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Triangular Heisenberg antiferromagnet: spin-wave modes

- spontaneous non-collinear 120° Nèel
order with spin reduction DS~0.3

- single propagation vector Q = (1/3,1/3)

- in lab frame see w(k), w(k±Q)

local (rotating) frame
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- two-magnon phase space

couples L & T components

L

T

unstable to decay



Triangular Heisenberg antiferromagnet: spin-wave approaches

spin-wave approaches predict

- extended regions of one -> two magnon decays

- downward dispersion renormalization
(also found by series expansions)

- roton soft mode at M

Chernyshev, Zhitomirsky (2009)

Mourigal, Fuhrman,
Chernyshev, Zhitomirsky (2013)

Starykh,Chubukov… (2006)

LSWT

SWT+1/S

“roton” minimum



Triangular Heisenberg antiferromagnet - open questions

- do magnons decay ?

- can dispersion be described by SWT?

SWT+1/S prediction

Mourigal, Fuhrman, Chernyshev,
Zhitomirsky (2013)

weak
coupling

strong
coupling

Verresen, Moessner, Pollmann (2019)

DMRG

variational Monte Carlo

- DMRG near HB limit find no decay,

Ferrari, Becca (2019)

- nature of high-energy excitations,
multi-spinwaves?

variational Monte Carlo also
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Hexagonal Ba3CoSb2O9

- CoO6 octahedra in triangular layers corner-bonded
by Sb2O9 dumbbells

- 2-layer stacking with 2-fold screw axis (hexagonal
P63/mmc) Co 3m point group

1/3rd magnetization plateau in in-plane field

Suzuki … Tanaka PRL(2013)

CoO6

Ba

Co2+

Sb5+

_

- Co-O-O-Co superexchange AFM
- 120° Nèel order TN~3.7 K
- small XXZ anisotropy
- Co2+ Kramers effective spin-1/2



Inelastic neutron scattering experiments
- mount with (hk0) scattering plane horizontal
- cover multiple hexagonal Brillouin zones in-plane
- simultaneously measure multiple incident energies

(7 meV – overview, 3.5 meV - higher resolution)

- floating-zone grown
crystals of Ba3CoSb2O9

- total mass ~ 4 g

LET @ ISIS

see also Ito…(2017),Ma... (2016), Zhou…(2012)



Inelastic neutron scattering experiments
- probe full hexagonal Brillouin zone in-plane

with good wavevector resolution
- probe L-dispersion through

vertical scattering

LET @ ISIS



Overview of the excitation spectrum

- two intense sharp modes, gapless + gapped above
magnetic Bragg peaks characteristic of easy-plane XXZ

magnetic
Bragg peaks

- triangular cone at K + oval
contours around M due to
local “roton” soft mode

K
M MK/2

Q

- weaker soft mode in
secondary mode at M for
primary mode w(K/2)

M



Dispersions not accounted for by spin wave theory

- allow for J1, interlayer Jz, XXZ anisotropy D
- capture well low-energy dispersions
- not possible to describe high-energy dispersions even in SWT+1/S (observed w ~45% lower)

Ito…(2017)Ma... (2016)



Empirical parameterization of the magnon dispersion

- to capture the soft modes imagine interaction of
with a higher energy parabolic mode

- lower energy eigenvalue inherits the soft mode dip

- motivated empirically to capture repelling effect from
interaction with high-energy states, high energy magnons
most affected, low energies not affected as expected

- parameterize soft minima at both M and K/2 points

LSWT

SWT+1/S

LSWT

- LSWT expected to work well at low energies



Empirical parameterization of the magnon dispersion

M

LSWT Renormalized

M



Empirical parameterization of the magnon dispersion
- include nn exchange J1,

interlayer coupling Jz,
XXZ anisotropy D

- refine parameterization
from global fit to data
along many k-directions
(include full cross-section
model with 3 modes)

- constrain to reproduce
saturation field Bc

- all dispersions in full 3D
Brillouin zone captured
quantitatively



- all dispersion modulations well captured
- soft modes at M and K/2

Empirical parameterization of the magnon dispersion

data model



- magnons are sharp everywhere, even at top of dispersion

SWT+1/S prediction

Data Sharp magnons and strong continua



Data Decay when a sharp mode enters a continuum

- sharpness of mode suggests it
never enters the continuum

- example of sharp mode entering continuum
and decaying

↑↑↑↑↓↓↓↑↑↑↑••

↑↑↑↓↑↑↑••
propagating spin flip

RC…(2010)

CoNb2O6



Why magnons do not decay ?

- two-magnon phase space

one-
magnon

- for the parameterized
dispersion no overlap
=> no decay allowed

- Heisenberg LSWT model
–> extensive decay
region expected

- add anisotropy XXZ –>
top magnon still
expected to decay



More evidence for quantum interactions: transfer of spectral weight to continuum

- overall weight of continuum scattering much stronger than expected two-magnon (LSWT)

scan at K2’scan at M

- magnon intensity decreases faster with increasing w than 1/w expected by LSWT
- high-energy magnons transfer part of their weight to continuum



Continuum scattering compared to a two-magnon cross-section

- continuum extends well beyond the top two-magnon cut-off
- starts close to spinwave cone (not with a large separation)

and has additional higher-energy structure



Intensity modulations in the continuum scattering
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Intensity modulations in the continuum scattering

- continuum intensity is highly structured with patterns of rings, triangles and hexagons
appearing at various energies
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Intensity modulations in the continuum scattering

- continuum intensity is highly structured in momentum with patterns of rings, triangles and
hexagons appearing at various energies



Summary

- observed sharp magnons throughout, no decay, attribute to strong interaction with continuum

- for the parameterized dispersion no overlap of one and two magnon phase spaces occurs

- magnons carry little weight -> strong transfer of spectral weight to continuum, highly structured
continuum intensity, not explained by a two-magnon cross-section

LSWT

Renormalized


