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60 D. C. Tsui I Two-dimensional electrons in a strong magnetic jield 
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Fig. 1. p,, and p,, vs. B taken from a lower mobility GaAs/Al,Ga,_xAs sample (from H.P. Wei, unpublished). 
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Fig. 2. p,, and p,, vs. B taken from a high mobility sample. T = 85 mK, nS = 3 x lO”/cm*, and p = 1.3 X lo6 cm*/V,. The low field 
region inside a), taken at T=25mK, is shown in fig. 4 (from ref. [23]). 
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2) Integer QH to insulator QCP. 
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Composite fermions
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Composite fermions

Chern-Simons term:

Flux-attachment

Lopez, Fradkin; Jain; Halperin,Lee,Read; Kalmeyer, Zhang.

Critical point vs stable phase

As one tunes disorder...

Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?
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Composite fermions and the half-filled LL

Critical point vs stable phase

As one tunes disorder...

Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?

Critical point vs stable phase
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Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?
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⌫ = 1/2 ⌫cf = 1

Electrons in a large field CF Fermi sea
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Composite fermions and Jain sequence

e.g. ⌫ = 1/3

Critical point vs stable phase

As one tunes disorder...

Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?

Critical point vs stable phase
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Theory:

Strong Disorder Weak/No Disorder

IQHE ⌫ = 0 ! 1 Composite Fermions at Be↵ = 0

How does one description turn into the other?
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Jain sequence:

⌫ =
p

2p+ 1 ) ⌫cf = p

Jain sequence: integer 
quantum Hall states of CFs
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I. particle-hole symmetry 
of Jain sequence.

Prashant Kumar, Michael Mulligan, SR, PRB 2019.  
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Resolution: CF zero mode.
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CF Landau Levels (Jain sequence): E
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Figure 7: The Landau levels with spin and g = 2. Each level is degenerate
between the spin up and down states, while the ground state has precisely
zero energy with only the spin up state.

precisely the Hamiltonian with g = 2. One can further rewrite this operator
as a matrix
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Therefore, Q takes the state to a higher Landau level and raises the spin, or
to a lower Landau level and lowers the spin. Because Q commutes with the
Hamiltonian, Q does not change the energy. This way, we can see why each
Landau level is degenerate between the two spin states. Namely, each state
comes in degenerate pairs, |ii and Q|ii. However, the ground state, namely
the lowest Landau level with spin up

 
 0

0

!

, (5.5)

is annihilated by Q, and is not degenerate with the opposite spin state.
Moreover, it has precisely zero energy H = Q2 = 0.

This operator Q is called supercharge, and the symmetry generated by it
supersymmetry . In general, when there is a set operators that anti-commute

23

b > 0b < 0

|b|/m

2|b|/m
3|b|/m

4|b|/m

0

CF Zero mode occurs only for b<0.  

p filled LLs for b>0: p+1 filled LL for b < 0.

Including zero mode: crucial for PH symmetry.  

µ1/2

En =
|b|
m

⇢
n+ 1, b > 0
n, b < 0
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Let p Landau levels be filled for b>0, p+1 for b<0.

Electromagnetic response

Integrate out CFs, a, to obtain EM response:

Gathering both terms in Eq. (10), we find

L = ⇣
p+ 1�⇣

2

4⇡
ada+

1

8⇡
(a�A) d (a�A) + . . . (13)

To obtain the electromagnetic response, we integrate out
a and obtain
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b<0 =

1

4⇡

p+ 1
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p+ 1
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(14)

From this, we see that the transformation b ! �b is
equivalent to ⌫ ! 1�⌫: particle-hole symmetry is equiv-
alent to flipping the sign of the magnetic field of compos-
ite fermions. But for the zero modes, which are present
only when b < 0, there is a spectral equivalence between
the non-zero energy Landau levels under this transfor-
mation. Hence, we may expect that the corresponding
observables are identical in both cases.

