

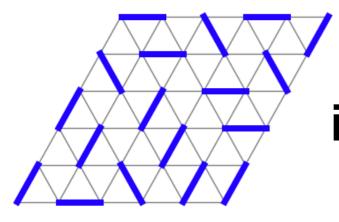
GORDON AND BETTY FOUNDATION

 $\epsilon_{\mathbf{k}}$

 k_y

 $^{\circ}k_x$

Valence-bond and gapless liquid states

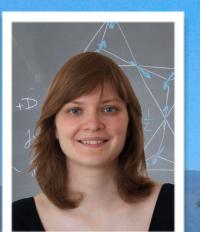


in triangular lattice SU(4) antiferromagnets

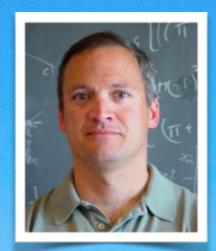
Anna Keselman, KITP

Correlated Systems with Multicomponent Local Hilbert Spaces, November 24, 2020

Collaborators



Lucile Savary, Lyon



Leon Balents, KITP

Cenke Xu, UCSB

Chao-Ming Jian, Cornell

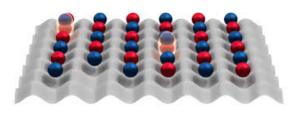
Bela Bauer, MS Station Q

Systems with (approximate) SU(4) symmetry

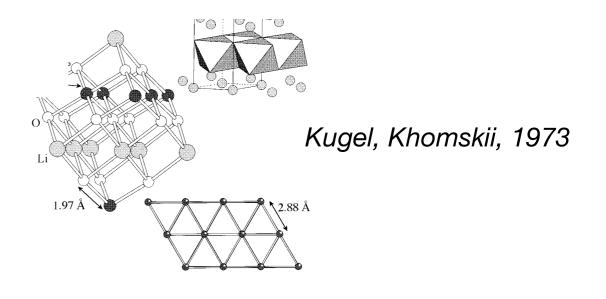
Cold atoms

(Alkaline-earth Fermi gases)

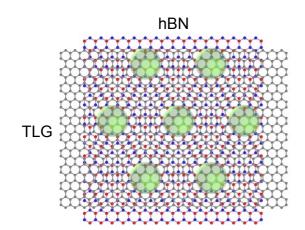
Gorshkov et al., Nat. Phys. 2010



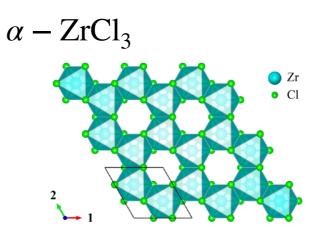
Transition metal compounds



Moiré superlattices



Chen et al., Nat. Phys. 2019 and many more...



Yamada et al., PRL 2018

SU(4) "spin" systems

Hubbard model

SU(4) Antiferromagnetic "Heisenberg" model

$$H = -t \sum_{\langle i,j \rangle, a=1,..,4} c_{i,a}^{\dagger} c_{j,a} + U \sum_{i} (n_{i} - \bar{n})^{2} \qquad \qquad U \gg t \qquad \qquad H = J \sum_{\langle i,j \rangle} \sum_{a,b=1}^{4} T_{i}^{ab} T_{j}^{ba}$$

$$n_{i} = \sum_{a=1,..,4} n_{i,a} \qquad \qquad J \sim \frac{t^{2}}{U} > 0 \qquad \qquad T_{i}^{ab} = c_{i,a}^{\dagger} c_{i,b}$$

$$J \sim \frac{t^{2}}{U} > 0 \qquad \qquad T_{i}^{ab} = c_{i,a}^{\dagger} c_{i,b}$$

SU(4) fermions

 $C_{i,a=1,2,3,4}$ \uparrow "flavor" = (spin, valley/orbit) $1 = (\uparrow, K) \quad 3 = (\uparrow, K')$

$$1 = (\uparrow, K) \quad 3 = (\uparrow, K')$$
$$2 = (\downarrow, K) \quad 4 = (\downarrow, K')$$

Different representations of SU(4)

SU(4) "spin" operators

SU(4) antiferromagnet

$$H = J \sum_{\langle i,j \rangle} \sum_{a,b=1}^{4} T_i^{ab} T_j^{ba} \qquad T_i^{ab} = c_{i,a}^{\dagger} c_{i,b} \qquad \text{SU(4) "spin" operators}$$
$$T_i^{aa} = c_{i,a}^{\dagger} c_{i,a} = n_{i,a}$$

An equivalent form:

