity of the number of dimers intersecting a given
line which satisfies two properties: 1) It is closed, or it
ends at the boundaries of the cluster; 2) It does not divide
the cluster into two disconnected pieces. The first condi-
tion ensures that the parity is conserved when applying
the Hamiltonian, while the second condition guarantees
the possibility to construct configurations with both par-
ities. On a cylinder, the only choice is a line going from
one end to the other, while on a torus, one can choose
any closed loop that goes around one of the axis of the
torus. Since the sectors defined by two lines that can be
deformed into each other continuously are the same, one
ends up with two sectors for a cylinder and four sectors
for a torus. In the following, we will work exclusively
with clusters defined on a torus.

B. Finite clusters

On the triangular lattice, it is possible to construct
two types of clusters which keep all the symmetries of
the infinite lattice.11 In terms of the basis vectors u1 and
u2 [with u1 = (1, 0) and u2 = (1/2,

√
3/2)], they are

defined by two vectors:

T1 = lu1 +mu2 (1)

T2 = −mu1 + (l +m)u2 (2)

with l or m = 0 for type-A clusters (see Fig. 2) and
l = m for type-B clusters (see Fig. 3). The clusters have
the geometry of tori obtained by identifying sites of the
infinite lattice modulo the vectors T1 and T2.
The number of sites N of such clusters is given by the

simple formula: N = l2 + lm + m2, leading to N = l2

∼ 0.83

Quantum dimer model 

Phase diagram on the triangular lattice:
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Zero-Temperature Properties of the Quantum Dimer Model on the Triangular Lattice

Arnaud Ralko,1 Michel Ferrero,2 Federico Becca,2 Dmitri Ivanov,1 and Frédéric Mila1
1Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique

Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
2INFM-Democritos, National Simulation Centre and International School
for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy

(Dated: February 11, 2005)

Using exact diagonalizations and Green’s function Monte Carlo simulations, we have studied
the zero-temperature properties of the quantum dimer model on the triangular lattice on clusters
with up to 588 sites. A detailed comparison of the properties in different topological sectors as
a function of the cluster size and for different cluster shapes has allowed us to identify different
phases, to show explicitly the presence of topological degeneracy in a phase close to the Rokhsar-
Kivelson point, and to understand finite-size effects inside this phase. The nature of the various
phases has been further investigated by calculating dimer-dimer correlation functions. The present
results confirm and complement the phase diagram proposed by Moessner and Sondhi on the basis
of finite-temperature simulations [Phys. Rev. Lett. 86, 1881 (2001)] .

I. INTRODUCTION

The investigation of spin-liquid phases is currently a
very active field of research, partly – but not only – be-
cause of their possible connection to the superconductiv-
ity observed in several cuprates. The definition of a “spin
liquid” is itself a matter of debate. Following the work
of Shastry and Sutherland on a two-dimensional model
whose exact ground state is a product of dimer singlets,1

the word is sometimes used to designate phases in which
the spin-spin correlation function decays exponentially
fast with distance at zero temperature. However, such
phases often exhibit other types of long-range order, like
dimer order, which manifest themselves as non-decaying
correlation functions involving more than two spins.2 In
that respect, the word liquid is not appropriate, and it
should arguably be reserved to systems in which all cor-
relation functions decay exponentially fast at large dis-
tance. This discussion would be quite academic if the
only characteristic of such liquids was the absence of any
kind of order, but following the pioneering work of Wen,3

it is well admitted by now that such liquids can exhibit
another property known as topological order: In the ther-
modynamic limit, the ground state (when defined on a
topologically nontrivial domain) exhibits a degeneracy
not related to any symmetry and referred to as topo-
logical degeneracy. These degenerate ground states live
in topological sectors which cannot be connected by any
local operator.
The realization of such phases in quantum spin mod-

els is still preliminary though. The best candidates are
frustrated magnets for which quantum fluctuations are
known to destroy magnetic long-range order, but their
ground-state properties are very difficult to access, and
when definite conclusions are reached, it is usually be-
cause the presence of some kind of long-range order
(dimer, plaquette, etc.) can be established.4 The main
difficulty is in a sense technical: A good diagnosis would
require to study large enough clusters, but this is not
possible since quantum Monte Carlo simulations of frus-

trated antiferromagnets are plagued with a very severe
minus sign problem.
In that respect, effective models such as the quantum

dimer model (QDM) are extremely interesting. Although
their relationship to actual Heisenberg antiferromagnets
is not a simple issue,5 they describe resonance processes
typical of strongly fluctuating frustrated quantum mag-
nets while retaining the possibility to be analyzed by
standard techniques such as quantum Monte Carlo. This
possibility was first exploited by Moessner and Sondhi,6

who developed a finite-temperature Monte Carlo algo-
rithm to study the QDM on a triangular lattice defined
by the Hamiltonian:

