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nFL and pairing at quantum-critical points

• Paradigm for unconventional SC: pairing by exchanging critical bosons

• Signatures of non-Fermi liquid behavior, such as T-linear resistivity, 
diverging effective mass

CePd Si , Mathur et al2 2 Cuprates, Wikipedia Pnictides, Fernandes et al

ℒ = ℒψ + ℒϕ + gϕψ†ψ

TBG, Cao et al

• A minimal model:

• Difficult; would be nice to have an exactly solvable model



Yukawa-SYK model

dynamical bosonrandom Yukawa coupling

⟨tijk⟩ = 0, ⟨t2
ijk⟩ = ω3

0

• Related models:

• SUSY SYK Fu-Maldacena-Sachdev 2017

• Random electron-phonon interaction Esterlis-Schmalian 2019

• Low-rank SYK Kim-Cao-Altman 2020
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• Inspired by SYK model:



Large-  limitN, M

• Taking the  limit dramatically simplifies the diagrams to 
be included

N → ∞, M → ∞

Pairing

• Vertex corrections and replica off-diagonal fluctuations  suppressed1/N
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Renormalization of the boson mass

• Boson self-energy
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(b)

Π(Ω = 0) ∼ − ω3
0 ∫

dωm

(iωm)2
, m2 = m2

0 − Π(Ω = 0)

• Power-law divergence in the IR, driving the boson mass down. What next?

• Condense the boson? Then the fermions acquire a random hopping 

amplitude. .

• But fluctuations of  are a large effect in 0d and destroy . 

Fluctuation effects  # boson/# fermion 

Σ(ωm) ∝ i⟨ϕ⟩sgn(ωm)

ϕ ⟨ϕ⟩

∝ = N/M



Self-tuning to criticality

• A distinct solution where  stays criticalϕ

• Critical boson in turn makes fermions incoherent below  , consistent 

with the cutoff in the fermion bubble.

ωf

Π(Ω = 0) ∼ − ω3
0 ∫ωf

dωm

(iωm)2
, m2 = m2

0 − Π(Ω = 0) = 0

• Bubble is cut off at the energy scale  , and the boson becomes criticalωf

ωf ∼ ω3
0 /m2

0 ≡ ωF

• Self-tuned QC from comparable boson and fermion fluctutations

m2
0
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Schwinger-Dyson equations

Σ(ω) ∼ ω3
0 ∫

dΩ
2π

D(Ω)G(ω + Ω)

Π(Ω) ∼ ω3
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• Can be solved self-consistently by the power-law (conformal) ansatz

Σ(ωn) = iAω1−x
0 |ω |x sgn(ωn),

Π̃(Ω) ≡ Π(Ω) − Π(0) = Bω1+2x
0 |Ω |1−2x .
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Fig. from: Patel-Sachdev 2018

0 < x < 1/2

• Maximally chaotic 
just like original SYK Kim-Cao-Altman 2020

λL = 2πkBT



nFL or spin glass?

• nFL solution neglects  replica off-diagonal fluctuations 𝒪(1/N)

• Summing all  diagrams may not be convergent SY 1993, GP 2001, Fu-Sachdev 

2016, Baldwin-Swingle 2020

1/N

Fermonic SYK: nFL Bosonic SYK:  spin glass at T=0
Purely bosonic random model: glass at T=0

• nFL results confirmed in QMC Pan-Wang-Davis-YW-Meng 2020
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• A “less random” model shows glassy behavior
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Away from half-filling

• Add a chemical potential term . 

• For small  see also Georges, Parcollet, Sachdev 2001

μc†
i ci

μ
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0 ∫

dω
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= 0! m2 = m2
0 , Σ(ω) ≪ ω

Insulator solution

• For large  μ

Σ(iω) + μ = ω1−x
f |ω |x (isgn(ω) + α)

Π(iΩ) + m2
0 = βm2

0 |Ω/ωf |
1−x

Spectral
asymmetry

• Transition?



Quantum phase transition varying filling

• Luttinger-like theorem for :ν

Σ(iω) + μ = ω1−x
f |ω |x (isgn(ω) + α)

• Compressibility ; first order phase transition like water-vapor∂ν/∂μ < 0

YW-Chubukov 2020

Phase separation
 

from both 
sides

μ* = ωF /2

• Also found numerically in the SYK model Ferrari et al PRL 2017, Patel-Sachdev 2019



Quantum phase transition varying filling

• In the  limit (boson  fermion), becomes second-orderN ≫ M ≫

YW-Chubukov 2020

• Gap filling behavior in both cases (no gap closing)

N = 60MN = M

• Finite T critical point? Behavior of quantum chaos across transition?



nFL pairing problem

1. Bosons mediate strong attractive interaction in some pairing channels; 
Good for SC 

2. The same interaction scatters fermions making them incoherent; Bad 
for SC

Winner?

