Constraining the Nature of Dark Matter and Reionization with the Lyman-Alpha Forest

**Martin Haehnelt** 

Shikhar Asthana Dominique Aubert George Becker Elisa Boera James Bolton Sarah Bosman Jonathan Chardin Prakash Gaikwad Vid Irsic Laura Keating Girish Kulkarni Margherita Molaro Ewald Puchwein Matteo Viel



# The Ly $\alpha$ forest



 $λ_{Lya}$ = 1215.67 (1+z) Å





# High resolution – High S/N!



A treasure trove of information!



IOA



# The Ly $\alpha$ forest evolves rapidly



from Xiaohui Fan's Sao Paolo lectures

| J1342+092                        | 28, z=7.541         |           |      |           |       |                    | J0210-0456, z= | =6.44 |        | ^           |                  |          |       |
|----------------------------------|---------------------|-----------|------|-----------|-------|--------------------|----------------|-------|--------|-------------|------------------|----------|-------|
| J1120+064                        | 20+0641, z=7.085    |           |      |           |       |                    | J2329-0301, z= | =6.43 |        |             |                  |          |       |
| j0038-152                        | 27, z=7.025         |           |      |           |       |                    | J1148+5251, z= | =6.42 |        |             |                  |          |       |
| J0252-050                        | )3, z=7.020         |           |      |           | ~     |                    | J1030+0524, z= | =6.28 |        | ~~~         |                  |          |       |
| J0839+390                        | 00, z=6.905         |           |      |           |       |                    | J0050+3445, z= | =6.25 |        | ~           |                  |          |       |
| 12348-305                        | 54, z=6.902         |           |      |           |       |                    | J1048+4637, z= | =6.23 |        |             |                  |          |       |
| 12211-632                        | 20. z=6.880         |           |      |           |       | ····               | J1623+3112, z= | =6.22 |        | ~~~         |                  |          |       |
| 10246-521                        | 10246-5219, z=6.870 |           |      |           |       |                    |                | =6.21 |        |             |                  |          |       |
| 10411+090                        | 10411+0907 7=6 820  |           |      |           |       |                    |                | =6.20 |        |             |                  |          |       |
| 10109-304                        | 0109-3047 7=6 701   |           |      |           |       |                    |                | =6.18 |        |             | ····             |          |       |
| 10820+411                        | 7 7-6 769           |           |      |           |       |                    | J0221-0802, z= | =6.16 | ~      | ·····       |                  |          |       |
| S 111041011                      | 411/, 2=0.708       |           |      |           |       |                    | J2229+1457, z= | =6.15 | ~      |             |                  |          |       |
| <u><u>H</u> <u>J1104+213</u></u> | 34, z=6.740         | , z=6.740 |      |           |       |                    |                | =6.13 |        |             |                  |          |       |
| J0910+165                        | 56, z=6.720         |           |      |           |       |                    | J1250+3130, z= | =6.13 |        |             |                  |          |       |
| > 10837+492                      | 29, z=6.710         |           |      | · · · · · |       |                    | J0033-0125, z= | =6.13 |        | · · · · · · | ·····            | ····     |       |
| <u>م</u> ا <sup>1048–010</sup>   | )9, z=6.676         |           |      | min       | mm.   |                    | J2315-0023, z= | =6.12 |        |             |                  |          |       |
| J2232+293                        | 30, z=6.666         |           |      | <u> </u>  |       |                    | J1509–1749, z= | =6.12 |        |             | · · · · · ·      | ····     |       |
| J1216+451                        | l9, z=6.654         |           |      |           |       |                    | J2100–1715, z= | =6.09 |        |             |                  |          |       |
| 5 J2102-145                      | 2102–1458, z=6.648  |           |      |           |       |                    |                | =6.08 |        |             |                  |          |       |
| y <b>⊂</b> j0910-041             | L4, z=6.630         |           |      |           |       |                    | J1602+4228, z= | =6.07 |        |             |                  |          |       |
| J0305-315                        | 50, z=6.615         |           |      | ~~~       |       |                    | J0303-0019, z= | =6.07 | $\sim$ |             |                  |          |       |
| J0923+040                        | 02, z=6.610         |           |      | ~~~~      |       |                    | J2054-0005, Z= | -6.05 |        |             |                  |          |       |
| J2132+121                        | 17, z=6.588         |           |      |           |       |                    | J2318-0246, 2= | -6.05 |        |             |                  |          |       |
| J1526-205                        | J1526-2050, z=6.586 |           |      |           |       |                    | 10353+0104     | -6.05 | ~~~    |             |                  |          |       |
| J0706+292                        | J0706+2921, z=6.583 |           |      |           |       |                    | 12210+1955 7   | -6.04 |        |             |                  | ····     |       |
| J1135+501                        | J1135+5011, z=6.580 |           |      |           |       |                    | 11641+3755 7   | -6.04 |        |             |                  | <u> </u> |       |
| J0226+030                        | J0226+0302, z=6.541 |           |      |           |       | 10055+0146 7       | -6.02          |       |        | ~~~~~       | <del>~~~</del> . |          |       |
| j1110-132                        | 29, z=6.515         |           |      |           |       |                    | 11137+3549 7=  | =6.01 |        | ~~~~~       | ~~~              |          |       |
| J0439+1634, z=6.511              |                     |           |      |           |       | 10216-0455, z=6.01 |                |       |        |             |                  |          |       |
| J1629+2407, z=6.476              |                     |           |      |           |       | 12356+0023, z=     | =6.00          |       |        |             |                  |          |       |
| 75.00                            | 0000                | 0500      | 0000 | 0500      | 10000 | 10500              | 75.00          | 0000  | 05.00  | 0000        | 0500             | 10000    | 10500 |
| /300                             | 0000                | 0000      | 9000 | 9200      | 10000 | 10200              | /500           | 0000  | 0000   | 9000        | 8, 9000          | 10000    | 10200 |
| Wavelength (A)                   |                     |           |      |           |       |                    | Wavelength (A) |       |        |             |                  |          |       |

