Pinning the cosmic web to massive halos

Joanne Cohn

Web tracer here: dark matter density Web finder: Disperse

Dark matter density in the Millennium simulation (Springel++05,Lemson++06)
N-body, $500 \mathrm{Mpc} / \mathrm{h}$ side box
Fixed time, $z^{\sim} 0.1$
Specifically using from it:

- Dark matter densities in 256^3 pixels (1.95 Mpc/h each)
- Gaussian smoothing 1.25 Mpc/h, 2 Mpc/h 2.5 Mpc/h, 5 Mpc/h
(Drawback) old Millennium cosmology:
density rescaling to Planck Millennium unavailable, thus relevant galaxy observables unavailable.
$(\Omega m=0.25, \Omega b=0.045, h=0.73, n=1, \sigma 8=0.9)$

Lengths< than pixel scale ($\sim 2 \mathrm{Mpc} / \mathrm{h}$) not well described
\Rightarrow Web of interest will be at larger scales

Cartoon idea

Cartoon idea

* = Massive nodes

Cartoon idea

* $=\underset{\text { (Note: some overdensities might be projection) }}{\text { Massive nodes }}$

Cartoon idea

* = Massive nodes, —= filament
?? clusters ~ nodes?
(Note: some overdensities might be projection)

Often said clusters are nodes of cosmic web

Reasonable:

- For many finders, nodes are peaks in the density, like clusters
- both probe/affect larger scales around them
- in some finders, nodes are required to have large cluster like densities, e.g. Cautun++14, or nodes are defined to be clusters (\& sometimes groups), e.g., Alpaslan++13
- clusters as (part of) node population may capture web-like features
- Anisotropy: special directions to other clusters
- Connectivity: cluster-cluster pairs might be filaments

What is the correspondence between clusters and nodes? [reductionist/rough question: how much do clusters capture of the web? Variants of this asked many times, starting e.g. with Bond \& Myers '96]

Disperse based web(s)

- crit points
- nodes-peaks
- filaments have saddles in centers
- no volumes-lines and points
- based on critical points in density

One Simulation \& One Finder

 Different webs:different smoothings
$1.25,2,2.5$ (\&5) Mpc/h
different persistence [ncut-note added]
$1 \sigma, 2 \sigma, 3 \sigma$
(\sim criteria to distinguish peaks)
Use these 9 webs hereon
(see momentarily that $5 \mathrm{Mpc} / \mathrm{h}$ smoothing case too degenerate)
...What do they look like?
1σ persistence
2 Disperse webs
3σ persistence
(2Mpc/h smoothing)

Connectivity ($1 \sigma, 2 \sigma, 3 \sigma$)

Filament lengths ($1 \sigma, 2 \sigma, 3 \sigma$)

Numbers of nodes \& filaments for different webs Compare to 2898 cluster ($\geq 10^{14} \mathrm{M}_{0}$) halos

Aside from $5 \mathrm{Mpc} / \mathrm{h}$ (discard), more nodes than clusters, sometimes many more!

cluster \leftrightarrow node matching

Disperse identifies critical points

Assign volume to nodes* and see if cluster centers are inside

density pixel
"pix"

Hessian patch with $\partial_{i} \partial_{j} \varphi$ ev's +++ = node node $=$ continguous +++ patch
"patch"
*Could also try to put nodes "in" clusters, which have a natural radius

Clusters matched to nodes?

[^0]
Clusters matched to nodes?

Most clusters are matched
(~100\%* to 64\%) depends on web

Fewer matched as web smoothing \uparrow persistence \uparrow

Increased Smoothing \rightarrow

[^1]
Clusters matched to nodes?

[^2]
Matching example:"nearest/fixed"

two populations:

- clusters near nodes-"matched"
- clusters not near nodes

Matching example:"nearest/fixed"

two populations:

- clusters near nodes-"matched"
- clusters not near nodes (272/2898)

Matching example:"nearest/fixed"

two populations:

- clusters near nodes-"matched"
- clusters not near nodes (272/2898)

Matched clusters: cluster mass - node density relation

Matching example:"nearest/fixed"

two populations:

- clusters near nodes-"matched"
- clusters not near nodes (272/2898)

Matching example:"nearest/fixed"

two populations:

- clusters near nodes-"matched"
- clusters not near nodes-9\% no nodes

Unmatched clusters more generally?

