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Outline
• Quantum Spin Liquid, spinon Fermi surface


• Spin waves in magnetized conductors and U(1) spin liquids


• Spin-1/2 chain: d=1 spin liquid in magnetic field


• Conclusions



The big question(s)
What is quantum spin liquid?

Which materials realize it?

How to detect/observe it?

Past candidates: Cs2CuCl4, kagome volborthite…

Current candidates: kagome herbertsmithite, α-RuCl3, YbMgGaO4, organic Mott insulators

Neutrons, RIXS, NMR, thermal transport, terahertz optics, ESR

No broken symmetries.

Quantum entangled state:


fractionalized excitations = spinons 
emergent gauge fields 

Savary, Balents 2017

Dynamics in  
Magnetic field!



Focus: Spinon Fermi 
surface in magnetic field

• The most gapless/highly 
entangled QSL state 

• Like a “metal” of neutral fermions 
with a U(1) gauge field 

• Prototype “non-Fermi liquid” 
state of great theoretical interest
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Many theoretical proposals, number of suggestive 
experiments…



• The most gapless/highly 
entangled QSL state 

• Like a “metal” of neutral 
fermions with a U(1) gauge field 

• Prototype “non-Fermi liquid” 
state of great theoretical 
interest

Spin liquid with spinon 
Fermi surface

Explore analogy with Fermi liquid!



Fermi liquid in (Zeeman) magnetic field: 
spin wave collective excitation

Qualitative difference of 
Fermi-liquid from Fermi-gas



Particle-hole continuum

q=0 costs Zeeman energy

zero energy when vFq 
=        = Zeeman

+ Zeeman field
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The search for the enigmatic spin liquid state has
switched into high gear in recent years. Dramatic the-
oretical (Kitaev model [1, 2] and spin liquid in tri-
angular lattice antiferromagnet [3]) and experimental
(YbMgGaO4 [4, 5] and ↵-RuCl3 [6]) developments leave
no doubt of the eventual success of this enterprise. To
push this to the next stage, it is incumbent upon the com-
munity to identify specific experimental signatures that
evince the unique aspects of these states. In this paper,
we address one of the most important measurable quanti-
ties in the two dimensional U(1) QSL with a spinon Fermi
surface. This is a priori the most exotic two dimensional
QSL state, and yet one which has repeatedly been advo-
cated for in both theory and experiment. Specifically, we
study the dynamical susceptibility of the q-component of
the spin operator Sa

q (a = x, y, z)

�±(q,!) = i

Z 1

0
dth[S†

q(t), S
�
�q(0)]iei!t (1)

which is an extremely information-rich quantity, and is
accessible through inelastic neutron scattering [7], ESR
[8, 9], and RIXS [10]. A demonstration of distinctive
features in it would be a major advance in the connection
of theory and experiment in this unique phase of matter.

We recapitulate the derivation of the theory of the
spinon Fermi surface phase [11, 12]. One introduces
Abrikosov fermions by rewriting the spin operator
Si =

1
2c

†
i↵�↵�ci� , where ci↵, c

†
i↵ are canonical fermionic

spinors on site i with spin-1/2 index ↵ (repeated spin
indices are summed). This is a faithful representation
provided the constraint c†i↵ci↵ = 1 is imposed – this con-
straint induces a gauge symmetry. In a path integral rep-
resentation, the constraint is enforced by a Lagrange mul-
tiplier Ai0, which takes the role of the time-component of
a gauge field, i.e. scalar potential. Microscopic exchange
interactions, which are quadratic in spins are hence quar-
tic in fermions are decoupled to introduce new link fields
whose phases act as the spatial components of the corre-
sponding gauge fields A, i.e. the vector potential.