from Xiaohui Fan's Sao Paolo lectures



# There are now large numbers of QSOs at z>6.



photoionization equilibrium:  

$$\alpha \cdot m_{HI} \cdot m_{e} = m_{HI} \cdot \prod_{1} \frac{m_{HI}}{m_{H}} \sim 5 \cdot 10^{6} \frac{9}{3} \left( \prod_{10^{10} \text{ s}^{-1}} \right)^{1} \left( \prod_{10^{10} \text{ k}} \right)^{-0.7}$$
we combination coefficient photoionization rate  

$$phot-heating \text{ vs. a diabatic cooling:}$$

$$T \text{ indep. oF density } T = T_{0} \cdot \left( \frac{9}{3} \right)^{9-1} \quad j = 1.3 - 1.4$$

$$Flue footing \quad Gumn - Peterson \quad epproximation:$$

$$T_{HI}(2) = \int_{0}^{2} m_{HI} \quad \nabla(2) \quad \frac{d\varrho}{dz} \quad dz \sim 0.8 \quad \frac{9}{3} \left( \frac{(1+z)}{4} \right)^{1} \left( \frac{1}{10^{4} \text{ k}} \right)^{-0.7}$$



# The Ly $\alpha$ forest evolves rapidly



from Xiaohui Fan's Sao Paolo lectures

### A bit of history and connection to the cosmic web



Cen et al. 1994 Hernquist et al. 1996 Miralda-Escude et al. 1996 Rauch et al. 1997 *cf* Ikeuchi & Ostriker 1986 Rees 1986 Bond, Szalay & Silk 1988 Bi, Boerner & Chu 1992



Lyα forest clouds



THE ASTROPHYSICAL JOURNAL, 632:58–80, 2005 October 10 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

#### EXPANSION AND COLLAPSE IN THE COSMIC WEB<sup>1,2</sup>

MICHAEL RAUCH,<sup>3</sup> GEORGE D. BECKER,<sup>4</sup> MATTEO VIEL,<sup>5</sup> WALLACE L. W. SARGENT,<sup>4</sup> ALAIN SMETTE,<sup>6,7</sup> ROBERT A. SIMCOE,<sup>8</sup> THOMAS A. BARLOW,<sup>4</sup> AND MARTIN G. HAEHNELT<sup>5</sup> Received 2005 April 2; accepted 2005 May 26



Velocity "shear" consistent with randomly orientated pancakes at z=2 expanding with 0.8  $\times$  v<sub>Hubble</sub>





## Lyman-alpha forest tomography of the cosmic web



"Inverting" the flux distribution to obtain the density distribution using the fluctuating Gunn-Peterson approximation. Cross-correlating with galaxies.