[^3]Unmatched clusters

different webs/matching methods

Matched clusters: 64%-~100\% $--63 \%$ of clusters match every time [drop "pix" method 81\%- ~100\%] --78\% of clusters match every time "pix" -match same pixel, very restrictive, perhaps too much so

How many times each cluster is unmatched, in all web/matching combinations

Unmatched clusters

different webs/matching methods

Matched clusters: 64%-~100\% $--63 \%$ of clusters match every time [drop "pix" method 81\%-~100\%] --78\% of clusters match every time "pix" -match same pixel, very restrictive, perhaps too much so

How many times each cluster is unmatched, in all web/matching combinations
Take clusters unmatched $>=10$ times

Unmatched clusters

different webs/matching methods

Matched clusters: $64 \%-\sim 100 \%--63 \%$ of clusters match every time [drop "pix" method 81\%-~100\%] --78\% of clusters match every time "pix" -match same pixel, very restrictive, perhaps too much so

frequently

 unmatched clusters tend to:- have lower mass
- slightly less
recent major mergers
- higher $\mathrm{t}_{2}=\lambda_{2}-\delta / 3$

Nodes: most are unmatched!

Most
nodes are
not
matched
to
clusters

Increased Smoothing, Persistence \rightarrow

A bit more about unmatched nodes \# nodes >> \# clusters > \# matched clusters

For main example web \& several matching methods:

Unmatched clusters mostly low mass

Unmatched node density distribution not just low density [except for 2x smoothing] Hess has fewest unmatched but goes to highest density

For these webs, now have (36 versions of)

 clusters \leftrightarrow nodes
How about

cluster pairs \leftrightarrow web filaments? [connect clusters \leftrightarrow connect nodes]

- Sometimes it's implicitly assumed that cluster pairs have filaments
- Here, take nodes matched to clusters
- If two cluster matched nodes share a filament-> cluster pair has a filament
- Interpolate through nodes not matched to clusters

Truncated ('approximate") web

Connect nodes with non-matched node [] in between if angle $>120^{\circ}$; triples $=3$ pairs, etc.

matched unmatched
node
node

Truncated ('approximate") web

Connect nodes with non-matched node [] in between if

 angle $>120^{\circ}$; triples $=3$ pairs, etc., can drop >1 in between.

Filament demographics after matching to cluster pairs

Increased Smoothing, Persistence \rightarrow

Filament demographics after matching to cluster endpoints (aside)

Most webs: many filaments have at least one cluster matched endpoint

Filament demographics after matching to

clusters

Increased Smoothing, Persistence \rightarrow

Get very sparse web!

Another larger scale view of same system ([200 Mpc/h] ${ }^{3}$)

* Disperse Nodes

- Disperse Filaments

* Clusters

-- - Cluster pairs with filaments

$30 \mathrm{Mpc} / \mathrm{h}$ deep

Statistics of all cluster webs from this Disperse web

Disperse

-more filaments (6297) -all nodes get filaments

Cluster webs: (lines) -1654-2904 filaments -some clusters no filaments
-higher fraction of long filaments
-high density (at saddle) filaments more often
 matched to cluster pairs

These are filament properties that match to cluster pairs, how about vice versa?

Before: which clusters -> nodes?
 Now: which cluster pairs -> filaments?

A pair is more likely to have a Disperse filament if the clusters:

- are close together
- have long axes aligned with cluster pair axis
- using ML (later)
- cluster is one of closest other clusters
- have long axes aligned with each other

3 persistences shown here (3 webs)

Before: which clusters -> nodes?
 Now: which cluster pairs -> filaments?

A pair is more likely to have a Disperse filament if the clusters:

- are close together
- have long axes aligned with cluster pair axis
- using ML (later)
- cluster is one of closest other clusters
- have long axes aligned with each other

For this $2 \mathrm{Mpc} / \mathrm{h}$ smoothing, median length for filaments matched to cluster pairs is about $18 \mathrm{Mph} / \mathrm{h}$
(all filaments, median length~ $16 \mathrm{Mpc} / \mathrm{h}$)

Profiles: on average, enhanced around cluster pairs (on axis)

Pairs < 40, 50, $60 \mathrm{Mpc} / \mathrm{h}$
subhalo/halo mass ranges
$10^{11}-10^{12} M_{o}$
$10^{12}-10^{13} M_{o}$
$10^{13}-10^{14} M_{\circ}--$

Counts (gal subhalos) Mass (halo centers)

Profiles: density enhanced even more, on average, for filaments!

