Are spins and orbitals entangled in the Mott insulators with strong spin-orbit coupling?

Krzysztof Wohlfeld

Papers & acknowledgments

PHYSICAL REVIEW RESEARCH 2, 013353 (2020)

How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator

Dorota Gotfryd,^{1,2} Ekaterina M. Pärschke⁰,^{3,4} Jiří Chaloupka⁰,^{5,6} Andrzej M. Oleś⁰,^{2,7} and Krzysztof Wohlfeld⁰

Condens. Matter 2020, 5, 53

Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling

Dorota Gotfryd ^{1,2}, Ekaterina Pärschke ³, Krzysztof Wohlfeld ¹, and Andrzej M. Oleś ^{2,4,}*

Introduction: spin-orbital entanglement

States |g> are spin-orbitally entangled:

- "Cannot be written as a product of spin and orbital states": $|g\rangle \neq |\text{SPIN}\rangle|\text{ORBITAL}\rangle$
- Formally nonzero von Neumann entropy:

$$S_{\rm vN} = -\frac{1}{L} \operatorname{Tr}_{\boldsymbol{S}} \{ \rho_{\boldsymbol{S}} \ln \rho_{\boldsymbol{S}} \} \text{ where } \rho_{\boldsymbol{S}} = \operatorname{Tr}_{\boldsymbol{T}} |g\rangle \langle g|$$

• Example for 1 site:

$$|g\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle|a\rangle \pm |\downarrow\rangle|b\rangle)$$

• An example for 2 sites...

$$|g\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_B |a\rangle_B |\downarrow\rangle_T |b\rangle_T \pm |\downarrow\rangle_B |b\rangle_B |\uparrow\rangle_T |a\rangle_T\right)$$

[A. M. Oles et al., PRL 96, 147205 (2006); Y. Chen et al., PRB 75, 195113 (2007); G. Khaliullin & S. Maekawa PRL 85, 3950 (2000)]

Introduction: spin-orbital entanglement

States |g> are spin-orbitally entangled:

- "Cannot be written as a product of spin and orbital states": $|g\rangle \neq |\text{SPIN}\rangle|\text{ORBITAL}\rangle$
- Formally nonzero von Neumann entropy:

$$S_{\rm vN} = -\frac{1}{L} \operatorname{Tr}_{\boldsymbol{S}} \{ \rho_{\boldsymbol{S}} \ln \rho_{\boldsymbol{S}} \} \text{ where } \rho_{\boldsymbol{S}} = \operatorname{Tr}_{\boldsymbol{T}} |g\rangle \langle g|$$

• Example for 1 site:

$$|g
angle = rac{1}{\sqrt{2}}(|\!\!\uparrow
angle |a
angle \pm |\!\!\downarrow
angle |b
angle)$$

• ... another example for 2 sites:

$$|g\rangle = \frac{1}{\sqrt{2}} \left(|\text{SINGLET}\rangle_{BT} |\text{TRIPLET}\rangle_{BT} \pm |\text{TRIPLET}\rangle_{BT} |\text{SINGLET}\rangle_{BT}\right)$$

[A. M. Oles et al., PRL 96, 147205 (2006); Y. Chen et al., PRB 75, 195113 (2007); G. Khaliullin & S. Maekawa PRL 85, 3950 (2000)]

Introduction: spin-orbital entanglement

States |g> are spin-orbitally entangled:

- "Cannot be written as a product of spin and orbital states": $|g\rangle \neq |\text{SPIN}\rangle|\text{ORBITAL}\rangle$
- Formally nonzero von Neumann entropy:

Examp But is the concept of spin-orbital entanglement useful?

$$|g
angle = rac{1}{\sqrt{2}} (|\!\!\uparrow
angle |a
angle \pm |\!\!\downarrow
angle |b
angle)$$

• ... another example for 2 sites:

$$g\rangle = \frac{1}{\sqrt{2}} \left(|\text{SINGLET}\rangle_{BT} |\text{TRIPLET}\rangle_{BT} \pm |\text{TRIPLET}\rangle_{BT} |\text{SINGLET}\rangle_{BT} \right)$$