To describe the universal low energy physics, it is ap-
propriate to consider “coarse-grained” fields  ↵, 

†
↵ de-

scending from the microscopic ones, and include the
symmetry-allowed Maxwell terms for the U(1) gauge
field. Furthermore, due to the finite density of states
at the spinon Fermi surface, the longitudinal scalar po-
tential is screened and the time component A0 can then

be integrated out to mediate a short-range repulsive in-
teractions between like charges. Therefore we consider
the Euclidian action S = S + SA + Su, where [11–13]

S =

Z
d⌧d2r †
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Z
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†
#(r, ⌧) #(r, ⌧). (2)

Here ↵,� =", # are spin indices, !B describes static mag-
netic field B = Bẑ and includes g-factor as well as Bohr
magneton. Gauge dynamics is derived in the Coulomb
gauge r · A = 0 and µ, ⌫ = x, y run over spatial in-
dices. Gauge action SA is generated by spinons and � =
2n̄/kF and � = 1/(24⇡m) represent Landau damping
and diamagnetic susceptibility of non-interacting spinon
gas, correspondingly (m is the spinon mass, n̄ is the
spinon density and kF is the Fermi momentum of non-
magnetized system).
Action of the screened temporal component A0

of the gauge 3-vector (A0,A) is given by SA0 ⇡
�m
4⇡

R d!nd
2q

(2⇡)3 |A0(q,!n)|2. Integrating it out generates

local repulsion term Su in (2) which describes spinon
density-density interactions of a contact kind. By the ex-
clusion principle it is characterized by a single parameter
u > 0. Note that in principle the u-term also accounts
for other short-ranged contributions which are allowed
by SU(2) spin-rotational symmetry.
We proceed with the assumption of SU(2) symmetry,

a good first approximation for many spin liquid mate-
rials and address the e↵ect of its violations in the latter
part of this paper. Previous investigations focused on the
transverse vector potential A, which is not screened but
Landau damped, and hence induces exotic non-Fermi-
liquid physics. For example, one finds a self-energy vary-
ing with frequency as !2/3, and a singular contribution
to the specific heat cv ⇠ T 2/3. However, notably, the
transverse gauge field has negligible e↵ects on the hydro-
dynamic long-wavelength collective response [13]. Here,
we instead focus on the short-range repulsion, which pro-
duces an exchange field that dramatically alters the be-
havior in the presence of an external Zeeman magnetic
field/finite magnetization.
The fractionalization of triplet excitations into pairs

of spinons is a fundamental aspect of a quantum spin

Transverse spin susceptibility

EZ

�Bm = �1

2
B(n" � n#)



Short-range interaction + 
Zeeman magnetic field
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Silin spin wave
Larmor theorem: q=0 
excitation must be at EZ 

3

outside the particle-hole continuum, leaving it with no
decay channel. However, in the U(1) spin liquid, there
is an additional branch of low energy excitations due to
the gauge field, dispersing as ! ⇠ k3. The very flat dis-
persion of the gauge excitations suggests it may act as a
momentum sink, so that, for example, an excitation con-
sisting of a particle-hole pair plus a gauge quantum may
exist in the “forbidden” region where the bare particle-
hole continuum vanishes and the spin wave mode lives. It
is therefore critical to understand the e↵ect of the gauge
interactions upon the dynamical susceptibility.

To this end, we consider the dressing of the particle-
hole bubble �0 by gauge propagators. Guided by the
above thinking, we expect that it is su�cient to consider
all diagrams with a single gauge propagator. This in-
volves two diagrams with self-energy contributions, and
a third which constitutes a vertex renormalization (see
Fig. 3). In the following, we denote this dressed by gauge
field fluctuations correction to the transverse susceptibil-
ity as �1

±(q,!). As shown by Kim et al. [13] for similar
diagrams for the density correlations and optical conduc-
tivity, there are important cancellations between self en-
ergy and vertex corrections, which are needed to obtain
the proper long wavelength behavior of �1. We find

�1
±(q, i!n) = �c̃

⌫0vF �1/3

�4/3

!7/3
n (vF q)2(i!n � 2!B � uM)

[(i!n � 2!B � uM)2 � v2F q
2]5/2

(9)
Therefore, indeed, the dressed bubble has a non-zero
imaginary part =�1

± in the previously kinematically for-
bidden region below the particle-hole continuum. This
is a new continuum weight. However, the weight in
this new continuum contribution vanishes quadratically
in momentum as q = 0 is approached. This is an im-
portant check on the calculations, since the Larmor the-
orem still applies to the full theory with the gauge field,
which implies that precisely at zero momentum, there
can be no new contributions. The frequency dependence
is, however, non-trivial. What are the implications for
the spin collective mode? We evaluate this by using the
RPA formula of Eq. (3), but replacing �0