SU(4) symmetric point of the SU(2)xSU(2) Kugel-Khomskii model

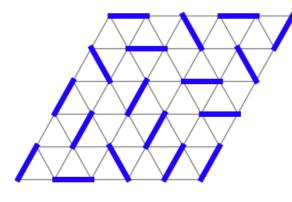
$$H = J \sum_{\langle ij \rangle, \alpha, \beta} \left(S_i^{\alpha} S_j^{\alpha} + V_i^{\beta} V_j^{\beta} + 4(S^{\alpha} V^{\beta})_i (S^{\alpha} V^{\beta})_j \right)$$

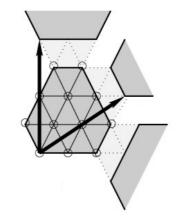
$$\tilde{S}_i = \left\{ c_{i,s,v}^{\dagger} \sigma_{s,s'}^{\alpha} \delta_{v,v'} c_{i,s',v'}, c_{i,s,v}^{\dagger} \delta_{s,s'} \tau_{v,v'}^{\beta} c_{i,s',v}, c_{i,s,v}^{\dagger} \sigma_{s,s'}^{\alpha} \tau_{v,v'}^{\beta} c_{i,s',v'} \right\}$$

$$3 + 3 + 9 = 15 \text{ operators}$$

Outline - SU(4) "spins" on the triangular lattice

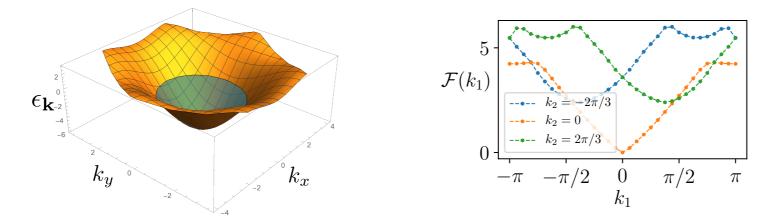
• Half filling - dimer description and valence bond states





AK, Lucile Savary, Leon Balents, SciPost 2019

• Quarter filling - evidence for a gapless quantum liquid



AK, Bela Bauer, Cenke Xu, Chao-Ming Jian, PRL 2020

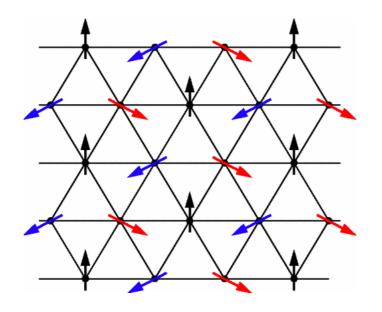
SU(4) "spins" at half filling

2 particles per site $|ab\rangle_i = c^{\dagger}_{i,a}c^{\dagger}_{i,b}|0\rangle_i$ --- ---

6 possible states per site $\{|12\rangle, |13\rangle, |14\rangle, |23\rangle, |24\rangle, |34\rangle\}$

Classical (mean-field) limit

$$\left|\Psi\right\rangle = \prod_{i} \left|\psi\right\rangle_{i}$$



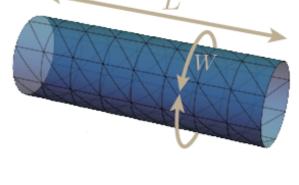
120° order!

(up to SU(4) rotations)

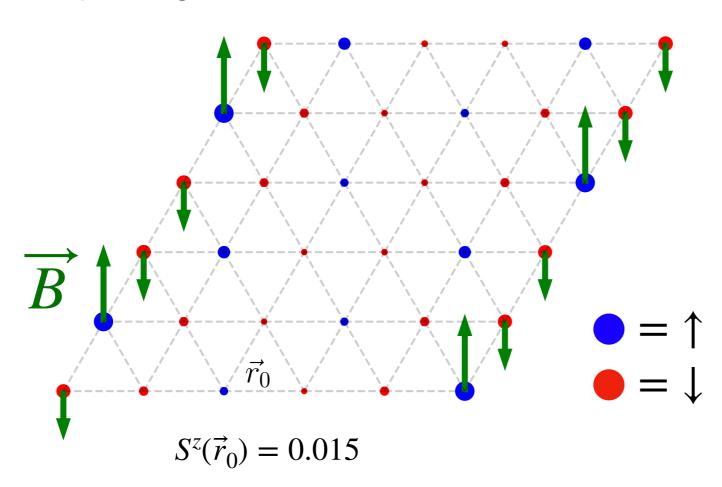
Probing long range order in the SU(4) model