[A. M. Oles et al., PRL 96, 147205 (2006); Y. Chen et al., PRB 75, 195113 (2007); G. Khaliullin & S. Maekawa PRL 85, 3950 (2000)]

MOTIVATION #1: spin-orbital entanglement in ground state of 3*d* Mott insulator

Goodenough-Kanamori rules in Mott insulators with partially filled 3d orbitals:

Justification:

- "typical Kugel-Khomskii" spin-orbital model, i.e. (super)exchange & no spin-orbit coupling:

$$\mathcal{H} = J \sum_{\substack{\langle i,l \rangle \\ a,b=x,y,z}} \left(\mathbf{S}_i \cdot \mathbf{S}_l + A \right) \left(f_{ab} T^a_i T^b_l + B \right)$$

- spins *S* and orbital pseudospins *T* decoupled in a mean-field way:

$$\mathcal{H} \sim J \sum_{\substack{\langle i,l \rangle \\ a,b=x,y,z}} f_{ab} \mathbf{S}_i \cdot \mathbf{S}_l \langle T_i^a T_l^b \rangle + f_{ab} T_i^a T_l^b \langle \mathbf{S}_i \cdot \mathbf{S}_l \rangle + \dots$$

- consequently: Goodenough-Kanamori rules, valid e.g. in LaMnO₃ or KCuF₃

[KI Kugel & DI Khomskii, Sov. Phys. Usp. 25, 231 (1982); Y. Tokura and N. Nagaosa, Science 288, 462 (2000)]

spin-orbital entanglement in ground state of 3*d* Mott insulator

MOTIVATION #1:

Goodenough-Kanamori rules can be (partially) violated:

- |Orbital Liquid>|AF> in LaTiO₃
- -|Weak AO|FM> and anomalously large ferromagnetic $J \parallel c$ in LaVO₃

Origin of the violation:

– spin-orbital correlation nonzero for small Hund's constant η

 $C_{ij} \equiv \langle (\mathbf{S}_i \cdot \mathbf{S}_j) (\mathbf{T}_i \cdot \mathbf{T}_j) \rangle - \langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle \langle \mathbf{T}_i \cdot \mathbf{T}_j \rangle \neq 0$

 \rightarrow mean-field decoupling fails

Interestingly:

- spin-orbital correlation correlation = a good proxy for spin-orbital entanglement
- nonzero spin-orbital entanglement \rightarrow violation of the Goodenough-Kanamori rules

spin-orbital entanglement in excited state of 3*d* Mott insulator

Experiment:

- RIXS on quasi-1D ($||x\rangle$) cuprate, Sr₂CuO₃
- $-|GS\rangle = 1D |AF\rangle|FO\rangle$, no S-O entanglement
- highly dispersive |xz> excitation
- a huge continuum associated with |xz>

Theory #1:

- "proper" Kugel-Khomskii model
- mean-field decoupling of spin & orbitals
- mostly "single branches", no intrinsic continuum
- $-\underline{failure} \rightarrow S-O$ entanglement for excitations?

spin-orbital entanglement in excited state of 3*d* Mott insulator

Experiment:

- RIXS on quasi-1D ($||x\rangle$) cuprate, Sr₂CuO₃
- $-|GS\rangle = 1D |AF\rangle|FO\rangle$, no S-O entanglement
- highly dispersive |xz> excitation
- a huge continuum associated with |xz>

Theory #2:

- "proper" Kugel-Khomskii model
- exact diagonalisation (ED)
- $\underline{almost perfect agreement} \rightarrow how to understand it?$

spin-orbital entanglement in excited state of 3*d* Mott insulator

Understanding the continuum in orbital excitation \rightarrow "large-N mean-field":

- **S** and **T** in terms of $f_{i\alpha\sigma}$ constrained fermions ("back to the derivation of Kugel-Khomskii model")
- In k space: $|f_{k \alpha\sigma}\rangle$ = entangled spin-orbital state

- Hamiltonian after mean-field = free $f_{ka\sigma}$ fermions
- **Orbital spectrum** ~ $f^+_{k+q a\sigma} f_{k b\sigma}$

[Note: one can choose the basis differently & obtain spin-orbital separation...]