IV. COMPARISON WITH DIRAC COMPOSITE
FERMIONS

Next, we compare the results obtained in the previ-
ous section with the predictions of Son’s Dirac compos-
ite fermion theory9 and show that at the level of mean-
field theory considered here, they are identical. To mo-
tivate the Dirac composite fermion theory, let us, for
the sake of amusement, consider the problem of a single
2-component Dirac electron in the lowest Landau level.
The corresponding Lagrangian is

L = i ̄ /DA � 1

8⇡
AdA+ · · · (15)

The second term above comes from the parity anomaly.23

In a simple lattice regulated theory, there is a doubler
fermion, which in this case is necessarily massive (since
by assumption we have a single, light 2-component Dirac
electron), and upon integrating it out, we obtain a level-
half Chern-Simons term for A. We motivate the Dirac
composite fermion theory by following the usual proce-
dure of flux attachment used in the non-relatvisitic case:
we attach two flux quanta by replacing in the Lagrangian
L[A] ! L[A+ a], with aµ a dynamical U(1) gauge field,
and add a level-1/2 Chern-Simons term for a:

Lcf = i�̄ /DA+a�� 1

8⇡
(A+ a) d (A+ a) +

1

8⇡
ada+ · · ·

= i�̄ /Da�� 1

8⇡
ada+

1

8⇡
(a�A) d (a�A) + · · ·

(16)

In the last line above, we again shifted aµ ! aµ � Aµ

as before. This Lagrangian was postulated by Son to
describe a particle-hole symmetric lowest Landau level.
The form written above enables us to compare directly

FIG. 1. (a) A schematic for the response of Dirac compos-
ite fermion theory to an applied gate voltage. Energy levels
shown with green, red and blue colors represent negative, pos-
itive and zero energy Landau levels respectively. The number
of filled Landau levels is p + 1

2 for either sign of the e↵ec-
tive magnetic field. Taking into account the contribution of
the massive Dirac partner, one gets p filled Landau levels for
b > 0 and p + 1 Landau levels for b < 0. This is identical to
the response of the HLR theory depicted in (b) as explained
in section III.

the predictions of the HLR theory in the previous section
with those of the Dirac theory. The second term above
can be interpreted as the contribution from a massive
Dirac partner whose mass is much larger than the energy
scales of interest. For the remaining massless fermion,
when we tune away from ⌫ = 1/2, we fill (p+1/2) Landau
levels for either sign of field. The “1/2” comes from the
zero mode, which is always half-filled. Thus,

L[a,A] = ⇣
p+ 1

2

4⇡
ada+

1

8⇡
(a�A)d(a�A)� 1

8⇡
ada

= ⇣

⇣
p+ 1�⇣

2

⌘

4⇡
ada+

1

8⇡
(a�A)d(a�A) (17)

Consequently, the Dirac theory and the HLR theory
described in the previous section have the same response
properties. The massive partner e↵ectively adds another
half-filled Landau level that, in conjunction with the Lan-
dau levels of the massless Dirac fermion, precisely re-
produces the non-relativistic spectrum of Landau levels
of HLR theory. And both satisfy the expectations of
particle-hole symmetric electromagnetic response.

V. GENERALIZATION TO EVEN
DENOMINATOR FILLINGS ⌫ = 1

2q

Similar experiments to the one in Ref. 5 can be per-
formed in the neighborhood of even denominator frac-

3

Including the zero 
mode, we recover 
ph symmetry.  

⌫ ! 1� ⌫

b ! �b

electrons

cfs
PH for electrons = T for CFs.  
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II. The IQH to Insulator transition.

Prashant Kumar, Yong-Baek Kim, SR arXiv:1907.13141.      
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Disorder of interest

R

n̄ = n1/2

V (r) = 0

R � `B

Long-wavelength disorder:

Statistical PH symmetry:

V (r)V (r0) = �e�(x�x0)2/R2
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Disorder problem: random potential slaved to random flux.
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Introduction and broader implications

I The half-filled Landau level is one of the best known examples of a non-Fermi liquid metal. Is it a stable

phase of matter or a critical point in the presence of disorder?

