2023 KITP

Feburary 16th, 2023

Submitted to ApJ Arxiv: 2211.00931

Translators of galaxy morphology indicators

between observation and simulation

J. K. Jang (PhD student) Yonsei University

Photometric Decomposition

Using profile fitting:

- Exponential disk
- Classical/pseudobulge

 \rightarrow (B/T) or (D/T)

Yin et al. (2014)

Photometric Decomposition

Using profile fitting:

- Exponential disk
- Classical/pseudobulge

\rightarrow (B/T) or (D/T)

Yin et al. (2014)

Zhu et al. (2018)

What about in numerical simulation?

fow can we define the morphology of the simulated galaxy?

- We have (almost) every kinematic information of the particles!
 - V/σ
 - Kappa parameter (κ_{rot})

$$\kappa_{\rm rot} = \frac{K_{\rm rot}}{K} = \frac{1}{K} \sum_{i} \frac{1}{2} m_i \left(\frac{j_{z,i}}{R_i}\right)^2$$

• Circularity parameter ($\epsilon = j_z/j_{cir}$)

- We have (almost) every kinematic information:
 - V/σ
 - Kappa parameter (κ_{rot})

$$\kappa_{\rm rot} = \frac{K_{\rm rot}}{K} = \frac{1}{K} \sum_{i} \frac{1}{2} m_i \left(\frac{j_{z,i}}{R_i}\right)^2$$

• Circularity parameter ($\epsilon = j_z/j_{cir}$)

How well the visual or morphology classification t races the kinematics of the galaxies?

In simulation, all the kinematic properties are available:

In observation, especially for photometry,

//The comparison between kinematically & photometrically defined morphology:

In simulation, all the kinematic properties are available:

In observation, especially for photometry,

A huge discrepancy between the photometric D/T and the kinematic D/T:

In simulation, all the kinematic properties are available:

In observation, especially for photometry,

A huge discrepancy between the photometric D/T and the kinematic D/T:

NewHorizon simulation

IAP-Oxford-Yonsei collaboration

- High resolution cosmological zoom-in simulation
- 10 Mpc radius sphere (214 galaxies > 1e9 M_{\odot} at z ~ 0.17)
- Resolution :
 - $dx_{min} \sim 34 \text{ pc}$, $dm_{star} \sim 1e4 \text{ M}_{\odot}$, $dm_d \sim 1e6 \text{ M}_{\odot}$
- Including:
 - Radiative cooling & heating
 - Feedback from massive stars (Type II SN)
 - MBH formation
 - AGN Feedback (radio/quasar mode)

Dubois et al. (2021) Fig.1

$\begin{array}{l} \text{IllustrisTNG (} \\ \Delta x \sim 300 \text{ pc} \end{array}$

Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only
	, de la	and the second s	All
Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only
Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only
- Million	C. H. B. C.		

NewHorizon ($\Delta x \sim 30 \text{ pc}$)

$\begin{array}{l} \text{IllustrisTNG (} \\ \Delta x \sim 300 \text{ pc)} \end{array}$

Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only
Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only
Transparent (No Dust)	Total (Direct + Scattered)	Direct (Attenuation Only)	Scattered Only

- $10^{9.5} M_{\odot} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

- We assumed that the gas cells with the temperature T < 10,000 K contain the dust mixture
- We assumed Zubko et al. (2004) dust model for calculation
- We used fixed dust-to-metal ratio as 0.3
- We used adaptive scheme for the number of the photon packet

BEFORE

 $M_{\rm dust} = M_{\rm cell} \times Z \times f_{\rm dust}$

- $10^{9.5} M_{\odot} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

- We assumed that the gas cells with the temperature T < 10,000 K contain the dust mixture
- We assumed Zubko et al. (2004) dust model for calculation
- We used fixed dust-to-metal ratio as 0.3
- We used adaptive scheme for the number of the photon packet

AFTER

 $M_{\rm dust} = M_{\rm cell} \times Z \times f_{\rm dust}$

- $10^{9.5} M_{\odot} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

Kinematic Decomposition

3-dimensional phase-space

ML Clustering (Gaussian Mixture Model; GMM)

> Spectroscopic Parameter

1. 2. З.