Cylinder with pinning fields at the boundaries

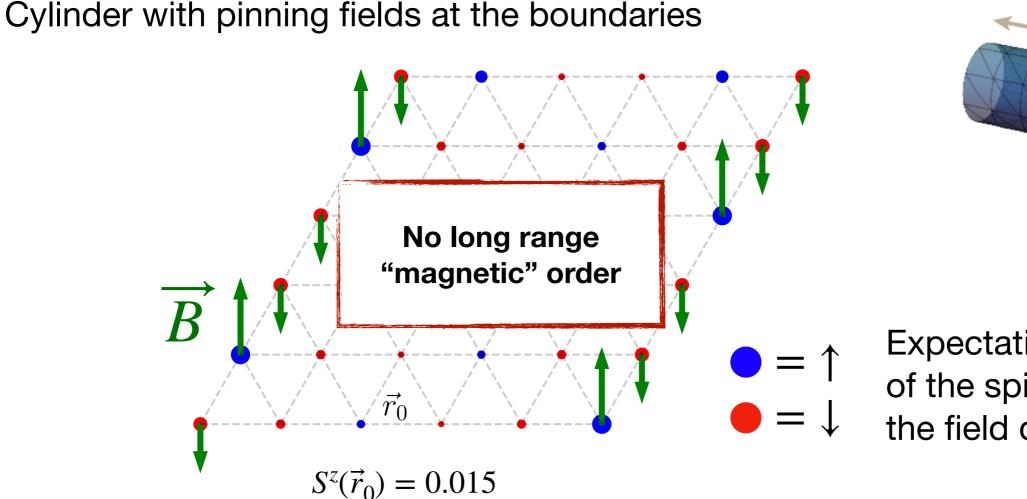
Expectation value of the spin along the field direction



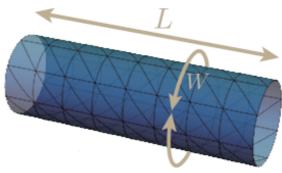
ITENSOR



Probing long range order in the SU(4) model



ITENSOR



Expectation value of the spin along the field direction

In agreement with a recent PF-FRG study by Kiese et al. PRR 2020

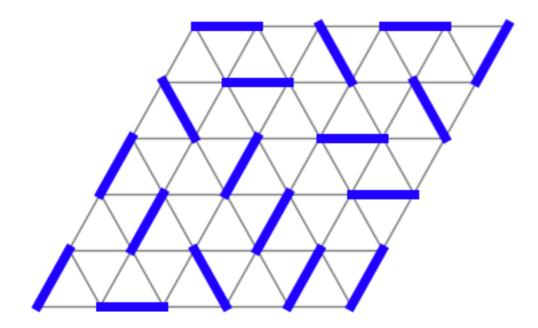
SU(4) spins at half-filling

2 particles per site

 $|ab\rangle_i$ $|cd\rangle_j$

$$|ab\rangle_i = c_{i,a}^{\dagger} c_{i,b}^{\dagger} |0\rangle_i$$

SU(4) singlet $|s\rangle_{ij} = \frac{1}{2\sqrt{6}} \sum_{a,b,c,d=1,..,4} \epsilon_{abcd} |ab\rangle_i |cd\rangle_j$



Singlet coverings are candidates for the ground state on a lattice!

From SU(4) spins to dimers

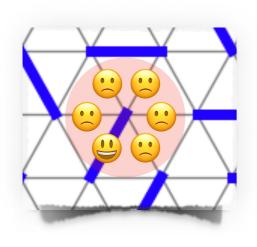
Can the nearest-neighbor singlet coverings capture the low energy physics of the SU(4) spin model?

• Large N limit -

For SU(N) at half-filling ground state description in terms of dimer coverings is exact

Rokhsar 1990

Classical order vs dimer covering -



For SU(2), spin-1/2: $E_{dimer}^{SU(2)} = E_{120^{\circ}}^{SU(2)}$ For SU(4): $\frac{E_{dimer}^{SU(4)}}{N_{bonds}} = -\frac{5}{6}J < -\frac{1}{2}J = \frac{E_{120^{\circ}}^{SU(4)}}{N_{bonds}}$

Dimer coverings have significantly lower energy!

Quantum dimer models

Projecting the spin Hamiltonian onto the nearest-neighbor singlet-coverings subspace

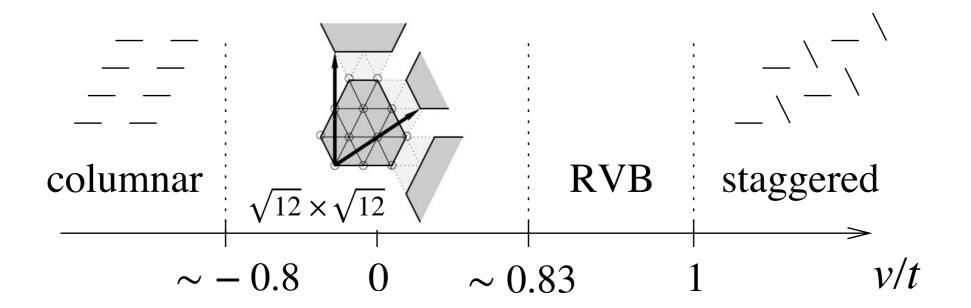
singlet covering $|\psi\rangle = \sum_{C} \psi_{C} | C \rangle$ Effective Hamiltonian for orthogonal dimers $H_{\text{dimer}} = S^{-1/2} H_{\text{proj}} S^{-1/2}$ $E(\psi) = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} \qquad H_{\text{proj}} \psi = E_{0} S \psi \qquad H_{\text{dimer}} \psi = E_{0} \psi,$ $H_{\text{proj},C'C} = \langle C' | H | C \rangle, S_{C'C} = \langle C' | C \rangle$ *singlet coverings are not orthogonal! $x = \left\langle \overbrace{i}^{i} \bigvee_{i} \bigvee_{i}^{i} \right\rangle = \frac{1}{6}$