[D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988); CC Chen et al., PRB 91, 165102 (2015)]

spin-orbital entanglement in excited state of 3*d* Mott insulator

Understanding the continuum in orbital excitation \rightarrow "large-N mean-field":

[Note: one can choose the basis differently & obtain spin-orbital separation...]

[D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988); CC Chen et al., PRB 91, 165102 (2015)]

"novel" Mott insulators with strong spin-orbit coupling

"Novel" Mott insulators found in 5*d* transition metal compounds:

- gained popularity due to PRL by G. Jackeli and G. Khaliullin (2009)
- so far mostly 4 iridates: Sr₂IrO₄, Ba₂IrO₄, Li₂IrO₃, Na₂IrO₃
- no need to introduce them here
- just one point to be stressed on next slide: crucial role of spin-orbit coupling...

"novel" Mott insulators with strong spin-orbit coupling

(1) Basic ingredients:

- Kugel-Khomskii spin-orbital exchange

$$\mathcal{H} = J \sum_{\substack{\langle i,l \rangle \\ a,b=x,y,z}} \left(\mathbf{S}_i \cdot \mathbf{S}_l + A \right) \left(f_{ab} T^a_i T^b_l + B \right)$$

– on-site spin-orbit coupling λ

$$\mathcal{H}_{\mathrm{SOC}} = \lambda \sum_{i} l_i \cdot \mathbf{S}_i$$

(2) <u>**Crucial role of strong** $\lambda \rightarrow$ effective model in terms of *j*=1/2 isospins:</u>

- "2-1-4" \rightarrow square lattice:

$$\mathcal{H} = J \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{\mathbf{j}}$$

- physics (almost) like in 2D cuprates

- "2-1-3" \rightarrow honeycomb lattice:

$$\mathcal{H} = K \sum_{\langle ij \rangle \parallel \gamma} S_i^{\gamma} S_j^{\gamma} + J \sum_{\langle ij \rangle} S_i \cdot S_j$$

- contain Kitaev isospin liquid physics

[G. Jackeli & G. Khaliullin, PRL 102, 017205 (2009)]

SUMMARY OF MOTIVATION:

How about spin-orbital entanglement

in 5d Mott insulators with strong spin-orbit coupling?

MAIN QUESTION:

How spin-orbital entanglement depends on the spin-orbit coupling?

Spin-orbital 1D model

1) Hamiltonian

$$\mathcal{H} = \mathcal{H}_{SE} + \mathcal{H}_{SOC}$$

• SU(2)xSU(2) intersite spin-orbital superexchange

$$\mathcal{H}_{SE} = J \sum_{i} \left[\left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \alpha \right) \left(\mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \right) - \alpha \beta \right]$$

• Ising onsite spin-orbit coupling

$$\mathcal{H}_{\rm SOC} = 2\lambda \sum_{i} S_i^z T_i^z$$

- S=1/2 spin and T=1/2 orbital (pseudospin) operators
- 3 independent parameters: α , β , λ

Spin-orbital 1D model

2) Lanczos exact diagonalization (ED) on L=4, 8, 12, 16, 20-site chains

- 3) Calculated "observables":
- von-Neumann spin-orbital entanglement entropy in ground state |GS>:

$$S_{\rm vN} = -\frac{1}{L} {\rm Tr}_{S} \{ \rho_{S} \ln \rho_{S} \}$$
 where $\rho_{S} = {\rm Tr}_{T} |{\rm GS}\rangle \langle {\rm GS}|$

