Touching cosmic web DM with gravitational lensing?

Raphael Gavazzi LAM/IAP

Feb 28th, 2023

On the wall of my bedroom at Munger residence

Galaxy/web cross-talk calls for a direct probe of DM scaffolding : Lensing

• A direct view of the web, irrespective of galaxy bias is desirable

- Lensing could help lift growth rate / bias degeneracy in cosmic web studies just like it already does in 3x2pt statistics? [eg Judith's talk]
- Lensing always brings information if bias model has enough degrees of freedom
- Intrinsic alignments (IA) of galaxies is a web-dependent nuisance for 2-pt (and higher order) statistics that we ought to understand better

• Small scale weak and strong lensing can probe shape of halos

- Differences with lights on smaller scales... (De)coupling between galaxy shape (spin/inertia) and halo shape with radius. Useful for IA.
- More questions than results in this program!

How easy is it with weak lensing?

$$\psi(\mathbf{r}) = \frac{2}{c^2} \frac{D_1 D_{1s}}{D_s} \int dz \, \Phi(\mathbf{r}, z), \qquad \begin{array}{c} 2\kappa &= \psi_{,11} + \psi_{,22}, \\ 2\gamma_1 &= \psi_{,11} - \psi_{,22}, \\ \gamma_2 &= \psi_{,12}. \end{array} \qquad \begin{array}{c} \kappa & \bigcirc & \bigcirc \\ Re[\gamma] & \bigcirc & \bigcirc \\ m[\gamma] & \bigcirc & \bigcirc \\ \end{array}$$

Broad projection: non-gaussianity is damped and anisotropy average out

< 0

> 0

Different ways to go about signal extraction

Mapping "super clusters"

MS0302+17 (Gavazzi++04, Kaiser98) (See also A901/A902, Gray++03) A222/A223, Dietrich++12

Δ

Stack lensing by galaxy pairs

Epps&Hudson17, 23000 z~0.4 BOSS LRG pairs in CFHTLS footprint.

Large scale maps

DES Y3, Jeffrey++21 photo-z voids

C. Gouin et la 2017

Connectivity of clusters

- Predictions exist in 3D (Codis++17,18)
- where lensing signal should be stronger

 Can lensing probe counterpart of filaments along azimuth near clusters?

- Lensing study of moments for WL in N-body sim
- Rich follow-up work on hydro-sims and galaxy catalogs [not in this talk] (Gouin++20,21)

Aperture multipole moments of the projected density (Schneider & Bartelmann, 1997)

Projected plane

 $Q_m = \int_{r_{min}}^{r_{max}} dr \ r^{m+1} \ w_m(r) \int d\varphi \ e^{im\varphi} \ \Sigma(r,\varphi)$ **Aperture** Radial weight function $w_m(r)$ **Projected density**

• Extract cluster halos in N-body sim

- PLUS simulation (Peirani++): 2048³, 600 Mpc/h, 10 Mpc spheres
- 10^4 clusters $M_{vir} > 10^{14}$ M_{sun} , 4 epochs.
- Project density onto sky along 3 directions
- $\boldsymbol{\cdot}$ Compute multipolar moments \boldsymbol{Q}_m of surface density
 - inside different annuli: R_1 =[0.25-0.5] R_{vir} and R_4 =[1.0-4.0] R_{vir}
- Stack the modulus of $|\mathbf{Q}_{m}|$

$$\langle |Q_m|^2 \rangle = \frac{1}{N_{clusters}} \sum_i |Q_m|_i^2$$

Time evolution of multipolar moments

100 most massive (1015)

- Moments are frozen from initial conditions (growth absorbed by boost)
- Depletion of odd m (centered peak constraint)
- Inside, m=2 prevails, outside more power at m>2 due to bifurcations (Pogosyan++09, Pichon++10)

300 least massive (10¹⁴)

- Less power at m>2
- Disconnection with time

Conclusion

- Weak lensing can probe DM content of the cosmic!
- Multipolar moments of the shear/convergence understood and can be measured with upcoming Euclid
- TBD: Cross-correlation of moments of galaxy distribution $\langle Q_m G_n
 angle$
 - Higher SNR than auto-spectrum of Q_m moments. Accessible with current data!
 - As a function of galaxy type: special biasing conditions!
- Eager to talk about strong & weak lensing on smaller scales
 - Orientation stellar component / DM and withing cosmic web
 - Ray-tracing Horizon-AGN: caustic patterns, external convergence/shear,

Questions?

Explaining the overall constant high-order boost

Radial correlation of multipolar moments

Two filaments are connected to the node on small scales. Away from the node, bifurcation points appear and increase filament numbers (Pogogsyan et al, 2009)

$$\rho_{1,4}(m,n) = \frac{\langle \mathbf{Qm}(\mathbf{R1}) \ \mathbf{Qn}(\mathbf{R4}) \rangle}{\sigma_{Qm}(\mathbf{R1}) \ \sigma_{Qn}(\mathbf{R4})}$$

Convergence power-spectrum at zs=1.1

17