I In the framework of composite fermions, at a mean-field level, we find that the half-filled LLL always

corresponds to a critical point when disorder is present.

I DC electrical resistivity tensor can be universal at this critical point. It leads to �xy =
e
2

2h
suggesting

emergent particle-hole symmetry in the HLR theory.

HLR theory with weak quenched disorder

HLR theory postulates that the composite fermions, formed by attaching two flux quanta to electrons, are

the emergent degrees of freedom.

LHLR =f
†

✓
i@t + µ + at + At �

1

2m

�
i@j + aj + Aj

�2
◆
f

+
1

8⇡
ada

Chern-Simons constraint equation leads to:

4⇡f
†
f (r) = �r⇥ a(r)

The e↵ective magnetic field felt by composite fermions is zero. Thus, naively:

�
(cf)

xy = 0

However, the e↵ective theories must be consistent with observed symmetries. An important constraint comes

from particle-hole (PH) symmetry:

�xy =
e
2

2h
=) �

(cf)

xy = �
e
2

2h

So, how can the HLR theory satisfy constraints of particle-hole symmetry?

Disorder: The spatial modulation in the density of CFs leads to a proportional spatially varying

e↵ective magnetic field. For long-wavelength and weak disorder:

be↵(r) = �4⇡�n(r) = �2mV (r)

PH-symmetric Hall response

Intuitive Argument: Regions of negative e↵ective magnetic field have higher density of composite-

fermions than the regions of positive e↵ective magnetic field.

The average Hall conductivity is:

h�
(cf)

xy i =
�n

�b
⇥

e
2

~ = �
e
2

2h

Numerical calculation �!

Susy QM: The mean-field Hamiltonian of composite-fermions is analogous to a spin-1/2 in a random

magnetic-field with a Zeeman term at g = 2:

H" =
1

2m

h
⇧
2
x + ⇧

2
y �

g

2
b(r)

i

Hcf = H# =
1

2m

h
⇧
2
x + ⇧

2
y +

g

2
b(r)

i

We find that the following two Hall-conductivity sum-rules are satisfied:

�
#
xy + �

"
xy = 0, Statistical time-reversal symmetry,

�
#
xy � �

"
xy = �

1

2⇡
, Supersymmetric quantum-mechanics.

Numerical verification of the second

sum rule.

Agreement improves on increasing

L or hV
2
i.
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Consequently, �̄
#
xy = �

(cf)

xy = �
e
2

2h
.

HLR theory as a critical point

Upon deviation from ⌫ = 1/2, the composite fermions feel a non-zero e↵ective magnetic field.

Separate b(r) = b̃(r) + b0, where hb̃(r)i = 0.

DoS for (a) b0 < 0 (b) b0 > 0.

Assuming that all extended states levitate up, at any given Fermi energy:

�
(cf)

xy =

⇢
�

1

2⇡
, b0 < 0

0, b0 > 0

So, b0 = 0 or ⌫ = 1/2 corresponds to the integer quantum Hall transition of composite-fermions. This

corresponds to the ⌫ = 1 to ⌫ = 0 transition for electrons.

Low energy e↵ective-field theory

The electromagnetic response Lagrangian of composite-fermions at ⌫ = 1/2 is:

Lresponse,avg = �
1

8⇡
ada =) �xy = �

e
2

2h

However, this is not gauge-invariant. This problem has a well-known resolution:

Le↵ = i ̄�µD
µ
a �

1

8⇡
ada + Lcs

= i ̄�µD
µ
a �

1

4⇡
Ada +

1

8⇡
AdA,

This is same as the conjectured particle-hole symmetric theory of a Dirac composite fermion by Son[4].

Equivalent electrical response in HLR and Dirac theories

The electromagnetic response of the HLR theory at g = 2 and the Dirac theory turn out to be identical.

A. Cheung, SR, M. Mulligan, 2017,

arXiv:1611.08910

Weiss oscillations in the resistivity calculated in

the HLR and Dirac theories coincide.

At constant chemical potential, “p” Landau levels

are filled for b0 > 0, and “p + 1” Landau levels are

filled for b0 < 0.