Major science case for WEAVE, DESI, Subaru, ELT's ....

Nusser & Haehnelt 1999 Pichon et al 2001 Caucci et al. 2008 Stark et al. 2015

Kraljic, Laigle, Pichon et al. 2022 cf talk by Nick Gnedin in this program



# Probing dark matter with the $Ly\alpha$ forest





# Cut-off in the matter power spectrum on astrophysically interesting scales due to free-streaming or FDM.



- early decoupling thermal relics
- sterile neutrinos
- ultralight axions
- gravitinos

•

courtesy of Carlos Frenk





# Free-streaming erases structure





### The effects of temperature and free streaming are not degenerate



For fixed comoving free-streaming length the cut-off in velocity space is at larger scales/smaller k at higher redshift , and thus in principle easier to detect.



I will focus on constraints from high-resolution data. All limits are quoted as masses of a thermal relic.

IoA

# Observational results





These are the limits for thermal relics. For sterile neutrinos the story is more complicated.

# Our "best" WDM results in 2013

KITP, 9 March 2023



- more and better data
- more and better simulations
- extensive scrutiny for systematic errors
- improved and conservative analysis

$$M_{wdm}$$
 > 3.3 keV (2 $\sigma$  C.L)

2 keV WDM disfavoured at about 4σ!

![](_page_15_Picture_8.jpeg)

![](_page_15_Picture_10.jpeg)

### week ending 21 JULY 2017

#### First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations

Vid Iršič,<sup>1,2,3,\*</sup> Matteo Viel,<sup>4,5,6,†</sup> Martin G. Haehnelt,<sup>7</sup> James S. Bolton,<sup>8</sup> and George D. Becker<sup>7,9</sup>

![](_page_16_Figure_5.jpeg)

- New intermediadiate resolution X-Shooter data(XQ 100 sample)
- Improved analysis

For reasonable prior on thermal history:

 $m_{FDM}$ >37.5 x 10<sup>-22</sup> eV (2  $\sigma$  C.L.)  $m_{WDM}$ >5.3 keV (2 $\sigma$  C.L.)

This leaves very little/no room for resolving the "small scale crisis" of CDM → baryonic solution is favoured

PHYSICAL REVIEW D **96,** 023522 (2017)

#### New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- $\alpha$ forest data

KICC

Vid Iršič,<sup>1,2,3,\*</sup> Matteo Viel,<sup>4,5,6,†</sup> Martin G. Haehnelt,<sup>7</sup> James S. Bolton,<sup>8</sup> Stefano Cristiani,<sup>5,6</sup> George D. Becker,<sup>7,9</sup> Valentina D'Odorico,<sup>5</sup> Guido Cupani,<sup>5</sup> Tae-Sun Kim,<sup>5</sup> Trystyn A. M. Berg,<sup>10</sup> Sebastian López,<sup>11</sup> Sara Ellison,<sup>10</sup> Lise Christensen,<sup>12</sup> Kelly D. Denney,<sup>13</sup> and Gábor Worseck<sup>14</sup>

![](_page_16_Picture_15.jpeg)

![](_page_17_Picture_0.jpeg)

# The Sherwood simulation suite: overview and data comparisons with the Lyman $\alpha$ forest at redshifts $2 \le z \le 5$

James S. Bolton,<sup>1</sup>\* Ewald Puchwein,<sup>2</sup> Debora Sijacki,<sup>2</sup> Martin G. Haehnelt,<sup>2</sup> Tae-Sun Kim,<sup>3</sup> Avery Meiksin,<sup>4</sup> John A. Regan<sup>5</sup> and Matteo Viel<sup>3,6</sup>

![](_page_17_Picture_3.jpeg)