H = v
∑

(

| ⟩ ⟨ |+ | ⟩ ⟨ |
)

−t
∑

(

| ⟩ ⟨ |+ | ⟩ ⟨ |
)

,

where the sum runs over all plaquettes including the
three possible orientations. The kinetic term controlled
by the amplitude t changes the dimer covering of ev-
ery flippable plaquette, i.e., of every plaquette contain-
ing two dimers facing each other, while the potential
term controlled by the interaction v describes a repul-
sion (v > 0) or an attraction (v < 0) between dimers
facing each other. Since a positive v favors configura-
tions without flippable plaquettes while a negative v fa-
vors configurations with the largest possible number of
flippable plaquettes, the so-called maximally flippable
plaquette configurations (MFPC), one might expect a
phase transition between two phases as a function of v/t.
The actual situation is far richer though. As shown by
Moessner and Sondhi, who calculated the temperature
dependence of the structure factor, there are four differ-
ent phases (see Fig. 1): i) A staggered phase for v/t > 1,
in which the ground-state manifold consists of all non-
flippable configurations; ii) A columnar ordered phase
for v/t sufficiently negative; iii) An ordered phase adja-

∼ − 0.8

Moessner, Sondhi 2001, Ralko et al. 2005
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Back to the full dimer model - Exact Diagonalization

Bond-bond correlations 
in the ground state:

6x6 lattice with periodic 
boundary conditions

TS(1, 1)

0.00
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0.15

⃗a 1

⃗a 2

FT

-⇡ 0 ⇡
kx

-⇡

0

⇡

k y

0.0

0.1

0.2

0.3

Ground state breaks 
translational invariance 
forming a 12-site unit cell!



Half-filling - summary so far

Low energy properties of the Mott 
phase at half filling can be captured 
by an effective dimer model

The ground state of the effective 
dimer model is a valence bond 
solid state with a 12-site unit cell

-⇡ 0 ⇡
kx

-⇡

0

⇡

k y

0.0

0.1

0.2

0.3



Breaking SU(4) symmetry

H = J∑
⟨i, j⟩

Tab
i Tba

j − JH ∑
i

| ⃗S i |
2

At large       , electrons on each site pair up into a spin-triplet 

|1⟩ = |K ↑ ⟩
|2⟩ = |K ↓ ⟩
|3⟩ = |K′� ↑ ⟩
|4⟩ = |K′� ↓ ⟩

Hund’s coupling

JH

|13⟩ = |S = 1,mz = + 1⟩

|24⟩ = |S = 1,mz = − 1⟩

1

2
(|14⟩ + |23⟩) = |S = 1,mz = 0⟩

Spin-1 Heisenberg model!H = J∑
⟨i, j⟩

⃗S i ⋅ ⃗S jJH ≫ J



~r0

JH = 0

~r0

JH = 2

120° magnetic order at large JH

⃗B = ↑
= ↓

expectation value obtained using DMRG Sz

0 1 2 3 4
JH

0.0

0.2

0.4

0.6

0.8

hs
z
i ~r

0
=

(N
x
/
2
,1

)

Nx = 6 ⇥ Ny = 3

Nx = 12 ⇥ Ny = 3

Nx = 6 ⇥ Ny = 6

⃗B

Phase transition 
from valence bond 
to magnetic order?



Half-filling - summary

Breaking SU(4) symmetry by a Hund’s 
coupling term drives the system into a 
magnetically ordered state

0 1 2 3 4
JH

0.0

0.2

0.4

0.6

0.8

hs
z
i ~r

0
=

(N
x
/
2
,1

)
Nx = 6 ⇥ Ny = 3

Nx = 12 ⇥ Ny = 3

Nx = 6 ⇥ Ny = 6

Low energy properties of the Mott 
phase at half filling can be captured 
by an effective dimer model

The ground state of the effective 
dimer model is a valence bond 
solid state with a 12-site unit cell

-⇡ 0 ⇡
kx

-⇡

0

⇡

k y

0.0

0.1

0.2

0.3



Outline - SU(4) “spins” on the triangular lattice

• Half filling - dimer description and valence bond states

• Quarter filling - evidence for a gapless quantum liquid

AK, Lucile Savary, Leon Balents, SciPost 2019

AK, Bela Bauer, Cenke Xu, Chao-Ming Jian, PRL 2020
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SU(4) Heisenberg antiferromagnets  
                                               at quarter-filling