± by �0
± + �1

±,
the susceptibility dressed by gauge fluctuations. With
this approximation, we see that the q2 dependence of
=�̃1

±(q,! ⇡ 2!B) / (2!B)7/3v2F q
2/(uM)4 is su�cient

to ensure that the width (in energy) of the collective
spin mode becomes narrow compared to its frequency at
small momentum: this is the standard criteria for sharp-
ness and observability of a collective excitation. The fi-
nal result for the dynamical susceptibility is summarized
in Fig. ??. Away from the zero momentum axis there
is always non-zero continuum weight, which is the sum
of several distinct contributions. Inside this continuum,
the spin collective mode appears as a resonance which is
asymptotically sharp at small momentum.

The above results apply to the case in which SU(2) spin
rotation symmetry is broken only by the applied Zeeman

=
� �

+
� �

��

FIG. 1. Dyson equation for the spinon Green’s function.
Thick (thin) line denotes renormalized (bare) Green’s func-
tion with spin � =", #. Zigzag (magenta) lines denote lo-
cal repulsion u. The tadpole diagram represents self-energy
⌃� = un̄��.

+ + +...Eq.(3)=

"

#

"

#

"

#

FIG. 2. Ladder series for the transverse susceptibility. Zigzag
(magenta) lines denote local repulsion u. The bare bubble
diagram is �0

±. Open circle denotes spin-flipping vertex.

field. Breaking of the SU(2) invariance by anisotropies in-
validates the Larmor theorem and causes a shift and more
importantly a broadening of the spin collective mode even
at zero momentum. This is of particular importance for
electron spin resonance, which has high energy resolu-
tion but measures directly at zero momentum only. The
way in which the resonance is broadened depends in de-
tail on the nature of the anisotropy, the orientation of
the applied magnetic field, etc., so it is not possible to
give a single general result. Instead, we provide one (or
two?) example(s) of this physics. In particular we con-
sider the influence of a Dzyaloshinskii-Moriya interaction
in the spin system, which is typically the dominant form
of anisotropy for weakly spin-orbit coupled systems, pro-
vided it is symmetry allowed by the lattice.
OS: we may also use figure 4 below.
Go back and recapitulate our earlier calcula-

tions. DM manifests as a Rashba-like term for

the spinons. We obtain a complete scaling func-

tion in a certain limit...

Can we include some simplistic discussion for

XXZ exchange anisotropy?

Physical implications – need ESR and inelastic neu-
tron scattering at small q and finite magnetic field. Has
been recently done in YbMgGaO4 - no separate from PH

+ +Eq.(9)=

"

#

"

#

"

#

FIG. 3. Leading gauge field corrections �1
± to the suscepti-

bility. Wavy (blue) lines denote gauge field propagator.

2

liquid. This is expected to give rise to two-particle con-
tinuum contributions to the dynamical structure factor,
which appear more characteristic of a weakly correlated
metal than a strongly correlated Mott insulator. When
treated as non-interacting fermions, this continuum has
a characteristic shape at small frequency and wavevector
in the presence of an applied Zeeman magnetic field, as
discussed in [14]. In particular, there is non-zero spec-
tral weight in a wedge-shaped region which terminates
at a single point along the energy axis at zero momen-
tum. The purpose of the present work is to determine
the modification of this spectrum by spinon interactions
and gauge fluctuations.