They correspond to PH-symmetric filling fractions

⌫ =
p

2p+1
and ⌫ =

p+1

2p+1
.

If electromagnetic charge density is kept constant then “p” number of Landau levels are filled for either sign

of b0. This corresponds to the filling fractions ⌫ =
p

2p+1
and ⌫ =

p�1

2p�1
.

These behaviors are identical in the Dirac theory.

Conclusions and Future directions

I Particle-hole symmetry in the HLR theory is a subtle emergent property that is only unearthed after a

careful analysis of the problem.

I Within a mean-field approximation, the HLR theory is tuned to a topological quantum critical point

at which the change in the composite fermion Hall conductivity ��
xy(cf)

= �e
2
/h.

I Strong interaction e↵ects are needed to describe a putative metallic phase.

I If both HLR and Dirac composite fermion descriptions are equivalent at long wavelengths, are their

instabilities identical too?
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Lcf = f̄

✓
K̂a + µ1/2 �

b(r)

2m

◆
f +

1

2

1

4⇡
(a�A)d(a�A) + · · ·

Disorder problem: random potential slaved to random flux.

CFs with disorder

Associated 1st quantized Hamiltonian:

Hcf =
1

2m

h
(p+ a)2 + b(r)

i
, b(r) = r⇥ a(r)
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Start with slight deviation from half-filling.  Increase disorder.

Incomplete LL levitation
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Zero mode does not levitate!

Incomplete LL levitation

D.E. Khmelnitskii, Phys. Lett. A 106, 182 (1984). 
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1)         at criticality: analytical calculation using SUSY QM.  

2)         at criticality: explicit derivation of NLSM Lagrangian, self-duality.    �cf
xx

1) and 2) uniquely fix the electrical conductivity tensor at criticality.  
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3)  Numerical study of critical exponents.  
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Analytic proof using SUSY QM: P. Kumar, M. Mulligan, SR, 1805.06462.



CFs with disorder

Hcf =
1

2m

h
(p+ a)2 � b(r)

i
, b(r) = r⇥ a(r)
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2)         at criticality: explicit derivation of NLSM Lagrangian, self-duality.    �cf
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1) and 2) uniquely fix the electrical conductivity tensor at criticality.  

3)  Numerical study of critical exponents.  
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(a) (b)

FIG. 2. The density of states of the lattice Hamiltonian (2) for various disorder strengths and (a) b0 = �0.5 (b) b0 = 0.5. There
are zero-modes near the bottom of the band for b0 < 0 which become sharper as the disorder strength is reduced. Further, the
zero modes levitate up for b0 > 0. Thus, the lattice model faithfully describes the idealized Hamiltonian of Eq. 1 in the weak
disorder limit and when the Fermi energy is near the bottom of the band.

where NR is the degree of the polynomial in the relevant
parameter � ⌘ b0� bc.  is the amplitude of the leading
irrelevant operator and y is the corresponding correction
to scaling exponent. Further, an, c11 and bc are fitting
parameters, the last of which gives the location of the
transition.

ForW = 3⇡/2 and Fermi energy EF = �4 at g = 2, we
plot the calculated ⇤M (b0) in Fig. 3(a). Fitting the data
to the above polynomial form using the standard least
square error method, we extract ⌫ = 2.56±0.02. Also, for
a stronger disorder: W = 7⇡/4, we find ⌫ = 2.57 ± 0.02
(Fig. 3(b)) suggesting that the exponent is indepen-
dent of disorder strength. These results are in agreement
with the previous studies of the IQHIT inspired by the
electron version of the transition including the Chalker-
Coddington model.7,16–26 They support the idea that the
two descriptions of IQHIT lead to the same universal be-
havior. In addition, we note that our results are slightly
inconsistent with studies based on other models reporting
a smaller exponent.39–41

Multifractal scaling - In addition to the localization
length exponent ⌫, wavefunction multifractality repre-
sent additional universal characteristics of the IQHIT.
They correspond to the finite size scaling of the inverse
participation ratios Pq calculated from the critical wave-
function  :

Pq ⌘ Ldh| |2qi / L�2(q�1)��(q). (7)

where L is the system size and d = 2. Employing stan-
dard techniques,42,43 we calculate these exponents using
the critical wavefunctions of a square system of dimen-
sions L⇥L with periodic boundary conditions. Since the
total flux through the sample is quantized in the units of
2⇡, we round bc obtained in the previous section to the
nearest integer multiple of 2⇡/L2.

