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nFL and pairing at quantum-critical points

e Paradigm for unconventional SC: pairing by exchanging critical bosons

e Signatures of non-Fermi liquid behavior, such as T-linear resistivity,
diverging effective mass
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® A minimal model: L=ZL,+ZL,+ gy

¢ Difficult; would be nice to have an exactly solvable model



Yukawa-SYK model
® Inspired by SYK model:

random Yukawa coupling dynamical boson
Lik = — Lijk

Typical scale w- = w2 /m?>
YP F 0770 2-colorable 3-uniform hypergdaph

® Related models:
® SUSY SYK Fu-Maldacena-Sachdev 2017
® Random electron-phonon interaction Esterlis-Schmalian 2019

® | ow-rank SYK Kim-Cao-Altman 2020



Large-N, M limit

e Taking the N = oco, M — oo limit dramatically simplifies the diagrams to
be included

® Vertex corrections and replica off-diagonal fluctuations 1/N suppressed

Pairing d =



Renormalization of the boson mass

® Boson self-energy

dw,,

(iw,,)?

H(Q=O)~—a)g’[ m2=m§—H(Q=O)

® Power-law divergence in the IR, driving the boson mass down.VWhat next!
e Condense the boson?! Then the fermions acquire a random hopping
amplitude. X(w,,) « i{¢)sgn(w,,).
e But fluctuations of ¢ are a large effect in 0d and destroy (¢).

Fluctuation effects & # boson/# fermion = N/M



Self-tuning to criticality

e A distinct solution where ¢ stays critical
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e Bubble is cut off at the energy scale w,, and the boson becomes critical

d
H(Q=O)~—w§J (,w’”';z, m*=ms—T(Q=0)=0
o @,

Wy ~ a)g’/mo = wp
e Critical boson in turn makes fermions incoherent below Wy consistent

with the cutoff in the fermion bubble.

¢ Self-tuned QC from comparable boson and fermion fluctutations

0 critical phase



Schwinger-Dyson equations
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X(w) ~ o J —D(Q)G(w + Q)
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M (d
Q) ~ o — J 22) G(w — QI2)G(w + Q/2)

® Can be solved self-consistently by the power-law (conformal) ansatz
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Fig. from: Patel-Sachdev 2018

e Maximally chaotic A; = 27k;T

just like original SYK kim-Cao-Altman 2020




nFL or spin glass!?

e nFL solution neglects O(1/N) replica off-diagonal fluctuations

e Summing all 1/N diagrams may not be convergent sy 1993, GP 2001, Fu-Sachdev
2016, Baldwin-Swingle 2020

Fermonic SYK: nFL Bosonic SYK: spin glass at T=0

Purely bosonic random model: glass at T=0

® nFL results confirmed in QMC Pan-Wang-Davis-YW-Meng 2020
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® A“less random” model shows glassy behavior
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Away from half-filling

e Add a chemical potential term ,uc;cl-.
® For small M see also Georges, Parcollet, Sachdev 2001

X(iw) + u = a)fl_x | | (isgn(w) + a)
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® For large u

® Transition?




Quantum phase transition varying filling

® Luttinger-like theorem for v:

a

YW-Chubukov 2020

X(iw) + u = a)fl_x | |* (isgn(w) + a)

plwF

Phase separation [ m—————
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i from both |
’ sides ;

e Compressibility dv/du < 0; first order phase transition like water-vapor

® Also found numerically in the SYK model Ferrari et al PRL 2017, Patel-Sachdev 2019



Quantum phase transition varying filling

® In the N > M limit (boson > fermion), becomes second-order
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e Gap filling behavior in both cases (no gap closing)
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® Finite T critical point? Behavior of quantum chaos across transition?



nFL pairing problem

|. Bosons mediate strong attractive interaction in some pairing channels;

Good for SC
2. The same interaction scatters fermions making them incoherent; Bad

for SC

® There is a huge literature on (different versions of) this problem.

|. Eliashberg equation at N = 1
) SC wins Abanov-Chubukov-Finkel’stein, Wang-Abanov-Altshuler-Yuzbashyan-Chubukov

and sometimes loses Andrey’s talk on Tuesday
2. Controlled expansion in large N and small ¢ (dimensional regulator)

» 1 < N < 1/e, pairing preempts nFL. Metlitski-Mross-Senthil-Sachdev
» Ne ~ 1, quantum-critical pointin N. ~ 1/€ separating nFL and

SC Raghu-Torroba-Wang, Abanov-Chubukov-Finkel’'stein, Chubukov-Schmalian



Pairing near quantum-critical points

Latter case goes beyond the conventional wisdom of the Cooper

instability.

Requires a fractional spatial dimension €.

Is such a pairing QCP a robust feature or just an artifact of the dim reg?

SC nFL

N, N

Consider a variant of Yukawa-SYK for pairing

A = lZZ( MNaﬁ¢lJCza ]ﬁ>+2(_7[ +%

Added a flavor index; N? bosons and NM fermions




Pairing in the Yukawa SYK
® Critical boson serves as pairing glue

e Different pairing channels

(I)ij — (I)ji
Repulsive

Intra-site, ”

=

inter-flavor




The pairing problem
jB

Jo

® Eliashberg equation for pairing

3 /
D(w) = 0 J dw Dw— o) Gow) G(—o') P(w') .
M | 2n

® Plugging in the low-energy forms of the propagators (0 < 2x < 1)
UNFL ' d(w)

D(w) =

Integral cut off by SC gap A and nFL energy oy -



Solving the Eliashberg equation

® Without cutoffs, the equation is solved by a power law ansatz

D(w) =

1
a(x)M

D(w’)

JOO dow’
e W |a)_a)/|1—2xla)/|2x

O(w) =|w|™, y=yx,M)=yWM,N).

e O(w) needs to satisfy boundary conditions at A and oy

D(w) =

a(x)M

| -
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dw’ DO(w’)

2V |a)_a)/|1—2x|a)/|2x

e The latter two integrals need to vanish. Only if ®(w) is oscillatory. Abanov-

Chubukov-Finkel’stein, Chubukov-Schmalian, YW-Wang-Torroba

e O(w)=|w|”,requires a complex y = y' + iy”

®(w) = |w| ™ cos(y”log|w| + ¢)



Quantume-critical point for pairing

* Now, when does y become complex?

1 * dw' d(w’)
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® For M - oo, N - o0 we need
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An infinite order transition -- a’la BKT scaling. RG interpretation by Raghu et al

® For N ~ M, the system remains a critical metal at 7" = 0, with strong
attraction, contrasting with BCS.



Does pairing survive fluctuation effects!?

e Previously we argued that the ¢;; fields cannot order, because fluctuation

effects are O(N;/N,) = O(NIM).

e Near M?/N = 2, N > M, this fluctuation effect is especially strong.

Inter-site, D, 5= — Dy,

d, 3

intra-flavor - Attractive

e Fluctuation effects for @, are O(N;/N,) = O(M/N).This is suppressed

for the region we are interested in (N > M). Pairing is mean-field like.



Summary

® We constructed a 0+1d SYK-like model that is solvable in the large-N, M
limit.
e Quantum phase transition between nFL and an insulator

® Quantum critical point for Cooper pairing
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Thank you!

Mars opposition 2020, with | I-inch backyard telescope