An important constraint follows purely from symme-
try. Provided the Hamiltonian in zero magnetic field has
SU(2) symmetry, a Zeeman magnetic field leads to a fully
determined structure factor at zero momentum. Specif-
ically, the Larmor/Kohn theorem [15] dictates that the
only response at q = 0, �00

? ⇠ M�(!� 2!B), where M is
the magnetization and !B is the spinon Zeeman energy.
For free fermions, the delta function is precisely at the
corner of the spinon particle-hole continuum (also known
as the two-spinon continuum). However, the contact ex-
change interaction shifts up the particle-hole continuum,
at small momentum q, away from the Zeeman energy
2!B to 2!B + uM . This is seen by the trivial Hartree
self-energy ⌃" = un̄#, ⌃# = un̄", where n̄� is the expec-
tation value of spin-� spinon density in the presence of
magnetic field, see Fig. 1. Consequently, for the Larmor
theorem to be obeyed, there must be a collective trans-

verse spin mode at small momenta.

Indeed, this physics is not unique to spin liquids but
applies to paramagnetic metals. Historically, the Silin
spin wave mode was predicted for non-ferromagnetic met-
als by Silin in 1958 within Landau Fermi liquid theory
[16–19], and observed via conduction electron spin res-
onance (CESR) in 1967 [20]. Detailed theory, derived
within Landau Fermi-liquid framework [21] (k-dependent
g-factor [22]), is analogous to the more well-known zero
sound, albeit in the spin rather than density channel.
Unlike zero sound, an external magnetic field is required
in order to shift the particle-hole continuum up along
the energy axis to allow for the undamped collective spin
wave to appear in the triangle-shaped window below it.
The spin wave mode is most conveniently described by
the Random Phase Approximation (RPA), which corre-
sponds to a standard resummation of particle-hole lad-
der diagrams. For the particular case of a momentum-
independent contact interaction, one has (see Fig. 2)

�(q, i!n) =
�0(q, i!n)

1 + u�0(q, i!n)
, (3)

where �0(q, i!n) is the bare susceptibility bubble, cal-
culated using the spinon Green’s functions including the

Hartree shift. For the susceptibility transverse to the field

�0
±(q, i!n) =

1

�V

X

kn,k

1

ikn � ✏k + !B � gn̄#

⇥ 1

ikn + i!n � ✏k+q � !B � gn̄"
. (4)

Here !n, kn are bosonic and fermionic Matsubara fre-
quencies, respectively. Simple calculation, followed by
the analytical continuation i!n ! ! + i0, gives

<�0
±(q,!) =

Msign(! � 2!B � uM)p
(! � 2!B � uM)2 � v2F q

2
,

=�0
±(q,!) =

�Mp
v2F q

2 � (! � 2!B � uM)2
, (5)

where M = n̄" � n̄# is (twice) the magnetization, and
square-roots are defined when their arguments are posi-
tive. The real/imaginary spin susceptibility describes do-
mains outside/inside two-spinon continuum in the (q,!)
plane, correspondingly. At q = 0

�0
±(q = 0,!) =

M

! � 2!B � uM + i0
, (6)

and therefore =�0
±(q = 0,!) ⇠ �(! � 2!B � uM): the

position of the two-spinon continuum renormalized by
the interaction shift. However, inserting (6) in the RPA
formula (3) one finds that the RPA successfully recovers
Larmor theorem at zero momentum for the interacting
SU(2)-invariant system,

�±(q = 0, i!n) =
M

! � 2!B + i0
. (7)

Therefore the contribution at q = 0 is solely from the
collective mode, with no spectral weight from the contin-
uum at 2!B+uM . Dispersion of the collective spin mode
is obtained with the help of (5) and =� = =�0/[(1 +
u<�0)2 + (u=�0)2],

!swave(q) = 2!B + uM �
q

u2M2 + v2F q
2. (8)

For small q ⌧ uM/vF the collective mode is dispersing
downward quadratically ! ⇡ 2!B�(vF q)2/(2uM), while
in the opposite limit q � uM/vF it approaches the low
boundary of the two-spinon continuum, ! ⇡ 2!B+uM�
vF q. Retaining quadratic in q terms in (4) will lead to
the termination of the collective mode at some qmax at
which the spin wave enters the two-spinon continuum.