• simple spin, orbital, and spin-orbital correlators in |GS>...:

$$S^{\gamma\gamma} = \frac{1}{L} \sum_{i=1}^{L} \left\langle S_i^{\gamma} S_{i+1}^{\gamma} \right\rangle \qquad T^{\gamma\gamma} = \frac{1}{L} \sum_{i=1}^{L} \left\langle T_i^{\gamma} T_{i+1}^{\gamma} \right\rangle \qquad \mathcal{O}_{\rm SO} = \frac{1}{L} \sum_{i=1}^{L} \left\langle S_i^z T_i^z \right\rangle$$

Spin-orbital 1D model

2) Lanczos exact diagonalization (ED) on L=4, 8, 12, 16, 20-site chains

- 3) Calculated "observables":
- von-Neumann spin-orbital entanglement entropy in ground state |GS>:

$$S_{\rm vN} = -\frac{1}{L} {\rm Tr}_{\boldsymbol{S}} \{ \rho_{\boldsymbol{S}} \ln \rho_{\boldsymbol{S}} \}$$
 where $\rho_{\boldsymbol{S}} = {\rm Tr}_{\boldsymbol{T}} |{\rm GS}\rangle \langle {\rm GS}|$

• ..and a particular intersite spin-orbital correlation function:

$$\mathcal{C}_{SO} = \frac{1}{L} \sum_{i=1}^{L} \left[\left\langle (\mathbf{S}_i \cdot \mathbf{S}_{i+1}) (\mathbf{T}_i \cdot \mathbf{T}_{i+1}) \right\rangle - \left\langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \right\rangle \left\langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \right\rangle \right]$$

Spin-orbital 1D model

4) Why study this particular model?

• Superexchange:

simple, yet nontrivial "Kugel-Khomskii physics"

• **Spin-orbit** coupling:

simplest possible and *relatively realistic* for S=1/2 & T=1/2 case

• 1D:

small finite size effects & analytic "benchmarking" possible

[*cf.* model for p_x and p_y orbitals RbO₂, KO₂, *etc.* in EPL **96**, 27001 (2011) or PRB **102**, 085129 (2020)]

- ED on *L*=12-site chains
- As function of (α, β) and for **3 distinct values of spin-orbit coupling** λ ...

- Relatively small area of nonzero entanglement
- Why the entanglement largely vanishes? Does it agree with existing results?
- **Question #1:** Does the λ =0 result make sense?

- Still relatively small area of nonzero entanglement
- **Question #2**: Is the "small" λ qualitatively similar to the λ =0 case?

Central result = von-Neumann spin-orbital entanglement entropy

• Drastic increase of entanglement in the model parameter space

- **Question #3**: Why there is such an increase of entanglement for "large" λ ?
- **Question #4**: Why for "large" λ the spin-orbital entanglement *can* vanish?

- Drastic increase of entanglement in the model parameter space
- **Question #3**: Why there is such an increase of entanglement for "large" λ ?
- **Question #4**: Why for "large" λ the spin-orbital entanglement *can* vanish?

Q1: Does the λ =0 result make sense?

1) Benchmarking against existing results:

2) Understanding this result \rightarrow phase diagram of the SU(2)xSU(2) model:

- 3 product phases
- 2 entangled phases:
 - AF gapless "SU(4) singlet"
 - AF gapped dimerised

Y. Q. Li et al., PRL 81, 3527 (1998);

S. K. Pati et al., PRL 81, 5406 (1998);

R. Lundgren et al., PRB 86, 224422 (2012)

Q2: Is the "small" λ qualitatively similar to the λ =0 case?

To verify the nature of the ground state at $\lambda=0.1J$ versus at $\lambda=0$

we look at 2 specific values of (α, β)

& study the evolution of the ground state properties with λ

Q2: Is the "small" λ qualitatively similar to the λ =0 case?