For the critical point in Fig. 3(a) at b0 = �0.229, we
find ⌘ ⌘ ��(2) = 0.51± 0.01. And for the critical point
in Fig. 3(b) at b0 = �0.558, we get ⌘ = 0.52±0.01. These
are close to the value ⌘ = 0.5425 obtained in Ref. 27.
Further, they are also consistent with ⌘ = 0.5 predicted

in Ref. 44. We plot the full multifractal spectra in Fig.
4 and fit them to the following form symmetric around
q = 1/2:27,45

�(q) = 2q(1� q)
⇥
�0 + �1(q � 1/2)2 + �2(q � 1/2)2

⇤
.
(8)

We find �0 = 0.129 ± 0.005, �1 = 0.003 ± 0.003, �2 =
�0.0002 ± 0.0004 and �0 = 0.133 ± 0.006, �1 = 0.002 ±
0.004, �2 = �0.00005±0.00050 for the two critical points.
These are in excellent agreement with the corresponding
quantities in Ref. 27. Likewise, we also find evidence
for corrections to the proposed parabolic form46–49 since
�1 6= 0. It should be noted that our data does not show
a perfect symmetry around q = 1/2. We believe that
this is due to finite size e↵ects. Similar to Ref.
27, as we report in Appendix A, the asymmetry in
�(q) approaches zero in the thermodynamic limit.
We summarize the results of all obtained critical expo-
nents in Table I.

While the value g = 2 in Eq. 1 is motivated by CF
mean-field theory, we can consider the e↵ect of relax-
ing the value of g on the IQHIT. Such deviations from
g = 2 can arise from lattice corrections to the e↵ective
mass approximation, or from the breaking of particle-
hole symmetry in the disorder-averaged theory50. As we
show in Appendix B, the localization length exponent
decreases monotonically with g. The extent to which
such deviations51 reflect a new universality class for the
IQHITs, or are due to substantial finite size e↵ects, or
from large corrections to scaling from irrelevant opera-
tors, remain unclear and require further study. We shall
return to these questions in future work.
Discussion - Our results have several important impli-
cations for the IQHIT, and suggest several new direc-
tions of exploration. The most important implication
of our study governs finite temperature dc transport in
the quantum critical regime. In electron coordinates, ex-
tended states occur at a single energy, and without any
interaction e↵ects, ⇢xx(T ! 0) 6= ⇢xx(T = 0). By con-
trast, in the CF representation, this issue does not arise,

3

Zero modes clearly visible in numerics.  

Kevin Huang, SR, Prashant Kumar  
Arxiv:2009.07871



Mean-field exponents

⇠ ⇠ |b0|�⌫ ⌫ = 2.56± 0.02

Previous work (Chalker-Coddington model):

⌫ = 2.593± 0.01

Multifractal wave-functions: Pq ⌘ Ldh| |2qi / L�2(q�1)��(q)

Kevin Huang, SR, Prashant Kumar  
Arxiv:2009.07871

�(q) ⇡ 2q(1� q)�, � = 0.129± 0.005
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Analytical prediction for  
Chalker-Coddington model: � =

1

8
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M. Zirnbauer, Nucl. Phys. B 941, 458-506 (2019).



Summary

Magnetic field

D
is

or
de

r

⇡ ?

⌫ = 1 ⌫ = 0

⌫ = 1/2

2) Integer QH to insulator QCP. 

1) Nearby FQH states (Jain 
sequence).

CF zero modes: crucial for both 1) and 2).  



Looking ahead..

Theme: Composite fermion viewpoint of QH critical points.  

1/r interactions