The above discussion is identical to that for a conven-
tional Fermi liquid, and indeed the observation [20] of
the Silin mode in 1967, which occurred soon after the
detection of the zero sound in He3 [23], was considered
to be one of the first proofs of the validity of the Landau
theory of Fermi-liquids [24]. In the Fermi liquid case,
the sharpness of the mode is established by its falling

RPA: ladder series

pole: collective mode
! = EZ + um�

q
u2m2 + v2F q

2
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“Silin spin wave”

EZ/vF

EZ

q

E

0

EZ+um

dS+
tot

dt
= �iBS+

tot

Theory: V.P. Silin, JETP 6, 945 (1958); 
Platzman, Wolf, PRL 18, 280 (1967); 

Exp: Schultz, Dunifer, PRL 18, 283 (1967).



spinon spin wave

gauge 
excitations 

Distinct signature of spinons, interactions, and 
gauge fields 

EZ/vF

EZ

q

E

0

EZ+um
2-spinon 

continuum

⇠ q2!7/3
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EZ

vF
⇠

p
mEZ

r
EZ

EF

conductors
EZ

EF
! 0

QSL
EZ

EF
⇠ 1

Transverse collective 
spin wave is  

dressed by gauge  
fluctuations, acquires  

finite lifetime.



Outline
• Quantum Spin Liquid, spinon Fermi surface


• Spin waves in magnetized conductors and U(1) spin liquids


• Spin-1/2 chain: d=1 spin liquid in magnetic field


• Conclusions



H = ∑
i

J1 ⃗Si ⋅ ⃗Si+ 1 + J2 ⃗Si ⋅ ⃗Si+ 2

Spin-1/2 antiferromagnetic chain

Exactly solvable by 
Bethe ansatz

0.241 J2/J10

gapless dimerized

Majumdar-Gosh

0.5

J1

J2



Quantitative description of 2- and 4-spinon continuum 
(for B=0 and J2=0)

Very well understood and non-trivial many-body system

CuSO4 ·5D2O



SU(2)1 WZW CFT

⃗J R/L = 1
2 ψ†

R/L ⃗σ ψR/L, ψR/L = (ψR/L,↑
ψR/L,↓)

Spin-1/2 antiferromagnetic chain

Low energy description

Fermionic representation

⃗Si ∼ ⃗J R(xi) + ⃗J L(xi) + (− 1)iN(xi)

Hamiltonian

H = ∫ dx (ψ†
R(− ivF∂x)ψR + ψ†

L(ivF∂x)ψL) − g ∫ dx ⃗J R ⋅ ⃗J L

H0 V

Free fermions
g>0: marginally irrelevant interaction of  

spin currents (spin backscattering)

gz

g? B=0

finite B

↑ , ↓

kF = π
2

half-filled band 
of spinons

g(`) =
g(0)

1 + g(0)`
, ` = ln(J/E) g(E ! 0) ! 1/ ln(J/E)



H = ∫ dx (ψ†
R(− ivF∂x)ψR + ψ†

L(ivF∂x)ψL)

⃗J R/L = 1
2 ψ†

R/L ⃗σ ψR/L

− g ∫ dx ⃗J R ⋅ ⃗J L

Spin-1/2 antiferromagnetic chain

↑ , ↓

kF = π
2

half-filled band 
of spinons g

J2/J1

backscattering is 
marginally irrelevant! 

0.2410

gapless dimerized

0.5

g > 0 g < 0g=0



↑

B

↓

Non-interacting limit (g=0) - small field splits the up/down bands

k

ω

B

Spin-1/2 antiferromagnetic chain in magnetic field

H = H0 − B∫dx [Jz
R(x) + Jz

L(x)] S+ − (k, ω)
Magnetization



Spin-1/2 Heisenberg chain in magnetic field

BUT 
???

Splitting 
between 

two  
branches; 
increases 
with M



Haldane-Shastry chain - nice 2-spinon continuum???

?

Magnetization = 1/4.