- $10^{9.5} \,\mathrm{M_{\odot}} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

Kinematic Decomposition

3-dimensional phase-space

ML Clustering (Gaussian Mixture Model; GMM)

> Spectroscopic Parameter

 $\boldsymbol{j_z} / \boldsymbol{j_{cir}}(\boldsymbol{e})$

rotating component of the angular momentum

- $10^{9.5} \,\mathrm{M_{\odot}} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

Kinematic Decomposition

3-dimensional phase-space

ML Clustering (Gaussian Mixture Model; GMM)

> Spectroscopic Parameter

 $j_z / j_{cir}(e)$

 $j_p / j_{cir}(e)$

rotating component

remaining component of the angular momentum

- $10^{9.5} M_{\odot} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging

Multi-component Sersic profile

Kinematic Decomposition

3-dimensional phase-space

ML Clustering (Gaussian Mixture Model; GMM)

> Spectroscopic Parameter

j_z / j_{cir}(e) j_p / j_{cir}(e)

 $e / |e_{max}|$

rotating component

remaining component

specific binding energy (KE+PE)

- $10^{9.5} M_{\odot} < M_{*}$
- At 3 different redshift (0.70, 0.30, 0.17)
- Exclude irregular/interacting galaxies

Photometric Decomposition

Mock imaging Multi-component Sersic profile

Kinematic Decomposition

3-dimensional phase-space

ML Clustering (Gaussian Mixture Model; GMM)

> Spectroscopic Parameter

j_z / j_{cir}(e) j_p / j_{cir}(e) e / |e_{max}|

Photometric Decomposition

Mock imaging Multi-component Sersic profile

J. K. Jang

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

- $N_{group} = 4 15$
 - → we assume that 6 is the minimum value for successfully identifying the intrinsic structure of the galaxies.

$$\rightarrow N_{group} = 6$$

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

• $N_{group} = 4 - 15$

→ we assume that 6 is the minimum value for successfully identifying the intrinsic structure of the galaxies.

$$\rightarrow N_{group} = 6$$

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

• $N_{group} = 4 - 15$

→ we assume that 6 is the minimum value for successfully identifying the intrinsic structure of the galaxies.

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

• $N_{group} = 4 - 15$

→ we assume that 6 is the minimum value for successfully identifying the intrinsic structure of the galaxies.

$$\rightarrow N_{group} = 6$$

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

starbrown816@yonsei.ac.kr

Edge-on

17.5 kpc

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

J. K. Jang

3-dimensional phase-space $(J_z/J_{cir}(E), J_p/J_{cir}(E), E/|E_{max}|)$

ML Clustering (Gaussian Mixture Model; GMM)

J. K. Jang

٠

At least containe	5 stellar particles ed in 1 Voronoi cel

- Measured at 3 different inclination (30, 60, and 90 deg)
- Using the values ٠ at the effective radius (R_{eff})

15 kpc

(km/s) 100 200

10

velocity

-200 -100 0

15 kpc

15 kpc

 λ_R

0.8 0.6 0.4

15 kpc

15 kpc (km/s 200 100 10

At 3 different redshift (0.70, 0.30, 0.17)

Galaxy Sample

 $10^{9.5} \,\mathrm{M_{\odot}} < M_{*}$

٠

٠

Exclude irregular/interacting ٠ galaxies

Spectroscopic Parameter

Voronoi Tesselation

Spin Parameter

Result

(finally!)

J. K. Jang

Photometric Decompositio

The $\lambda_{R,e}$ spin parameter and $(V/\sigma)_e$

show a tight correlations with the kinematic Disk-to-Total ratio

J. K. Jang

Summary

- The kinematic disk-to-total ratio reasonably agrees with visual inspection
- The spectroscopic parameters exhibited tight correlations with the kinematic disk-to-total ra tio.
 - The λ_R spin parameter indicated correlation coefficients in the range of 0.7–0.8, depending on the inclinations. Similarly-good correlations were found for V/ σ .

Summary

J. K. Jang

- The photometric disk-to-total ratio showed a poor correlation with the kinematic ratio, and a substantial offset existed.
- The photometric decomposition failed to accurately recover the structural composition of g alaxies, which seemed more serious for low-mass galaxies that are often classified as pure disks.
- While the offsets did not change much, the correlation between the kinematic and photometric disk-to-total ratios became substantially stronger if we removed the low mass galaxies.

Thank you!