$$\begin{split} H_{\text{dimer}} &= \sum_{i}^{\prime} - \left(1 - x + x^{2}\right) \left(\boxed{2} \left\langle \cancel{2} + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right) \right) \\ &+ x\left(1 - x\right) \left(\boxed{2} \left\langle \cancel{2} \right\rangle \left\langle \cancel{2} \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right) \right) \\ &+ x\left(1 - x\right) \left(\boxed{2} \left\langle \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ x\left(1 - x\right) \left(\boxed{2} \left\langle \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ x\left(1 - x\right) \left(\boxed{2} \left\langle \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ \frac{1}{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| + \left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right| \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right| \right) \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right| \right) \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ \left| \cancel{2} x^{2} \left(\left| \cancel{2} \right\rangle \left\langle \cancel{2} \right\rangle \right) \\ &+ \left| \cancel{2} x^{2} \left$$

Quantum dimer model

$$H = v \sum \left(| \bigtriangleup \rangle \langle \bigtriangleup | + | \bigtriangleup \rangle \langle \bigtriangleup | \right)$$
$$-t \sum \left(| \bigtriangleup \rangle \langle \bigtriangleup | + | \bigtriangleup \rangle \langle \bigtriangleup | \right)$$

Phase diagram on the triangular lattice:



Moessner, Sondhi 2001, Ralko et al. 2005

Back to the full dimer model - Exact Diagonalization

6x6 lattice with periodic **Ground state breaks** boundary conditions translational invariance forming a 12-site unit cell! **Bond-bond correlations** in the ground state: -0.15 -0.10 k_y 0. **FT** - 0.05 \vec{a}_2 0.00

 \overrightarrow{a}_1

- 0.3 - 0.2 - 0.1

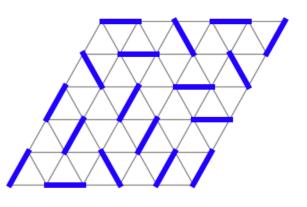
0.0

0

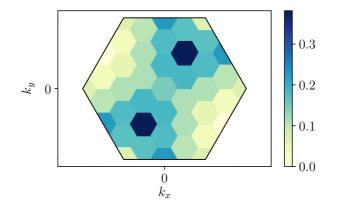
 k_x

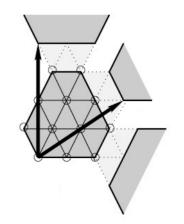
Half-filling - summary so far

Low energy properties of the Mott phase at half filling can be captured by an effective dimer model



The ground state of the effective dimer model is a valence bond solid state with a 12-site unit cell





Breaking SU(4) symmetry

Hund's coupling

$$H = J \sum_{\langle i,j \rangle} T_i^{ab} T_j^{ba} - J_H \sum_i |\overrightarrow{S}_i|^2$$

At large J_H , electrons on each site pair up into a spin-triplet

$$|1\rangle = |K \uparrow \rangle \qquad |13\rangle = |S = 1, m_z = +1\rangle$$

$$|2\rangle = |K \downarrow \rangle \qquad \frac{1}{\sqrt{2}} (|14\rangle + |23\rangle) = |S = 1, m_z = 0\rangle$$

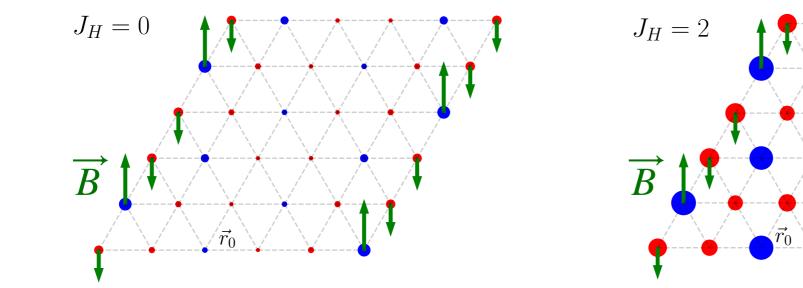
$$|4\rangle = |K' \downarrow \rangle \qquad |24\rangle = |S = 1, m_z = -1\rangle$$