# Nuisance effects /parameters

- instrumental resolution
- instrumental noise
- "continuum" fitting
- strong absorbers
- metal absorbers
- mean flux has to be measured/assumed alternatively photoionization rate has to be measured/assumed
- thermal broadening (instantaneous temperature)
- Jeans smoothing (integrated energy input)
- spatial variations of the above
- anchoring at large scales
- cosmological parameters
- shape of cut-off in DM transfer function is not generic
- corrections for box size and resolution
- missing physics in the simulations
- interpolation errors in sparsely sampled parameter space

![](_page_18_Picture_16.jpeg)

![](_page_18_Picture_17.jpeg)

# Reionization – later than thought

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_20_Figure_0.jpeg)

The large fluctuations of the optical depth extend to surprisingly large scales.

Are there still large completely neutral regions even at z~5.5?

![](_page_20_Figure_3.jpeg)

![](_page_20_Picture_4.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

Chardin et al. 17

### Opacity fluctuation on large scales $\rightarrow$ QSOs? Are there enough QSOs? Helium reionization too early?

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_6.jpeg)

# LARGE OPACITY VARIATIONS IN THE HIGH-REDSHIFT LY $\alpha$ FOREST: THE SIGNATURE OF RELIC TEMPERATURE FLUCTUATIONS FROM PATCHY REIONIZATION

ANSON D'ALOISIO<sup>1†</sup>, MATTHEW MCQUINN<sup>1</sup>, & HY TRAC<sup>2</sup> Draft version December 2, 2015

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

Adiabatic cooling following very high initial temperatures + extended reionization with wide spread of reionization redshifts = large opacity fluctuations

For realistic assumptions temperature fluctuations are not large enough for this to work.

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)

# Later than thought

![](_page_23_Figure_1.jpeg)

![](_page_23_Picture_2.jpeg)

The end of reionization in our new simulation is significantly later than  $z\sim6$ , with large islands of neutral hydrogen persisting until  $z\leq 5.5$ .

![](_page_23_Picture_4.jpeg)

Large Lyman- $\alpha$  opacity fluctuations and low CMB  $\tau$  in models of late reionization with large islands of neutral hydrogen extending to z < 5.5

Girish Kulkarni<sup>1,2\*</sup>, Laura C. Keating<sup>3</sup>, Martin G. Haehnelt<sup>1,2</sup>, Sarah E. I. Bosman<sup>4</sup>, Ewald Puchwein<sup>1,2</sup>, Jonathan Chardin<sup>5</sup> and Dominique Aubert<sup>5</sup>

![](_page_24_Figure_2.jpeg)

### The new simulation agrees with the $Ly\alpha$ forest opacity data very well.

![](_page_24_Picture_4.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

MNRAS 514, 55–76 (2022)

![](_page_26_Picture_2.jpeg)

# Hydrogen reionization ends by z = 5.3: Lyman- $\alpha$ optical depth measured by the XQR-30 sample

Sarah E. I. Bosman<sup>®</sup>, <sup>1</sup>\* Frederick B. Davies<sup>®</sup>, <sup>1</sup> George D. Becker<sup>®</sup>, <sup>2</sup> Laura C. Keating<sup>®</sup>, <sup>3</sup> Rebecca L. Davies, <sup>4,5</sup> Yongda Zhu<sup>®</sup>, <sup>2</sup> Anna-Christina Eilers<sup>®</sup>, <sup>6</sup>† Valentina D'Odorico<sup>®</sup>, <sup>7,8</sup> Fuyan Bian, <sup>9</sup> Manuela Bischetti, <sup>7,10</sup> Stefano V. Cristiani<sup>®</sup>, <sup>7</sup> Xiaohui Fan, <sup>11</sup> Emanuele P. Farina<sup>®</sup>, <sup>12</sup> Martin G. Haehnelt, <sup>13,14</sup> Joseph F. Hennawi<sup>®</sup>, <sup>15,16</sup> Girish Kulkarni<sup>®</sup>, <sup>17</sup> Andrei Mesinger<sup>®</sup>, <sup>8</sup> Romain A. Meyer, <sup>1</sup> Masafusa Onoue, <sup>1</sup> Andrea Pallottini<sup>®</sup>, <sup>7</sup> Yuxiang Qin<sup>®</sup>, <sup>18,5</sup> Emma Ryan-Weber<sup>®</sup>, <sup>4,5</sup> Jan-Torge Schindler<sup>®</sup>, <sup>1,16</sup> Fabian Walter<sup>®</sup>, <sup>1</sup> Feige Wang<sup>®11</sup>† and Jinyi Yang<sup>®11</sup>

