
Finite temperature METTS study of Hubbard 
cylinders

• What is the METTS method?
• Full temperature range study of 4-leg Hubbard cylinders
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Simulating the Hubbard model: where are we?

• Much progress has been 
made in the last 5 years 
on the ground state of the 
Hubbard model—
competition/coexistence 
between stripes and 
superconductivity

DMRG, AFQMC, PEPS, DMET
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• Finite temperature: good agreement 
between methods,  QMC, cluster DMFT, 
diagrammatic MC, …development of 
short range AF order, pseudogaps, 
change of FS topology, … (pairing)…

• But unable to reach low enough T to 
connect to the T=0 results 



Finite Temperature Tensor Network methods
• Probably the most well-known methods are: 

• 1) Matrix product operator representation of   (Zwolak and Vidal, 2004)

• 2) Ancilla method (a.k.a. purification, thermofield-double) (Verstraete, Garcia-
Ripoll, Cirac, 2004)

• Both these methods work well at moderate temperature or chains.  But near T=0, both 
methods double the entanglement of the ground state (two copies) [Some recent progress 
in unitary-rotating away much of the extra entanglement (Hauschild, et al 2017)]

• An alternative approach is to use an ensemble of pure states.  In fact, the first 
version of quantum stat mech we all learned uses the ensemble of eigenstates 
of H with Boltzmann probabilities  
• But eigenstates have volume-law entanglement, exponentially small energy 

gaps (so takes exponentially long to prepare them), and physically, they are 
fragile against decoherence

• Why did we learn stat mech this way??   Schrödinger, in his 1946 Stat mech 
book, on whether systems are really ensembles of eigenstates:  “this assumption is 
irreconcilable with the very foundations of quantum mechanics”,  “...the attitude is altogether wrong”,   
“We yet decided to adopt it ...  very convenient ... same results ...”

e−βH

e−βEi

TN methods are based 
on low entanglement



Minimally Entangled Typical Thermal States
(SRW, PRL 102, 190601(2009), Stoudenmire and White, 2010)

• An ensemble of pure states reproducing thermodynamics is obtained 
from any orthonormal complete set of states  :

 

Define  

Then   

• A METTS is one of the set !  with ! the set of trivial product 
states, e.g. !  for spins (zero entanglement) 

• How are METTS “typical”? 

• Mathematically, expectation values are diagonal, so just average over 
them: !  

• Physically, they seem to resemble the experimental world… 

•

{ | i⟩}
ρ = e−βH/2 ∑

i

| i⟩⟨i |e−βH/2

|ϕ(i)⟩ = P(i)−1/2e−βH/2 | i⟩ with P(i) = ⟨i |e−βH | i⟩

ρ = ∑
i

P(i) |ϕ(i)⟩⟨ϕ(i) |

{ |ϕ(i)⟩} | i⟩ =
| ↑ ↑ ↓ ↑ ↓ …⟩

⟨A⟩ = ∑
i

P(i)⟨ϕ(i) |A |ϕ(i)⟩ QMC sampling is not typical! At T=0, all METTS 
are the ground 

state

(normalization)



Looks like the nonlinear   model!σ Looks like RVB!



The METTS Algorithm
• Start with a random product state  

• Evolve in imaginary time to   to get   (first METTS)

• Perform a “Measurement” to get a new product state   (calculate 
probabilities, roll the dice with random numbers, one site at a time)

• Repeat. 
• The probability of going from !  to !  and back satisfies detailed 

balance: evolves to exact thermo equilibrium ! , subject to ergodicity

| i⟩
β/2 |ϕ(i)⟩

| i′�⟩

| i⟩ | i′�⟩
P(i)

(Measure properties here)



T=0:  Striped states, pairing…

FS = filled stripe 
LE (Luther Emery) have half-filled 

stripes competing with pairing

Same system, 
different states



METTS
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U/t=10 
doping=1/16 

T/t=0.3

Very local, fluctuating AF 
correlations 

Apparent tendency for hole 
attraction, but strong 

fluctuations 
Some doubly occupied sites 

These are four successive 
METTS: short 

autocorrelationt time, but 
some slow modes

Doublons



METTS

U/t=10 
doping=1/16 

T/t=0.1
Medium ranged fluctuating 

AF correlations 
Stronger tendency for hole 

clustering, but strong 
fluctuations 

Tendency for “stripes” to 
mediate a domain wall in the 

local AF order 

Fluctuating filled stripes?
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METTS

U/t=10 
doping=1/16 

T/t=0.025

Clear striped state with 
fluctuations (looks like 

sloshing of stripe positions) 
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Maximum identifies 
start of pseudogap 

regime



Is most of the “Fermi Surface” 
gapped except near the nodal 
region? 



Finite correlation 
length even near 
the nodes



E(N + 1) + E(N − 1) − 2E(N)

1
2

[E(N + 2) + E(N − 2) − 2E(N)]

Consistent with a SC w/o nodal qps—does   vanish on wider cylinders??Δ1
c



Summary
• METTS is finally proving itself capable of doing low T in difficult quasi-2D 

systems.  The same techniques could be applied to frustrated magnets and 
other systems where DMRG can be useful

• We have finally been able to connect the finite T and T=0 regimes in Hubbard 
simulations.  In this system, stripes melt near   and the magnetic peak 
shifts between commensurate and incommensurate at this temperature.

• Details still to be figured out:  nodal gaps, temperature dependence of pairing, 
and at T=0, pairing versus  

• The reason METTS is proving itself now rather than a few years ago is mostly 
due to improvements in time evolution methods (TDVP), plus very impressive 
development by Alex.  See also our new ancillary Krylov improvement of TDVP 
(Yang and White, arXiv:2005.06104)
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