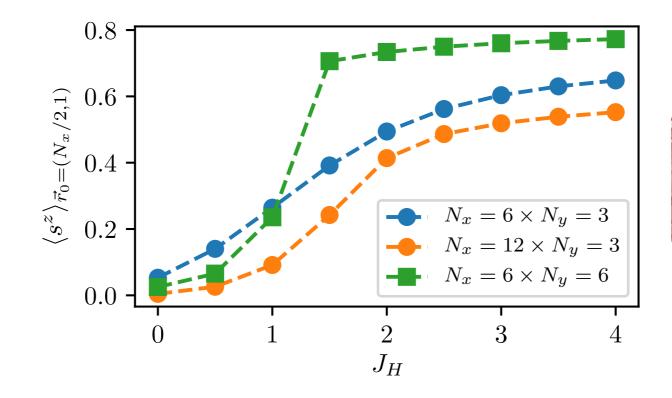
Spin-1 Heisenberg model!

120° magnetic order at large

 J_H

 $S_{\!z}$ expectation value obtained using DMRG





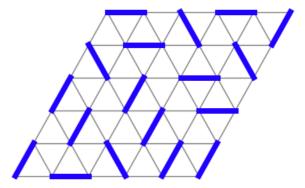
Phase transition from valence bond to magnetic order?

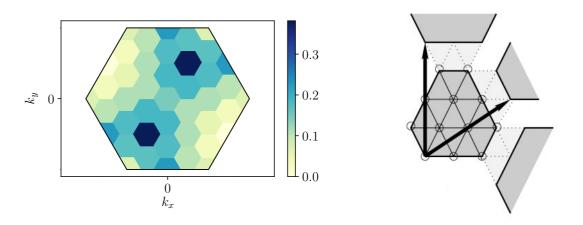
Half-filling - summary

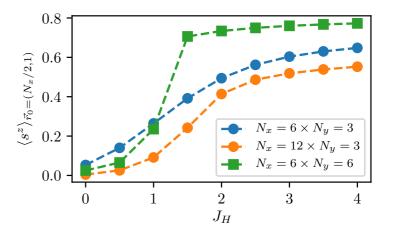
Low energy properties of the Mott phase at half filling can be captured by an effective dimer model

The ground state of the effective dimer model is a valence bond solid state with a 12-site unit cell

Breaking SU(4) symmetry by a Hund's coupling term drives the system into a magnetically ordered state

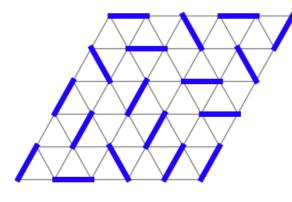


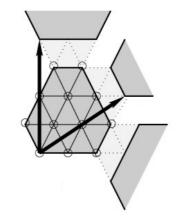




Outline - SU(4) "spins" on the triangular lattice

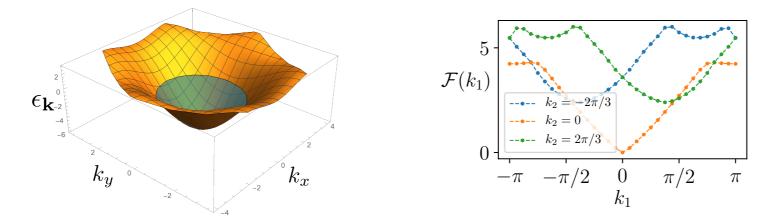
• Half filling - dimer description and valence bond states





AK, Lucile Savary, Leon Balents, SciPost 2019

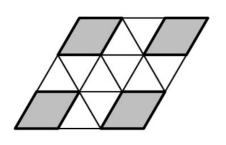
• Quarter filling - evidence for a gapless quantum liquid



AK, Bela Bauer, Cenke Xu, Chao-Ming Jian, PRL 2020

SU(4) Heisenberg antiferromagnets at quarter-filling

Triangular lattice

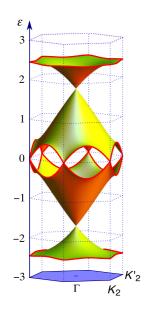


Li et al., PRL 1998

Variational study with singlet plaquettes as a starting points suggests spin-orbital liquid