THE ASTROPHYSICAL JOURNAL, 923:223 (23pp), 2021 December 20 © 2021. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ac26c2

![](_page_26_Picture_7.jpeg)

# Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly $\alpha$ Forest over 5 < z < 6

Yongda Zhu<sup>1</sup><sup>(b)</sup>, George D. Becker<sup>1</sup><sup>(b)</sup>, Sarah E. I. Bosman<sup>2</sup><sup>(b)</sup>, Laura C. Keating<sup>3</sup><sup>(b)</sup>, Holly M. Christenson<sup>1</sup><sup>(b)</sup>, Eduardo Bañados<sup>2</sup><sup>(b)</sup>, Fuyan Bian<sup>4</sup><sup>(b)</sup>, Frederick B. Davies<sup>2</sup><sup>(b)</sup>, Valentina D'Odorico<sup>5,6,7</sup><sup>(b)</sup>, Anna-Christina Eilers<sup>8,14</sup><sup>(b)</sup>, Xiaohui Fan<sup>9</sup><sup>(b)</sup>, Martin G. Haehnelt<sup>10</sup><sup>(b)</sup>, Girish Kulkarni<sup>11</sup><sup>(b)</sup>, Andrea Pallottini<sup>6</sup><sup>(b)</sup>, Yuxiang Qin<sup>12,13</sup><sup>(b)</sup>, Feige Wang<sup>9,14</sup><sup>(b)</sup>, and Linyi Vang<sup>9,15</sup><sup>(b)</sup>

THE ASTROPHYSICAL JOURNAL, 932:76 (15pp), 2022 June 20 © 2022. The Author(s). Published by the American Astronomical Society. OPENACCESS

#### https://doi.org/10.3847/1538-4357/ac6e60

![](_page_26_Picture_12.jpeg)

# Long Dark Gaps in the Ly $\beta$ Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra

Yongda Zhu<sup>1</sup><sup>(b)</sup>, George D. Becker<sup>1</sup><sup>(b)</sup>, Sarah E. I. Bosman<sup>2</sup><sup>(b)</sup>, Laura C. Keating<sup>3</sup><sup>(b)</sup>, Valentina D'Odorico<sup>4,5,6</sup><sup>(b)</sup>, Rebecca L. Davies<sup>7,8</sup><sup>(b)</sup>, Holly M. Christenson<sup>1</sup><sup>(b)</sup>, Eduardo Bañados<sup>2</sup><sup>(b)</sup>, Fuyan Bian<sup>9</sup><sup>(b)</sup>, Manuela Bischetti<sup>4</sup><sup>(b)</sup>, Huanqing Chen<sup>10</sup><sup>(b)</sup>, Frederick B. Davies<sup>2</sup><sup>(b)</sup>, Anna-Christina Eilers<sup>11,17</sup><sup>(b)</sup>, Xiaohui Fan<sup>12</sup><sup>(b)</sup>, Prakash Gaikwad<sup>2</sup><sup>(b)</sup>, Bradley Greig<sup>8,13</sup><sup>(b)</sup>, Martin G. Haehnelt<sup>14</sup><sup>(b)</sup>, Girish Kulkarni<sup>15</sup><sup>(b)</sup>, Samuel Lai<sup>16</sup><sup>(b)</sup>, Andrea Pallottini<sup>5</sup><sup>(b)</sup>, Yuxiang Qin<sup>8,13</sup><sup>(b)</sup>, Emma V. Ryan-Weber<sup>7,8</sup><sup>(b)</sup>, Fabian Walter<sup>2</sup><sup>(b)</sup>, Feige Wang<sup>12,17</sup><sup>(b)</sup>, and Jinyi Yang<sup>12,18</sup><sup>(b)</sup>

![](_page_26_Picture_15.jpeg)

![](_page_26_Picture_16.jpeg)