Honeycomb lattice

Corboz et al., PRX 2012

Triangular lattice

Penc et al., PRB 2003

elementary plaquette leads to the formation of Dirac nodes
[31]. At half filling, the Fermi surface of this !-flux state
shrinks to points, and its energy is lower than that of the
state with equal hopping amplitudes and a finite Fermi
surface. In such a spin liquid, the structure factor is singu-
lar at momenta related to the difference between Fermi
points, leading to the algebraic decay of spin correlations.
In one dimension, this type of approach leads to an accu-
rate description of the algebraic decay of the correlations
for the SUð2Þ case [32], and for SUð4Þ as well, using the
representation S"# ¼ fy#f" [8].

On the honeycomb lattice, a Dirac node is already
present at the middle of the band without any flux, and
the Fermi surface reduces to points at half filling. So the
0-flux state would be a good starting point to describe an
algebraic spin liquid for the SUð2Þ Heisenberg model
[33– 35]. However, for the SUð4Þ Heisenberg model, the
band must be quarter-filled, and the equivalent of the
Affleck-Marston approach requires one to have a Dirac
node at the Fermi energy of the quarter-filled system. It
turns out that these properties are realized in the !-flux
state, as shown in Fig. 5. As for the square lattice, this state

leads to a lower energy than the 0-flux state, as already
stated above.
Starting from the noninteracting wave function, with a

band populated up to the Dirac node at "D ¼ $
ffiffiffi
3

p
t for any

of the four flavored fermions, we implement the Gutzwiller
projection using VMC sampling. The energy of this wave
function, E ¼ $0:894 per site, compares remarkably well
with that of iPEPS (see Fig. 2), especially considering that
no variational parameter was used. Let us also mention that
the state (and the ones related by symmetry) shown in
Fig. 1(a) has the maximal weight in the variational wave
function.
To investigate the physics of this wave function, we have

calculated the spin-spin correlation function as a function
of distance. The results clearly demonstrate an algebraic
decay jhPij $ 1=4ij% jrijj$#, with an exponent# between
3 and 4, as shown in Fig. 6. If one considers the honeycomb
lattice as built from zigzag chains, these correlations cor-
respond to even distances along one of the zigzag chains,
and the exponent should be compared to that of the domi-
nant correlations with wave vector !=2 of a single chain
[36]. This exponent is equal to 3=2, a number actually very
accurately reproduced by VMC. So color-color correla-
tions decay faster on the honeycomb lattice than on a chain,
but still algebraically. This is a rather peculiar situation in
view of the standard paradigms: the development of long-
range order, as in weakly coupled SUð2Þ chains in square
geometry, or the spontaneous formation of local singlets
and exponentially decaying color-color correlations, as,
e.g., in the SUð4Þ ladder [17].
This Gutzwiller projected !-flux state is actually a pro-

totypical wave function for a phase that should be called

FIG. 5. Properties of the !-flux state. (a) Sketch of the gauge
used to implement the !-flux state: the hopping amplitude is
positive on solid blue bonds, negative on dashed red bonds. The
primitive unit cell (dark magenta) contains four sites, the
hexagonal unit cell eight sites. (b) Brillouin zones and high
symmetry points. The red circles indicate the position of the
Dirac nodes at "D ¼ &

ffiffiffi
3

p
t to which the Fermi surface reduces at

quarter filling in the !-flux state. The orange, outermost hexagon
shows the extended Brillouin zone of the triangular lattice
(including sites at the centers of the hexagons in the honeycomb
lattice), the structure factor is maximal and has a cusp at M4 ¼
ð!;!=

ffiffiffi
3

p
Þ and the symmetry related points. K4 is given by

ð4!=3; 0Þ, K is ð2!=3; 2!=3
ffiffiffi
3

p
Þ. (c) The two-fold degenerate

band structure of the !-flux state in the reduced Brillouin zone
of an 8-site hexagonal unit cell.
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FIG. 6. The algebraic decay of the correlation along a zigzag
chain in the honeycomb lattice for the Gutzwiller projected
!-flux state in different clusters. (Every second site is shown;
$ is the distance along the chain.) In the inset, we compare the
correlations of the same !-flux state with the correlations of a
300-site-long, one-dimensional chain. (We projected the one-
dimensional quarter-filled Fermi sea.) While the periodicity of
four is visible in both cases, the correlations decay much faster in
the two-dimensional honeycomb lattice.
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diamond covering !see Fig. 5". This fact is actually easy to
understand: The matrix elements corresponding to the reso-
nance of Fig. 4!b" dominate the secular equation, and they
are completely suppressed in the square pattern of Fig. 4!a".
The effect of these resonances on the ground-state corre-