Heisenberg chain:

significant spectral weight

outside Muller continuum



Spin backscattering remains present down to energy E = B

H = H0 − g ∫dx [Jz
RJz

L+ 1
2 J+

R J−
L + 1

2 J−
R J+

L ] − B∫dx [Jz
R(x) + Jz

L(x)]

Self energy 


shifts the mode at k=0: B → B + g M/2

− g ∫dx [⟨Jz
L⟩ Jz

R + Jz
L ⟨Jz

R⟩]

⟨Jz
L,R⟩ = M/2

(magnetization)

k

ω

B

S+ − (k, ω)

B + g M/2

Transverse interaction 
must restore Larmor Th

• The essence — RPA-like treatment — Hubbard-Stratonovich decouple spin 
backscattering, integrate fermions out, expand fermion determinant about 

saddle point with finite magnetization, evaluate spin susceptibility. 

gz

g(`) =
g(0)

1 + g(0)`
, ` = ln(J/E)

B 6= 0
g?

g ! g(E = B)



Vint,⊥= − g
2 ∫dx [J+

R J−
L + J−

R J+
L ]

G(k, ωn) = GRR + GLL + GLR + GRL = G0
RR + G0

LL − g G0
RRG0

LL

1 − g 2

4 G0
RRG0

LL

Gμν(x, τ) = − ⟨ ̂TτJ+
μ (x, τ)J−

ν (0,0)⟩
G0

RR

G0
LL g /2

GRR = +

GRR = G0
RR

1 − g 2

4 G0
RRG0

LL

→ χ± (k, ω) = G(k, ω + i0)

Backscattering interaction

RPA-like treatment:

G0
RL = G0

LR = 0

R LR R R R RL



0.0 0.5 1.0 1.5

ṽk/B

0

B
B + gM

!

!�

!+

χ± (k, ω) = M ( A+ (k)
ω − ω+ (k) + A− (k)

ω − ω− (k) )

A± (k) = 1 ± ṽ2k2 − BΔ
B Δ2 + ṽ2k2ω± (k) = B + Δ ± Δ2 + ṽ2k2

The result: Dynamical susceptibility of interacting spinon liquid

ṽ = v 1 − g 2 χ2
0 /4

0.0 0.5 1.0 1.5

ṽk/B

0

1

2

A(k)

A+

A�

Dispersion Spectral weight

Dashed lines: free spinon gas (g=0)

� = M/B =
�0

1� g�0/2



The ground state 
can be obtained 
using DMRG 

S+ − ( ⃗k , ω) = ∫
∞

− ∞
dteiωt ∫d ⃗re− i ⃗k ⋅ ⃗r ⟨0 S+

r (t)S−
0 (0) 0⟩

Dynamical susceptibility - numerics

Time evolution of a quenched state - 

numerous MPS-based techniques:


TEBD (in 1D), tDMRG, TDVP, 

MPO representation of the evolution 
operator (also for long range or 2D!)

⟨0 eiHtS+
r e− iHtS−

0 0⟩ = eiE0t ⟨0 S+
r e− iHtS−

0 0⟩

T = 0



Numerical results
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0.241 J2/J10

gapless dimerized
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g > 0 g < 0
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B/J1 = 1

interacting spinon liquid spinon gas



Numerical results

0.0 0.1 0.2
M

0.0

0.1

0.2

0.3

2�
/J

1

J2/J1 = 0.0

J2/J1 = 0.05

J2/J1 = 0.1

J2/J1 = 0.15

J2/J1 = 0.2

J2/J1 = 0.24

0 0.1 0.2 0.24 0.3

J2/J1

0.0

0.5

1.0

g2Δ/J1 = g (J2/J1)M + O(M2)

0.241 J2/J10

gapless dimerized

0.5

g > 0 g < 0

It works!





Increasing the magnetic field

0 ⇡/2 ⇡
0.0

0.6

4.0

!
/J

1

0 ⇡/2 ⇡
0.0

1.2

4.0

0 ⇡/2 ⇡
0.0

1.8

4.0

0 ⇡/2 ⇡
0

2

4

0 ⇡/2 ⇡

k

0.0

0.6

4.0

!
/J

1

0 ⇡/2 ⇡

k

0.0

1.2

4.0

0 ⇡/2 ⇡

k

0.0

1.8

4.0

0 ⇡/2 ⇡

k

0

2

4

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

0

100

200

J2 = 0

J2/J1 = 0.24

B/J1 = 0.6 B/J1 = 1.2 B/J1 = 1.8 B/J1 ≈ Bsat = 2
M = 0.9MsatSpinons Magnons



Dynamical susceptibility in the large magnetization limit:

The limit of interacting magnons!

