Touching cosmic web DM with gravitational lensing?

Raphael Gavazzi LAM/IAP
Feb 28th, 2023

Galaxy/web cross-talk calls for a direct probe of DM scaffolding : Lensing

- A direct view of the web, irrespective of galaxy bias is desirable
- Lensing could help lift growth rate / bias degeneracy in cosmic web studies just like it already does in 3×2 pt statistics? [eg Judith's talk]
- Lensing always brings information if bias model has enough degrees of freedom
- Intrinsic alignments (IA) of galaxies is a web-dependent nuisance for 2-pt (and higher order) statistics that we ought to understand better
- Small scale weak and strong lensing can probe shape of halos
- Differences with lights on smaller scales... (De)coupling between galaxy shape (spin/inertia) and halo shape with radius. Useful for IA.
- More questions than results in this program!

How easy is it with weak lensing?

$$
\psi(\boldsymbol{r})=\frac{2}{c^{2}} \frac{D_{1} D_{\mathrm{ls}}}{D_{\mathrm{s}}} \int \mathrm{~d} z \Phi(\boldsymbol{r}, z), \quad \begin{array}{|}
& =, 11+\psi_{, 22} \\
2 \gamma_{1} & =\psi_{, 11}-\psi_{, 22} \\
\gamma_{2} & =\psi_{, 12}
\end{array}
$$

Broad projection: non-gaussianity is damped and anisotropy average out

Different ways to go about signal extraction

Mapping "super clusters"

MS0302+17 (Gavazzi++04, Kaiser98)
(See also A901/A902, Gray++03)
A222/A223, Dietrich++12

Stack lensing by galaxy pairs

Epps\&Hudson17, 23000 z~0.4 BOSS LRG pairs in CFHTLS footprint.
(Clampitt++14, Simon++12,19)

Large scale maps

DES Y3, Jeffrey++21 photo-z voids

Multipolar moments of convergence around clusters

- Predictions exist in 3D (Codis++17,18)
- where lensing signal should be stronger
C. Gouin et la 2017

- Connectivity of clusters

- Can lensing probe counterpart of filaments along azimuth near clusters?
- Lensing study of moments for WL in N-body sim
- Rich follow-up work on hydro-sims and galaxy catalogs [not in this talk] (Gouin++20,21)

Multipolar moments of convergence around clusters

Aperture multipole moments of the projected density (Schneider \& Bartelmann,1997)

$$
Q_{m}=\int_{r_{\min }}^{r_{\max }} d r r^{m+1} w_{m}(r) \int d \varphi e^{i m \varphi} \Sigma(r, \varphi)
$$

Aperture Radial weight function $w_{m}(r)$ Projected density

Multipole order m

Multipolar moments of convergence around clusters

- Extract cluster halos in \mathbf{N}-body sim

- PLUS simulation (Peirani++): 2048³, $600 \mathrm{Mpc} / \mathrm{h}, 10 \mathrm{Mpc}$ spheres
- 10^{4} clusters $M_{\text {vir }}>10^{14} M_{\text {sun }}, 4$ epochs.
- Project density onto sky along 3 directions
- Compute multipolar moments $\mathbf{Q}_{\mathbf{m}}$ of surface density
- inside different annuli: $\mathrm{R}_{1}=[0.25-0.5] \mathrm{R}_{\mathrm{vir}}$ and $\mathrm{R}_{4}=[1.0-4.0] \mathrm{R}_{\mathrm{vir}}$
- Stack the modulus of $\left|Q_{\mathbf{m}}\right|$

$$
\langle | Q_{m}| \rangle=\frac{1}{N_{\text {clusters }}} \sum_{i}\left|Q_{m}\right|_{i}^{2}
$$

Multipolar moments of convergence around clusters

Multipolar moments of convergence around clusters

Time evolution of multipolar moments

100 most massive (10^{15})

- Moments are frozen from initial conditions (growth absorbed by boost)
- Depletion of odd m (centered peak constraint)
- Inside, $\mathrm{m}=2$ prevails, outside more power at $\mathrm{m}>2$ due to bifurcations (Pogosyan++09, Pichon++10)

Inside the virial radius
$\frac{\left.\left.\langle | \mathrm{Q}_{\mathrm{m}}\right|^{2}\right\rangle_{\mathrm{c}}}{\left.\left.\alpha\langle | \mathrm{Q}_{\mathrm{m}}\right|^{2}\right\rangle_{\mathrm{r}}}$

Outside the virial radius

300 least massive (10^{14})

- Less power at m>2
- Disconnection with time

Outside the virial radius

$15000 \mathrm{deg}^{2}, 3$

Conclusion

- Weak lensing can probe DM content of the cosmic!

- Multipolar moments of the shear/convergence understood and can be measured with upcoming Euclid
- TBD: Cross-correlation of moments of galaxy distribution $\left\langle Q_{m} G_{n}\right\rangle$
- Higher SNR than auto-spectrum of Q_{m} moments. Accessible with current data!
- As a function of galaxy type: special biasing conditions!
- Eager to talk about strong \& weak lensing on smaller scales
- Orientation stellar component / DM and withing cosmic web
- Ray-tracing Horizon-AGN: caustic patterns, external convergence/shear,

Questions?

Explaining the overall constant high-order boost

shells of same size at $z=0$, had different s at early time near peak or at random tion.
erical collapse (\rightarrow NFW profile) boosts sity of sub-halos!

Radial correlation of multipolar moments

$\mathrm{R}_{1}=[0.25-0.5]$ Rvir

$\mathrm{R}_{4}=[1-4]$ Rvir

Two filaments are connected to the node on small scales. Away from the node, bifurcation points appear and increase filament numbers (Pogogsyan et al, 2009)

16

$$
\rho_{1,4}(m, n)=\frac{\langle Q m(R 1) Q n(R 4)\rangle}{\sigma_{Q m}(R 1) \sigma_{Q n}(R 4)}
$$

Real part of correlation coefficients

Convergence power-spectrum at $\mathbf{z s = 1 . 1}$

$\mathrm{n}_{\mathrm{bg}}=5,20,80 \mathrm{arcmin}^{-2}$