Penc et al., PRB 2003

Honeycomb lattice



evidence for an algebraic (Dirac) spin-orbital liquid

Corboz et al., PRX 2012

Parton construction

$$\begin{split} S_{i}^{\alpha} &= \frac{1}{2} f_{i,a}^{\dagger} \sigma^{\alpha} f_{i,a}, \qquad V_{i}^{\beta} = \frac{1}{2} f_{i,a}^{\dagger} \tau^{\beta} f_{i,a}, \qquad (S^{\alpha} V^{\beta})_{i} = \frac{1}{4} f_{i,a}^{\dagger} \sigma^{\alpha} \tau^{\beta} f_{i,a} \\ & \swarrow \end{split}$$
Abrikosov fermions $\{f_{i,a}, f_{j,b}^{\dagger}\} = \delta_{i,j} \delta_{a,b}$

with the constraint

$$n_i = \sum_{a=1}^4 f_{i,a}^\dagger f_{i,a} = 1$$

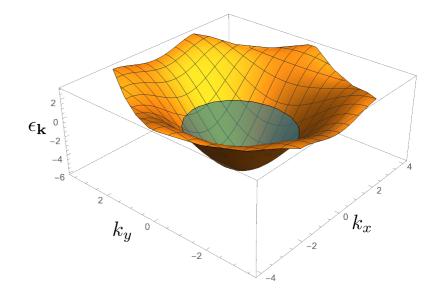
Gutzwiller projection:

Numerically project out all states with occupancy $n_i \neq 1$

Parton mean field

$$H = J \sum_{\langle ij \rangle} \left(2\mathbf{S}_i \cdot \mathbf{S}_j + \frac{1}{2} \right) \left(2\mathbf{V}_i \cdot \mathbf{V}_j + \frac{1}{2} \right)$$
$$\int_{\mathcal{S}_i^{\alpha}} S_i^{\alpha} = \frac{1}{2} f_i^{\dagger} \sigma^{\alpha} f_i, \ V_i^{\beta} = \frac{1}{2} f_i^{\dagger} \tau^{\beta} f_i, \ (S^{\alpha} V^{\beta})_i = \frac{1}{4} f_i^{\dagger} \sigma^{\alpha} \tau^{\beta} f_i$$

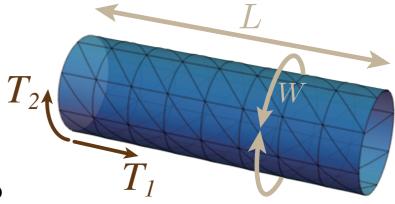
 $|\Psi_{\rm MF}\rangle$ - Slater determinant state



Finite-circumference cylinders

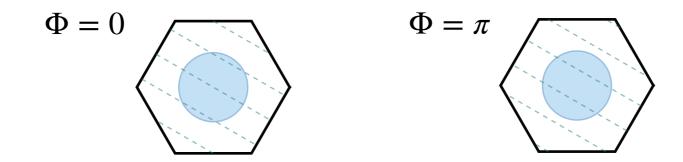
Periodic boundary conditions for the *spins*

What are the boundary conditions for the *partons*?



From symmetry constraints: $\Phi = 0$ or $\Phi = \pi$

Different cuts through the Fermi surface for finite circumference!



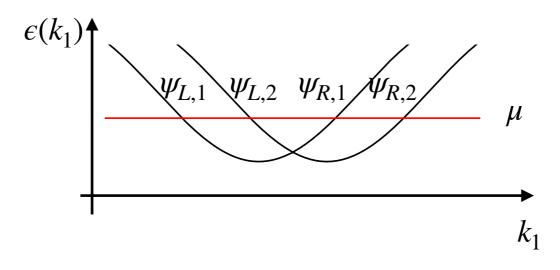
Finite-circumference cylinders

Low energy theory

$$\mathscr{L} = \sum_{m} \sum_{a=1}^{4} \left[\psi_{L,m,a}^{\dagger} (i\partial_{t} - iv_{m}\partial_{x}) \psi_{L,m,a} + \psi_{R,m,a}^{\dagger} (i\partial_{t} + iv_{m}\partial_{x}) \psi_{R,m,a} \right]$$

1D bands

Coupling to the gauge field $\partial_{\mu=x,t} \rightarrow \partial_{\mu} - a_{\mu}$



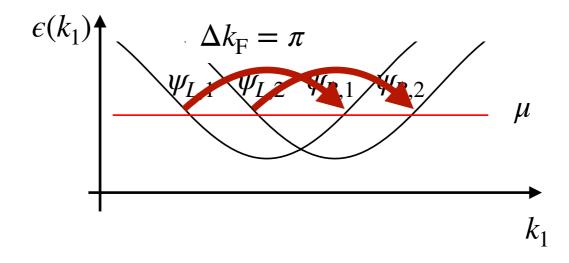
Finite-circumference cylinders

Low energy theory

$$\mathscr{L} = \sum_{m} \sum_{a=1}^{4} \left[\psi_{L,m,a}^{\dagger} (i\partial_{t} - iv_{m}\partial_{x}) \psi_{L,m,a} + \psi_{R,m,a}^{\dagger} (i\partial_{t} + iv_{m}\partial_{x}) \psi_{R,m,a} \right]$$