To verify the nature of the ground state at $\lambda=0.1J$ versus at $\lambda=0$

we look at 2 specific values of (α, β)

& study the evolution of the ground state properties with λ

Q2: Is the "small" λ qualitatively similar to the λ =0 case?

but spatial anisotropy in spins induced \rightarrow *perturbed* **FMxAO**

2) $\alpha = \beta = 0$: still no difference between spins and orbitals, still entangled

but spatial anisotropy induced & changes in $C_{SO} \rightarrow$ **distinct entangled phase**

• Rewrite the Hamiltonian, highlighting terms responsible for entanglement

$$\mathcal{H}/J = \sum_{i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \alpha \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + 2\frac{\lambda}{J} S_{i}^{z} T_{i}^{z} \right)$$

• Once $\alpha \sim \beta \sim 0$ \rightarrow finite spin-orbital entanglement expected for any λ

• Rewrite the Hamiltonian, highlighting terms responsible for entanglement

$$\mathcal{H}/J = \sum_{i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \alpha \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + 2\frac{\lambda}{J} S_{i}^{z} T_{i}^{z} \right)$$

- Once $\alpha \sim \beta \sim 0$ \rightarrow finite spin-orbital entanglement expected for any λ
- What about $\alpha \sim -\beta \neq 0$? Why such an increase in entanglement for "large" λ ?

- What about $\alpha \sim -\beta \neq 0$? Why such an increase in entanglement for "large" λ ?
 - "Large" λ supports $\langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \rangle \simeq \langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \rangle$

- Once
$$\alpha \sim -\beta$$
 & since $\langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \rangle \simeq \langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \rangle$
 \longrightarrow
 $\mathcal{H}/J = \sum_i \left(\mathbf{S}_i \cdot \mathbf{S}_{i+1} \mathbf{T}_i \cdot \mathbf{T}_{i+1} + \alpha \mathbf{T}_i \cdot \mathbf{T}_{i+1} + \beta \mathbf{S}_i \cdot \mathbf{S}_{i+1} + 2 \frac{\lambda}{J} S_i^z T_i^z \right)$
i.e. the intersite terms fully entangled

- What about $\alpha \sim -\beta \neq 0$? Why such an increase in entanglement for "large" λ ?
 - "Large" λ supports $\langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \rangle \simeq \langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \rangle$

- Once $\alpha \sim -\beta$ & <u>since</u> $\langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \rangle \simeq \langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \rangle$

$$\mathcal{H}/J = \sum_{i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \alpha \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + 2 \frac{\lambda}{J} S_{i}^{z} T_{i}^{z} \right)$$

i.e. the intersite terms fully entangled

- Rewrite the Hamiltonian, highlighting terms responsible for entanglement $\mathcal{H}/J = \sum_{i} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \alpha \mathbf{T}_{i} \cdot \mathbf{T}_{i+1} + \beta \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + 2\frac{\lambda}{J} \mathbf{S}_{i}^{z} \mathbf{T}_{i}^{z} \right)$
- Once $\alpha \sim \beta \& \underline{\mathbf{if}} \langle \mathbf{S}_i \cdot \mathbf{S}_{i+1} \rangle \simeq \langle \mathbf{T}_i \cdot \mathbf{T}_{i+1} \rangle$ due to "large" λ

 \rightarrow then perhaps indeed small entanglement for large enough $|\alpha| \sim |\beta|$

• But this does *not* nicely explain vanishing entanglement for $\alpha + \beta < -1/2$

2nd way to understand it:

2nd way to understand it:

- Derive an effective model assuming "large" λ

$$\mathcal{H}_{\text{eff}} = \frac{J}{2} \sum_{i} \left(\tilde{J}_{i}^{x} \tilde{J}_{i+1}^{x} + \tilde{J}_{i}^{y} \tilde{J}_{i+1}^{y} + 2(\alpha + \beta) \tilde{J}_{i}^{z} \tilde{J}_{i+1}^{z} \right)$$

where $\widetilde{J}=1/2$ is isospin operator with e.g.

$$\tilde{J}_{i}^{z} = \frac{1}{2} \left(n_{i,|\uparrow a\rangle} + n_{i,|\downarrow b\rangle} \right)$$

[Similar procedure as for the t, spin-orbital model of the iridium oxides, cf. G. Jackeli & G. Khaliullin, PRL 102, 017205 (2009)]