# XQR30: a new measurement of the Lyman-alpha opacity

![](_page_27_Figure_1.jpeg)

# Improved data quality and analysis

![](_page_27_Figure_3.jpeg)

#### Bosman et al 2022

![](_page_27_Figure_5.jpeg)

Good agreement with data from Bosman et al. 2018 and modelling from Keating et al. 2020

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

## XQR30: a new measurement of the dark gap statistics

#### Zhu et al 2021,2022

![](_page_28_Figure_2.jpeg)

![](_page_28_Figure_3.jpeg)

Good agreement with late-end reionization models

![](_page_28_Picture_5.jpeg)

![](_page_28_Picture_6.jpeg)

# The Sherwood-Relics simulations: overview and impact of patchy reionization and pressure smoothing on the intergalactic medium

Ewald Puchwein<sup>1\*</sup>, James S. Bolton<sup>2</sup>, Laura C. Keating<sup>1</sup>, Margherita Molaro<sup>2</sup>, Prakash Gaikwad<sup>3</sup>, Girish Kulkarni<sup>4</sup>, Martin G. Haehnelt<sup>5</sup>, Vid Iršič<sup>5</sup>, Tomáš Šoltinský<sup>2</sup>, Matteo Viel<sup>6,7,8,9</sup>, Dominique Aubert<sup>10</sup>, George D. Becker<sup>11</sup> and Avery Meiksin<sup>12</sup>

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **509**, 6119–6137 (2022) Advance Access publication 2021 November 26

![](_page_29_Picture_4.jpeg)

https://doi.org/10.1093/mnras/stab3416

# The effect of inhomogeneous reionization on the Lyman $\alpha$ forest power spectrum at redshift z > 4: implications for thermal parameter recovery

Margherita Molaro<sup>(b)</sup>,<sup>1</sup>\* Vid Iršič,<sup>2</sup> James S. Bolton<sup>(b)</sup>,<sup>1</sup> Laura C. Keating<sup>(b)</sup>,<sup>3</sup> Ewald Puchwein<sup>(b)</sup>,<sup>3</sup> Prakash Gaikwad<sup>(b)</sup>,<sup>2</sup> Martin G. Haehnelt,<sup>2</sup> Girish Kulkarni<sup>(b)</sup> and Matteo Viel<sup>5,6,7,8</sup>

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

# Full hydro-simulations incorporating reionization:

### Post-processed RT with ATON

![](_page_30_Figure_2.jpeg)

The Sherwood-Relics simulations suite

### Full Hydro with Inhomogeneous Reionization

![](_page_30_Figure_4.jpeg)

#### Puchwein et al. 2023

# KICC

![](_page_30_Picture_7.jpeg)

## The Sherwood-Relics simulation suite

![](_page_31_Figure_1.jpeg)

Puchwein et al. 2023, Molaro et al. 2022

Fluctuations of the temperature density relation on rather large scales  $\rightarrow$  increased flux power on large scales

Jeans smoothing on small scales due to integrated energy input which depends on reionization history. Complex interplay with thermal broadening which depends on instantaneous temperature.

![](_page_31_Picture_5.jpeg)

c.f. Keating et al. 2018 Wu et al. 2020

![](_page_31_Picture_7.jpeg)

# Pressure smoothing in action

![](_page_32_Figure_1.jpeg)

Puchwein et al. submitted

![](_page_32_Picture_3.jpeg)

Overdense regions become overpressured and expand when they become ionized.

![](_page_32_Picture_6.jpeg)

## IGM Temperature measurements are getting accurate (and consistent)

![](_page_33_Figure_1.jpeg)

Gaikwad et al. 2021:

![](_page_33_Figure_3.jpeg)

### Gaikwad et al. 2020:

- 4 different flux statistics agree well
- based on 103/296 Keck/HIRES spectra from the KODIAQ sample
- careful modeling of the observed sample for finely spaced parameter grid in  $T_{\rm o}$  and  $\gamma$

new consistent measurement of IGM temperature at 5.3<z<5.9 by characterising width of transmission spikes in high S/N high resolution spectra with novel technique

![](_page_33_Picture_9.jpeg)

## A new measurement of the high-redshift flux power spectrum

![](_page_34_Figure_1.jpeg)

15 high-quality spectra

extends to higher redshift and to smaller scales

![](_page_34_Picture_4.jpeg)

A piece of art

### Spatial variations of the temperature-density relation

![](_page_35_Figure_1.jpeg)

Noticable effect on the flux power spectrum, but well within the errors.