1D bands

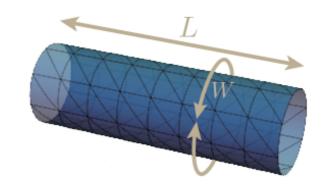
Coupling to the gauge field $\partial_{\mu=x,t} \rightarrow \partial_{\mu} - a_{\mu}$



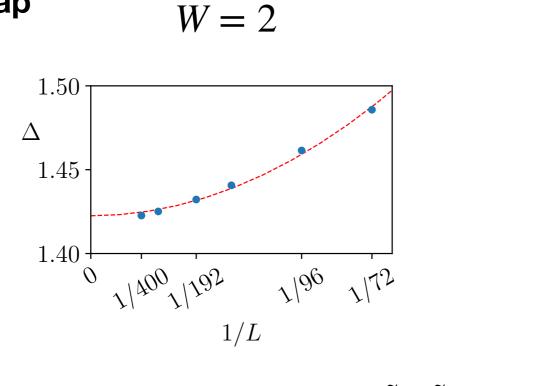
Umklapp scattering is a relevant perturbation for W=2 and W=4

will break translation invariance and open a gap!

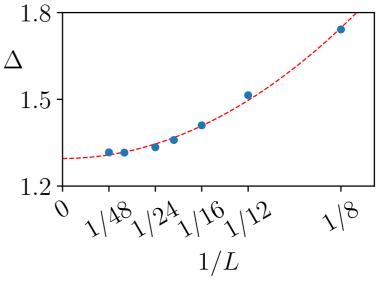
DMRG results



Spin gap



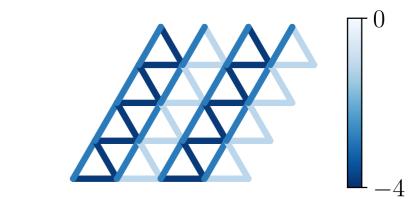
W = 4



Bond expectation values

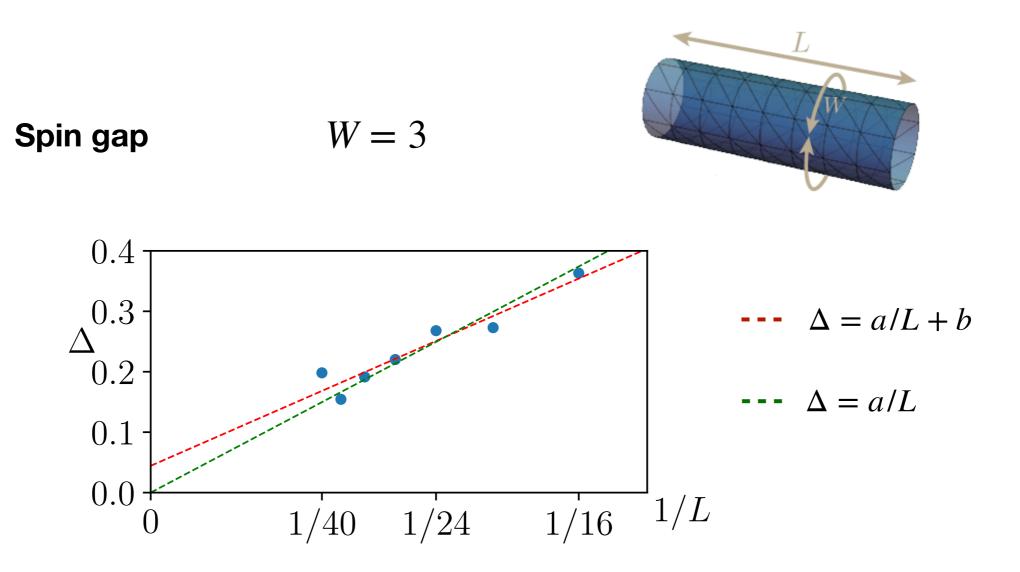
 $\langle ilde{\mathbf{S}}_i \cdot ilde{\mathbf{S}}_j
angle$