2nd way to understand it:

- Derive an effective model assuming "large" λ

$$\mathcal{H}_{\text{eff}} = \frac{J}{2} \sum_{i} \left(\tilde{J}_{i}^{x} \tilde{J}_{i+1}^{x} + \tilde{J}_{i}^{y} \tilde{J}_{i+1}^{y} + 2(\alpha + \beta) \tilde{J}_{i}^{z} \tilde{J}_{i+1}^{z} \right)$$

where $\widetilde{J}=1/2$ is isospin operator with e.g.

$$\tilde{J}_i^z = \frac{1}{2} \left(n_{i,|\uparrow a\rangle} + n_{i,|\downarrow b\rangle} \right)$$

[Similar procedure as for the $t_{2\sigma}$ spin-orbital model of the iridium oxides, cf. G. Jackeli & G. Khaliullin, PRL **102**, 017205 (2009)]

• Next, rewrite a *good proxy* for spin-orbital entanglement in this basis:

$$\tilde{C}_{\rm SO} = \frac{1}{2L} \sum_{i=1}^{L} \left[\left\langle \tilde{J}_i^x \tilde{J}_{i+1}^x + \tilde{J}_i^y \tilde{J}_{i+1}^y \right\rangle - 2 \left\langle \tilde{J}_i^z \tilde{J}_{i+1}^z \right\rangle^2 + \frac{1}{8} \right]$$

2nd way to understand it:

- Derive an effective model assuming "large" λ

$$\mathcal{H}_{\text{eff}} = \frac{J}{2} \sum_{i} \left(\tilde{J}_{i}^{x} \tilde{J}_{i+1}^{x} + \tilde{J}_{i}^{y} \tilde{J}_{i+1}^{y} + 2(\alpha + \beta) \tilde{J}_{i}^{z} \tilde{J}_{i+1}^{z} \right)$$

where $\widetilde{J}=1/2$ is isospin operator with e.g.

$$\tilde{J}_i^z = \frac{1}{2} \left(n_{i,|\uparrow a\rangle} + n_{i,|\downarrow b\rangle} \right)$$

[Similar procedure as for the $t_{2\sigma}$ spin-orbital model of the iridium oxides, cf. G. Jackeli & G. Khaliullin, PRL **102**, 017205 (2009)]

• Next, rewrite a *good proxy* for spin-orbital entanglement in this basis:

$$\tilde{\mathcal{C}}_{\rm SO} = \frac{1}{2L} \sum_{i=1}^{L} \left[\langle \tilde{J}_i^x \tilde{J}_{i+1}^x + \tilde{J}_i^y \tilde{J}_{i+1}^y \rangle - 2 \langle \tilde{J}_i^z \tilde{J}_{i+1}^z \rangle^2 + \frac{1}{8} \right]$$

• Altogether:

Go to effective Hamiltonian assuming "large" λ and calculate correlators

2nd way to understand the problem is easier...:

• Go to effective Hamiltonian, valid for "large" λ , and calculate correlators

• This shows that the **proxy for spin-orbital entanglement**:

$$\tilde{C}_{\rm SO} = \frac{1}{2L} \sum_{i=1}^{L} \left[\langle \tilde{J}_i^x \tilde{J}_{i+1}^x + \tilde{J}_i^y \tilde{J}_{i+1}^y \rangle - 2 \langle \tilde{J}_i^z \tilde{J}_{i+1}^z \rangle^2 + \frac{1}{8} \right]$$

vanishes for $\alpha + \beta < -1/2$ due to the onset of Ising FM (in \tilde{J} isospins)

Summary

Spin-orbital entanglement entropy for 3 values of **spin-orbit** coupling λ

- For "small" λ :
 - spin-orbit coupling rather does *not* induce extra entanglement
 - phases *can* be distinct w.r.t. $\lambda = 0$
- For "large" *λ*:
 - a novel spin-orbitally entangled phase, even if no entanglement at $\lambda = 0$
 - a novel phase, though with vanishing entanglement