0 ⇡/2 ⇡

k

0

1

2

3

4

!
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Jz = J, M = 0.9Msat
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Interactions effect!

Jz = J, M = Msat
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2⟩ = ∑
n,m

Ψn,mS−
nS−

m 0⟩

fully polarized state

Ψn,m = eiK(n+ m)/2f( |n− m | )

center of mass momentum 

Schrodinger equation 


for 2-magnon states

can show there is a bound state above the 2-magnon continuum! 

0 ⇡ 2⇡
K

0

2

4

✏ 2
(K

)/
J

1

B > Bsat: 2-magnon (anti-)bound states



2-magnon (anti-)bound states: probe magnon binds with one 
of the magnons in the ground state

Ground state 
B < Bsat: dilute 

magnons

Excited state: 
2-magnon  

propagation

S�

=
>

0 ⇡/2 ⇡

k

0

1

2

3

4

!
/J

1

0

200

400

0 ⇡
2

4

0

50

J2 = 0

This is 2-string solution of 
the Bethe ansatz!
see also Kohno PRL 2009, Yang et al. PRB 



How does the 2-magnon bound state show up in the 
dynamical correlations?

S+ − (k, ω) = ∑
m

⟨m S−
k 0⟩

2
δ(ω − Em) = ⟨2π+ k S−

k 1π⟩
2

δ(ω − ϵ2(π + k)) + . . .

Assume a single magnon (at           ) in the ground state, i.e. 0⟩ = 1π⟩k = π
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J2 = 0
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k

0

1
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4

!
/J

1

0
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400

0 ⇡
2

4

0

50

J2/J1 = 0.24

Independent arguments for spin ladder:
Works in higher dimensions too! 

(you can ask me about this)

J2 ≠ 0* also valid for           !

Scattering and 
2-magnon states



Need experiments!

Looks like an upper branch!?



String solutions

SrCo2V2O2
Neutron scattering

THz spectroscopy

Cold atoms



ESR: Spinon magnetic resonance

0.0 0.5 1.0 1.5

ṽk/B

0

B
B + gM

!

!�

!+

⇡D/2BHeisenberg chain with uniform DM
H =

X

n

J ~Sn · ~Sn+1 �
~D · ~Sn ⇥ ~Sn+1 �BSz

n

for B || D maps onto 
H̃ =

X

n

p
J2 +D2(S̃x

nS̃
x
n+1 + S̃y

nS̃
y
n+1) + JS̃z

nS̃
z
n+1 �BS̃z

n ⇡

X

n

JS̃a
nS̃

a
n+1 �BS̃z

n

S+
n = S̃+

n eiQn, Q = tan�1(D/J), Sz
n = S̃z

n

S(q = 0,!)|DM = S̃(D/J,!)Structure factor

DM allows ESR to probe upper (forbidden) branch at Q = D/J.



Spinon/2-magnon magnetic resonance B II D

p
(gM)2 + (⇡D)2

A+ ⇡ (⇡D/gM)2Residue 

⇡D/2B

Small M 
(B=J)

1 2 3
!/J1
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400
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B = 1.6

B = 1.8

B = 2.0

�⇡ 0 ⇡
k
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2

4

!
/J

1
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200

400

Note the shift 
of the spectrum

Large M: 
2-magnon 

mode is probed 
by DM as well.



Summary and outlook• 1D 

• Interaction between quasiparticles qualitatively changes transverse 

dynamical susceptibility

Finite energy gap between two branches of spin-1 excitations near k=0

Appearance of 2 magnon anti-bound states near saturation
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0 ⇡
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4

0

50magnons

0 ⇡ 2⇡

(K,K)

0

4

8
✏ 2

(
~ K

)/
J

• 2D and higher: Applies to higher dimensional U(1) spin liquids.

Collective transverse spin-1 mode below spinon continuum


