Constraining Feedback and Dust at z ≈ 1 using Microwave Observations

> Evan Scannapieco Arizona State University



# Antihierarchical Evolution-"Downsizing"



Arnouts etal (2005)

#### **Active Black Hole Evolution Over Time**



Redshift

## AGN host jets and winds, but overall energy Input history is still largely unknown

Ground-Based Optical/Radio Image

HST Image of a Gas and Dust Disk



17 Arc Seconds 400 LIGHT-YEARS

HST/NASA/ESA

380 Arc Seconds 88,000 LIGHT-YEARS

# ES & Oh (2004) model

- Assume some small fraction,  $\epsilon_k=0.05$  of an active black hole's luminosity is converted to mechanical input
- Energy deposited as heat into surrounding medium (Sedov-Taylor blast wave).
- Clustering between halos from Scannapieco & Barkana (2002) extension of Kaiser (1984), Bond et al. (1991), Lacey & Cole (1993), Mo & White (1996), etc..
- Post-shock entropy of the IGM directly impacts growth of further generations.

# ES & Oh (2004) model



# Downsizing



ES & Oh (2004) ES, Silk, & Bouwens (2005)

# **Full Numerical Simulation**

- OpenMP version of the 'Hydra' SPH code
- ▶ 146 cMpc/h box,  $2x640^3$  particles, to z=1.2
- ► 2x 640<sup>3</sup> particles (2E8 Msun baryonic mass)
- Largest SPH simulation ever carried out at that time
- AGN are associated with mergers,
- ASSUME 5% of energy in light goes into outflows =>bursty, high energy input



#### **Quasar Luminosity Function**



Thacker, ES & Couchman (2006)

#### <u>ASSUME 5% of energy in light goes into outflows</u>



# **Thermal Sunyaev Zel'dovich Effect**

Signal α Gas Density Along Sightline × Temperature Along Sightline = Pressure Along Sightline



#### 1.1 degree



#### 6 arcmin



### ES, Thacker, & Couchman (2008)





# **Selection and Sample**

Seth Cohen



 $2,100 \text{ deg}^2$ ,  $5,000 \text{ deg}^2$ ,  $18,000 \text{ deg}^2$ 



age > 1 Gyr , SSFR < 0.01 Gyr<sup>-1</sup>

| Catalog           | Ν      | z    | $\log_{10}(\overline{M_{\star}}/M_{\odot})$ |
|-------------------|--------|------|---------------------------------------------|
| SPT + ACT Overlap | 94452  | 1.06 | 11.41                                       |
| ACT Only          | 387627 | 1.07 | 11.44                                       |



# **Selection and Sample**



age > 1 Gyr , SSFR < 0.01  $Gyr^{-1}$ 

| Catalog           | Ν      | z    | $\log_{10}(\overline{M_{\star}}/M_{\odot})$ |
|-------------------|--------|------|---------------------------------------------|
| SPT + ACT Overlap | 94452  | 1.06 | 11.41                                       |
| ACT Only          | 387627 | 1.07 | 11.44                                       |



## Stacked Signals in the Overlap Region





### Two Component Fitting to Dust and tSZ

Jeremey Meinke



 $\beta = 1.75 \pm 0.25$  and  $T_{dust} = 20 \pm 5$  K



Jeremey Meinke











#### Jeremey Meinke

#### **Stacked Dust Profiles**





# SIMBA

- MPI version of the GIZMO meshless code
- 100 cMpc/h box,  $2 \times 1024^3$  particles, to z=0 (2E7 Msun)
- Includes updates to Mufasa's sub-resolution star formation and feedback prescriptions.
- AGN are associated torque limited accretion (cold) / Bondi accretion (hot).
- 3-25% of energy in light goes into outflows depending  $L_{edd}$



#### Davé et al (2019)



## ToITEC / Large Millimeter Telescope (LMT)

50-m diameter single dish telescope
Located at 15,000 ft (4672 m)
Site on Sierra Negra in Puebla, MX
Facility first light in 2011







# Installing ToITEC











R. Gutermuth

N. Denigris

N. Denigris



# Conclusions