 $\begin{bmatrix} 0 \\ -5 \end{bmatrix}$



Gapped phases with a two-site unit cell - consistent with the field theory

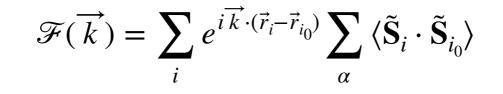
DMRG results

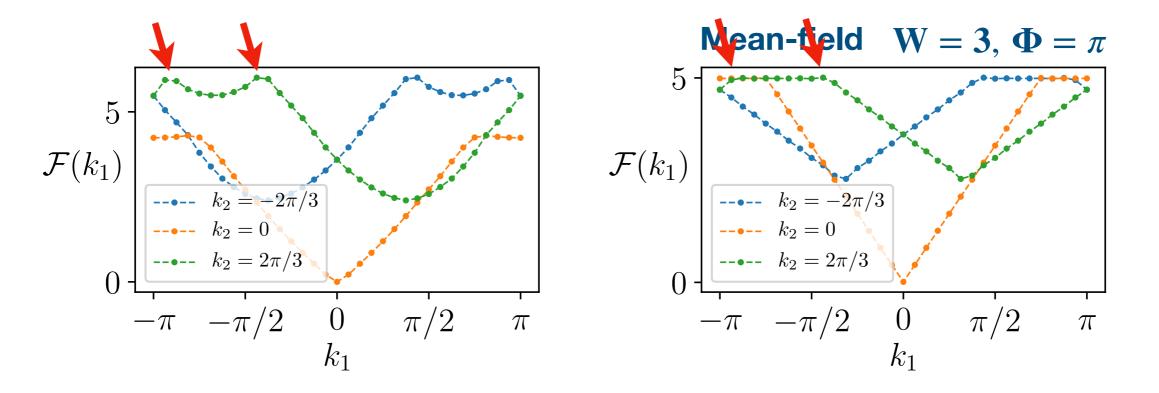


Consistent with a gapless state

DMRG results W = 3

Structure factor



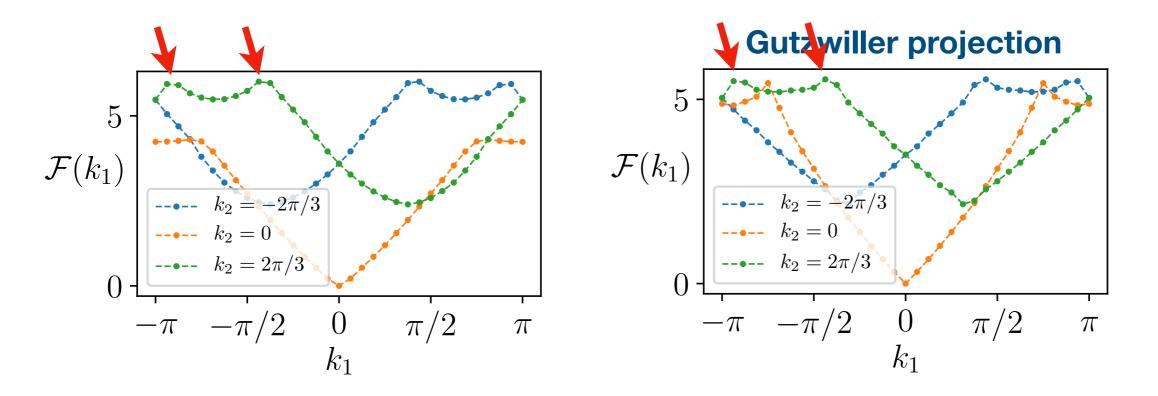


Cusps in the structure factor appear at the same values, corresponding to " $2k_F$ "s !

See e.g. Sheng, Motrunich, Fisher, PRB 2009

DMRG results W = 3

$$\mathcal{F}(\vec{k}) = \sum_{i} e^{i\vec{k}\cdot(\vec{r}_{i}-\vec{r}_{i_{0}})} \sum_{\alpha} \langle \tilde{\mathbf{S}}_{i}\cdot\tilde{\mathbf{S}}_{i_{0}} \rangle$$



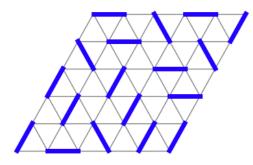
Cusps in the structure factor appear at the same values, corresponding to " $2k_F$ "s!

See e.g. Sheng, Motrunich, Fisher, PRB 2009

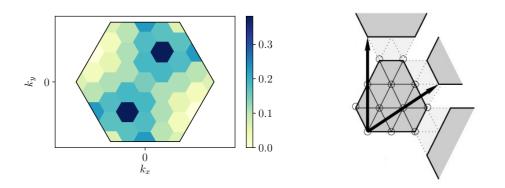
Summary

Half filling

Low energy properties of the Mott phase at half filling can be captured by an effective dimer model



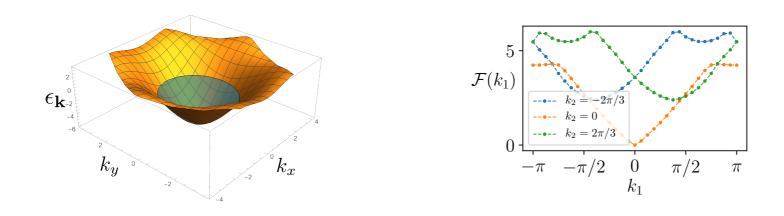
The ground state of the effective dimer model is a valence bond solid state with a 12-site unit cell



AK, Lucile Savary, Leon Balents, SciPost 2019

• Quarter filling

Numerical results on finite circumference cylinders are consistent with a gapless liquid state with an emergent Fermi surface



AK, Bela Bauer, Cenke Xu, Chao-Ming Jian, PRL 2020