lations is a delicate issue. The ground states of the 36-site
and 48-site clusters are consistent with a long-range pattern
for the diamond covering of the triangular lattice, but given
the very small sizes from that point of view !the 36- and
48-site clusters can accommodate three and four diamonds,
respectively" this result is probably not significant. What is
likely to be more relevant is the amplitude of the processes
that would enter a description in terms of an effective Hamil-
tonian. The two plaquette coverings inside a diamond can be
described by an Ising variable, and the resonance gives rise
to a transverse field of order J/2. The spectra obtained for the
36-site and 48-site clusters are then consistent with a very
small potential-energy term with two- and three-body inter-
actions. A detailed analysis of this model lies beyond the
scope of the present paper, but given the prominence of the
kinetic-energy term, it is very likely that the system is the
equivalent of the disordered phase of the Ising model in a
transverse field.22
In summary, this variational approach strongly suggests

that the ground state is a plaquette liquid with no four-site
plaquette long-range order, and with strong local resonances
between the configurations of Fig. 4!b". The presence of
long-range order associated to a specific pattern of diamond
covering can neither be ascertained nor excluded on the basis

of the present results. We just note that, if no longer-range
correlations are present, this plaquette liquid is expected, as
is its SU!2" counterparts, to exhibit topological degeneracy.19
To conclude, we have shown that it is possible to order

the SU!4" Heisenberg model for sufficiently large next-
nearest-neighbor repulsion, without the need to introduce an-
isotropy, and we have identified a quantum phase transition
around J!/J!0.12. For J!!0, which corresponds to a mini-
mal model of LiNiO2, we have shown that the ground state
is a spin and orbital liquid, and we have shown that simple
objects such as dimers of plaquettes do not develop long-
range order. These results are consistent with the absence of
any kind of phase transition in LiNiO2. More generally, Mott
insulators with orbital degeneracy and the appropriate geom-
etry emerge as potential candidates for completely order-free
spin liquids with topological degeneracy.
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evidence for an algebraic 
(Dirac) spin-orbital liquid

4 spins on a 
plaquette can 
form a singlet

expect 
plaquette 
order? 

⇒

Variational study with singlet 
plaquettes as a starting points 
suggests spin-orbital liquid  

Li et al., PRL 1998
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Parton construction

Gutzwiller projection:

Numerically project out all 
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Parton mean field
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Finite-circumference cylinders

Periodic boundary conditions for the spins


What are the boundary conditions for the partons?

Φ = 0 or Φ = π

Different cuts through the Fermi 
surface for finite circumference!

From symmetry constraints:

 T1

T2

（a） （b）Φ = 0 Φ = π



Finite-circumference cylinders
Low energy theory

ℒ = ∑m ∑4
a=1 [ψ†

L,m,a(i∂t − ivm∂x)ψL,m,a + ψ†
R,m,a(i∂t + ivm∂x)ψR,m,a]

∂μ=x,t → ∂μ − aμCoupling to the gauge field

1D bands
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Finite-circumference cylinders
Low energy theory

ℒ = ∑m ∑4
a=1 [ψ†

L,m,a(i∂t − ivm∂x)ψL,m,a + ψ†
R,m,a(i∂t + ivm∂x)ψR,m,a]

∂μ=x,t → ∂μ − aμCoupling to the gauge field

Umklapp scattering is a relevant perturbation for W=2 and W=4 
                     will break translation invariance and open a gap!

1D bands
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DMRG results 
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DMRG results 

Spin gap W = 3

Consistent with a gapless state

Δ = a /L + b

Δ = a /L
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DMRG results 

Cusps in the structure factor appear at the same values, corresponding to  “     ”s !2kF

See e.g. Sheng, Motrunich, Fisher, PRB 2009

W = 3
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Gutzwiller projection
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Summary

AK, Lucile Savary, Leon Balents, SciPost 2019

AK, Bela Bauer, Cenke Xu, 
Chao-Ming Jian, PRL 2020
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Low energy properties of the Mott 
phase at half filling can be captured 
by an effective dimer model

• Half filling

The ground state of the effective 
dimer model is a valence bond 
solid state with a 12-site unit cell
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• Quarter filling

Numerical results on finite circumference cylinders are consistent 
with a gapless liquid state with an emergent Fermi surface