Summary

Spin-orbital entanglement entropy for 3 values of **spin-orbit** coupling λ

- For "small" λ :
 - spin-orbit coupling rather does *not* induce extra entanglement

Conclusions

[MAIN RESULT]

For "large" λ :

- a novel spin-orbitally entangled phase, even if no entanglement at $\lambda = 0$
- a novel phase, though with *vanishing* entanglement

[TAKE-HOME MESSAGE]

1) Entanglement *can* be triggered by a joint action of:

on-site spin-orbit coupling and superexchange

2) But entanglement *can* also vanish, even if spin-orbit coupling is large

Conclusions

[MAIN RESULT]

For "large" λ :

– a novel spin-orbitally entangled phase, even if no entanglement at $\lambda = 0$

- a nove $Ad. 1) \rightarrow Supposedly$ the case of iridates $Ad. 2) \rightarrow Maybe a bit academic but should not be forgotten$

[TAKE-HOME MESSAGE]

1) Entanglement *can* be triggered by a joint action of:

on-site spin-orbit coupling and superexchange

2) But entanglement can also vanish, even if spin-orbit coupling is large

PS: RVB mean-field theory

Schwinger bosons:

$$S_{i}^{+} = f_{i\uparrow}^{\dagger} f_{i\downarrow} \quad S_{i}^{-} = f_{i\downarrow}^{\dagger} f_{i\uparrow}, \qquad \qquad \sum_{\alpha} f_{i\alpha}^{\dagger} f_{i\alpha} + h_{i}^{\dagger} h_{i} = 1$$

$$T_{i}^{+} = f_{ia}^{\dagger} f_{ib} \quad T_{i}^{-} = f_{ib}^{\dagger} f_{ia}, \qquad \qquad \sum_{\sigma} f_{i\sigma}^{\dagger} f_{i\sigma} + h_{i}^{\dagger} h_{i} = 1$$

Constrained fermions:

$$\begin{split} f_{i\alpha\sigma}^{\dagger} &= f_{i\sigma}^{\dagger} f_{i\alpha}^{\dagger} h_{i:} & \sum_{\alpha\sigma} f_{i,\alpha\sigma}^{\dagger} f_{i,\alpha\sigma} = 1 \\ \mathcal{H} &= -J \sum_{\langle ij \rangle, \alpha, \sigma, \alpha', \sigma'} (f_{i\alpha\sigma}^{\dagger} f_{j\alpha\sigma} + h.c.) (f_{j\alpha'\sigma'}^{\dagger} f_{i\alpha'\sigma'} + h.c.) \\ &+ \frac{1}{2} E_z \sum_{i\sigma} (f_{ia\sigma}^{\dagger} f_{ia\sigma} - f_{ib\sigma}^{\dagger} f_{ib\sigma}). \end{split}$$

Mean-field for constrained fermions:

PS: RVB mean-field theory

Mean-field for constrained fermions:

$$\mathcal{H}_{\rm MF} = \sum_{k,\sigma} \left(\varepsilon_{ka} f_{ka\sigma}^{\dagger} f_{ka\sigma} + \varepsilon_{kb} f_{kb\sigma}^{\dagger} f_{kb\sigma} \right)$$
$$\varepsilon_{ka/b} = -\langle \chi_{ij} \rangle 2J \cos k \mp E_z/2; \ \langle \chi_{ij} \rangle = 2\sqrt{2} \cos(\delta_k)/\pi$$

Distinct 'topology' of the Fermi 'surface' (E_{z})

 \rightarrow distinct orbital and spin spectra (E_{z})

PS: Entanglement vs. separation

Note: "analytics" (RVB mean-field) \rightarrow <u>always</u> <u>entanglement</u>

So why separation suggested in another approach to the 'realistic' chain?

 \rightarrow freedom of choosing the basis in the 'realistic' case:

orbital q. number for all electrons in lower orbital (incl. spinon) can be neglected

spin q. number for all electrons in upper orbital (\rightarrow orbiton) can be neglected