• There is a huge literature on (different versions of) this problem.
1. Eliashberg equation at 

‣ SC wins Abanov-Chubukov-Finkel’stein, Wang-Abanov-Altshuler-Yuzbashyan-Chubukov 

and sometimes loses Andrey’s talk on Tuesday

2. Controlled expansion in large  and small  (dimensional regulator)

‣ , pairing preempts nFL. Metlitski-Mross-Senthil-Sachdev

‣ , quantum-critical point in  separating nFL and 
SC Raghu-Torroba-Wang, Abanov-Chubukov-Finkel’stein, Chubukov-Schmalian

N = 1

N ϵ
1 < N < 1/ϵ
Nϵ ∼ 1 Nc ∼ 1/ϵ



Pairing near quantum-critical points

• Latter case goes beyond the conventional wisdom of the Cooper 
instability.

• Requires a fractional spatial dimension .

• Is such a pairing QCP a robust feature or just an artifact of the dim reg?
ϵ

• Consider a variant of  Yukawa-SYK for pairing

NNc

SC nFL
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Added a flavor index;  bosons and  fermionsN2 NM



Pairing in the Yukawa SYK

• Critical boson serves as pairing glue

• Different pairing channels

Inter-site,
intra-flavor Attractive

Φαβ = − Φβα

Inter-site,
inter-flavor

i / NM

i / NM

Intra-site,
inter-flavor Repulsive

Φij = − Φ ji

Repulsive

Φij
αβ = − Φ ji

βα



The pairing problem

• Eliashberg equation for pairing

Φ(ω) =
ω3

0

M ∫
dω′ 

2π
D(ω − ω′ ) G(ω′ ) G(−ω′ ) Φ(ω′ ) .

Φ(ω) =
1
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2π
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|ω − ω′ |1−2x |ω′ |2x .

• Plugging in the low-energy forms of the propagators ( )0 < 2x < 1

Integral cut off by SC gap  and nFL energy .Δ ωNFL



Solving the Eliashberg equation
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• Without cutoffs, the equation is solved by a power law ansatz

Φ(ω) = |ω |−y , y = y(x, M) = y(M, N) .

•  needs to satisfy boundary conditions at  and Φ(ω) Δ ωNFL
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• The latter two integrals need to vanish. Only if  is oscillatory. Abanov-

Chubukov-Finkel’stein, Chubukov-Schmalian, YW-Wang-Torroba

• , requires a complex 

Φ(ω)

Φ(ω) = |ω |−y y = y′ + iy′ ′ 

Φ(ω) = |ω |−y′ cos(y′ ′ log |ω | + ϕ)



Quantum-critical point for pairing

Φ(ω) =
1
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• Now, when does  become complex? y

Φ(ω) = |ω |−y , y = y(x, M) = y(M, N) .

• For  we needM → ∞, N → ∞

(M2/N) ≤ 2

SC

NFL

• SC gap size

Δ ∝ ωNFL exp (−
#M3/4N−1/4

2 − M2/N )
An infinite order transition -- a’la BKT scaling. RG interpretation by Raghu et al

• For , the system remains a critical metal at , with strong 
attraction, contrasting with BCS.

N ∼ M T = 0



Does pairing survive fluctuation effects?

• Previously we argued that the  fields cannot order, because fluctuation 

effects are .

ϕij

𝒪(Nf /Nb) = 𝒪(N/M)

• Near , ; this fluctuation effect is especially strong.M2/N = 2 N ≫ M

Inter-site,
intra-flavor Attractive

Φαβ = − Φβα

• Fluctuation effects for  are . This is suppressed 

for the region we are interested in ( ). Pairing is mean-field like.

Φαβ 𝒪(Nf /N′ b) = 𝒪(M/N)
N ≫ M



Summary

• We constructed a 0+1d SYK-like model that is solvable in the large-  
limit.

N, M

• Quantum phase transition between nFL and an insulator

• Quantum critical point for Cooper pairing

SC

NFL



Thank you!

Mars opposition 2020, with 11-inch backyard telescope


