Topological SU(N) spin liquids

on the square lattice

Didier Poilblanc Laboratoire de Physique Théorique, Toulouse

- Generalize spin-1/2 RVB spin liquids to SU(4) on the square lattice and investigate its relevance in a SU(4) NN spin model.
- Construct chiral SU(N) (N=2,3,...) spin liquids, analogs of the Fractional Quantum Hall states, and identify simple (local) quantum spin models hosting these CSL.

Sylvain CAPPONI LPT, Univ. de Toulouse

Olivier GAUTHÉ EPF-Lausanne

Matthieu MAMBRINI LPT, CNRS, Toulouse

Ji-Yao CHEN Max-Planck-Institute Garching

Norbert SCHUCH Max-Planck-Institute Garching —> Vienna

Alexander WIETEK CCQP, Flatiron Institute, NY

«Topological spin liquids» beyond the «order parameter» paradigm

* no spontaneous broken symmetry * no local order but... * Topological order X. G. Wen International Journal of Modern Physics B4, pp. 239-271 (1990) Excitations are fractional («anyons») GS degeneracy depends on topology of space

Ε

0

TWO TYPES OF SPIN LIQUIDS:

spin-SAKLT

 $\begin{array}{l} Bi_{3}Mn_{4}O_{12}(NO_{3}) & \mbox{material} \\ \mbox{J. Lavoie et al., Nat. Phys. 6, 850 (2010)} \\ \mbox{M. Matsuda et al., Phys. Rev. Lett. 105, 187201 (2010)} \end{array}$

«Trivial» liquid

spin-1/2 RVB

P. Fazekas and P.W. Anderson Philosophical Magazine **30**, 423-440 (1974)

Equal-weight superposition of NN singlet coverings

Topological liquid

Hasting-Oshikawa-LSM theorem

The spin-I/2 RVB can be written as a PEPS !

Z₂ gauge symmetry => topological order !

Computing observables

How to deal with infinite double layer ?

- Environment constructed by renormalization of the corner transfer matrix (CTM)
 - T. Nishino & K. Okunichi, J. Phys. Soc. J. **65**, 891 (1996) R. Orus & G.Vidal, Phys. Rev. B **80**, 094403 (2009)
- Variational optimisation scheme based on a conjugate gradient method

L.Vanderstraeten, J. Haegeman, P. Corboz, F.Verstraete, Phys. Rev. B **94**, 155123 (2016) DP & M. Mambrini, Phys. Rev. B **96**, 014414 (2017) DP, Phys. Rev. B **96**, 121118 (2017)

Enhancement of spin-space symmetry from SU(2) to SU(N) ?

Realized in ultracold alkaline-earth Fermi gases using nuclear spin degrees of freedom. But more challenging in electronic spin systems...

 Coupling between spin & orbital degrees of freedom —> trigger search for QSO liquids

K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp.25, 231 (1982)

• SU(4)-symmetric Hubbard model (1/4-filling) in $\alpha - ZrCl_3$

M. Yamada, M. Oshikawa, G. Jackeli, PRL 121, 097201 (2018)

 SU(4)-symmetric spin models correspond to 1/2-filled insulator relevant to twisted bilayer graphene with valley degeneracy ?

Y. Cao et al., Nature 556, 80 (2018)

A. Keselman, L. Savary & L. Balents, SciPost Phys. 8, 076 (2020)

SU(4) topological resonating valence bond spin liquid on the square lattice

Olivier Gauthé, Sylvain Capponi, and Didier Poilblanc Phys. Rev. B **99**, 241112(R) – Published 26 June 2019

(b)

2 tensors T_1, T_2

Two SU(4) fermions (6-dim antisymmetric irrep)

1 tensor T_0

(a)

Similar to SU(2) RVB <u>Ji-Yao Chen</u>, <u>DP</u>, Phys. Rev. B 97, 161107 (2018)

Energetics

if T & P are broken : chiral spin liquids lattice analogs of FQH states

Low-energy physics described by 2+1 Chern-Simons theory First example of CSL: $\nu = \frac{1}{2}$ FQHS on a lattice (Kalmeyer-Laughlin, 1987)

Tensor networks formalism well suited

Abelian chiral SL in chiral AFM on non-bipartite lattices

Chen, Capponi, Wietek, Mambrini, Schuch, DP

PRL **125**, 017201 (2020)

$$H = J_1 \sum_{\langle i,j \rangle} P_{ij} + J_2 \sum_{\langle \langle k,l \rangle \rangle} P_{kl}$$

+ $J_R \sum_{\Delta ijk} (P_{ijk} + P_{ijk}^{-1}) + i J_I \sum_{\Delta ijk} (P_{ijk} - P_{ijk}^{-1})$

antiferromagnet on **square lattice** +

SU(N) chiral (frustrated)

- N-dimensional physical spins (ie fundamental rep. of SU(N))
- Generic 3-site interaction

Chiral spin liquid with PEPS

u

S

Z₃ gauge (virtual) symmetry

Vison line (flux)

Conclusion & outlook

- Existence of SU(4) spin liquids needs to be substantiated may be QMC ? Also could be investigated on other lattices, triangular, etc...
- Simple SU(2) / SU(3) spin models hosting chiral topological spin liquids
- Can be extended to SU(N), N>3 (in progress, results up to N=10)
- More exotic non-Abelian CSL with SU(2)₂, SU(2)₃, SU(3)₂, SU(4)₂, etc...
 edges physics