Different profiles: -all cluster pairs -filament pairs -non-filament pairs -nodes
from $2 \mathrm{Mpc} / \mathrm{h}, 3 \sigma$ persistence web
profile ~ $1 / r$

Filament density enhancement relative to all cluster pairs (@ max) for different webs, matching methods, max pair lengths

As might be expected, when fewer cluster pairs are assigned filaments, the cluster filament pair profile is more enhanced relative to all cluster pairs

Different webs/matching \rightarrow (Before: different clusters get nodes) Here: different cluster pairs get filaments

Clusters to nodes: $3 / 4$ of clusters always matched to nodes

Cluster pairs to filaments:
< 1/10 pairs which always match to filaments
(383 of 1400-3500 pairs always get filaments)

Filaments as operation on cluster pairs

Large scale filaments in a web \rightarrow map on cluster pairs
Have 11996, 20906, and 33842 pairs < $40 \mathrm{Mpc} / \mathrm{h}, 50 \mathrm{Mpc} / \mathrm{h}, 60$ $\mathrm{Mpc} / \mathrm{h}$, respectively

Easy to set up as ML problem:

- each pair gets 1 (filament) or 0 (no filament)
- out of box algorithms not very successful for these filaments
- misclassified 6\%-12\% of cluster pairs
- inputs: distance, cluster axes dot product, cluster axes dot product with long axis, cluster density,etc. (only use properties of cluster population)

Clusters and other webs?

Beyond Disperse:
Sometimes hard to compare webs to each other
Change webs-cluster pairs are fixed, but connectivity and matching to nodes change

- Can use clusters \& cluster pairs to compare webs to each other, fixed reference point
- Useful if consistent mapping to clusters used
(doesn't have to be ones suggested here)
[Again, there are a ton of different web definitions, in part, because there are a ton of different web uses.]

Directions

- More properties of this restricted web?
- Different webs:
- Use level instead of persistence
- Drop lower persistence webs when look for filaments that persist
- Cluster pairs do indicate where mass density will likely go
- How much can one infer from pairs-> filaments, etc?*
- How much of rest of mass distribution? Shear field?
- Build up web? Go below cluster mass:
- some halos will be most massive halo near a node-which ones?
*Note: can reconstruct web from clusters other ways
- Use clusters to get initial conditions \& evolve \rightarrow everything (Bos, van de Weygaert, Kitaura, Cautun '16, esp. clusters; also via ic:
Leclercq, Lavaux, Jasche, Wandelt ' 16
Just trying reductionist approach here to see how far it can go....

Cartoon idea

这

Start with clusters

* = Massive nodes, __ filament ?? clusters
(Note: some overdensities might be projection)

Cartoon idea

Start with clusters
Most massive likely to be nodes

* = Massive nodes, _ = filament ?? clusters
(Note: some overdensities might be projection)

Cartoon idea

Start with clusters Most massive likely to be nodes
Clusters close by often connected by filaments... But often not, and over half of the filaments aren't to close-by clusters

* = Massive nodes, _ = filament ?? clusters
(Note: some overdensities might be projection)

Cartoon idea

* = Massive nodes, —= filament ?? clusters?
(Note: some overdensities might be projection)

Started with:

Webs nodes \&

filaments

Halos in web

$\leftrightarrow \quad$ clusters

$\leftrightarrow \quad$ cluster pairs w/filaments

Some points:

- Most, but not all clusters match to nodes, across different webs - high mass clusters more likely, cluster mass ~ node density
- Cluster pairs have enhanced average density profile, filament pairs even more so, but which cluster pairs are assigned filaments varies significantly as webs vary
- higher density nodes \& filaments more likely to match to clusters \& cluster pairs
- web restricted to clusters very sparse!

Thank you!

Completeness?

Fraction of halos with "nearby" node (Disperse pixel based web,smoothing $2.5 \mathrm{Mpc} / \mathrm{h}$)

connectivity of "matched" nodes to other "matched" nodes only

\log (pixel density/mean density)

[^0]: *missing only 9/2898

[^1]: *missing only 9/2898

[^2]: *missing only 9/2898

[^3]: *missing only 9/2898