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)

Effects of Photoionization and Photoheating on Lyman- $\alpha$  Forest Properties from Cholla Cosmological Simulations

Bruno Villasenor,<sup>1</sup> Brant Robertson,<sup>1</sup> Piero Madau,<sup>1</sup> and Evan Schneider<sup>2</sup>

<sup>1</sup>Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA <sup>2</sup>Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

# Inferring the Thermal History of the Intergalactic Medium from the Properties of the Hydrogen and Helium Lyman- $\alpha$ Forest

BRUNO VILLASENOR,<sup>1</sup> BRANT ROBERTSON,<sup>1</sup> PIERO MADAU,<sup>1</sup> AND EVAN SCHNEIDER<sup>2</sup>

<sup>1</sup>Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA <sup>2</sup>Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA

#### New Constraints on Warm Dark Matter from the Lyman- $\alpha$ Forest Power Spectrum

Bruno Villasenor <sup>(b)</sup>,<sup>\*</sup> Brant Robertson <sup>(b)</sup>, and Piero Madau <sup>(b)</sup> Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 USA

Evan Schneider Department of Physics and Astronomy & Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260, USA (Dated: September 29, 2022)

![](_page_36_Picture_9.jpeg)

![](_page_36_Picture_10.jpeg)

# Visualising the free-streaming of dark matter

![](_page_37_Figure_1.jpeg)

RICC

Villasenor et al. 2022

![](_page_37_Picture_4.jpeg)

![](_page_38_Figure_0.jpeg)

Villasenor et al. 2022

# Signature of gas peculiar velocities?

An intriguing peak in the likelihood for the WDM mass if the smallest scales are included.

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

Villasenor et al. 2022

![](_page_39_Figure_1.jpeg)

# The data prefers a reasonable thermal history

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_4.jpeg)

#### Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest

Keir K. Rogers<sup>1,\*</sup> and Hiranya V. Peiris<sup>2,1,†</sup>

<sup>1</sup>Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova University Center, Stockholm 10691, Sweden

<sup>2</sup>Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

(Received 7 August 2020; revised 18 November 2020; accepted 22 December 2020; published 19 February 2021)

![](_page_40_Figure_6.jpeg)

![](_page_40_Picture_7.jpeg)

The axion limit corresponds to about 10keV for a thermal relic, but shape of transfer function is different and that matters.

![](_page_40_Picture_9.jpeg)

# Nuisance effects /parameters

- instrumental resolution
- instrumental noise
- "continuum" fitting
- strong absorbers
- metal absorbers
- mean flux has to be measured/assumed alternatively photoionization rate has to be measured/assumed
- thermal broadening (instantaneous temperature)
- Jeans smoothing (integrated energy input)
- spatial variations of the above
- anchoring at large scales
- cosmological parameters
- shape of cut-off in DM transfer function is not generic
- corrections for box size and resolution
- missing physics in the simulations
- interpolation errors in sparsely sampled parameter space

![](_page_41_Picture_16.jpeg)

![](_page_41_Picture_17.jpeg)

# Summary

- Good progress with characterising thermal evolution of IGM.
   Quantitative modelling of the effect of helium reionization still on to do list.
- Evidence is building for rather late reionization
  - → spatial fluctuations of temperature-density relation and photoionization rate more pronounced.
- Exciting new data and more to come. Lyman-alpha forest data and its analysis is (rapidly) improving.
- Modeling of systematic uncertainties is lagging behind improvement of the data.

![](_page_42_Picture_6.jpeg)

# ANDES @ ELT

![](_page_43_Figure_1.jpeg)

![](_page_43_Picture_2.jpeg)

![](_page_43_Picture_3.jpeg)

![](_page_43_Picture_4.jpeg)

![](_page_43_Picture_5.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_44_Picture_1.jpeg)

Gaikwad et al. in preparation

KITP, 9 March 2023

IOA