Caustics as the Natural Boundaries
 of the Simulated Dark Matter Web

Sergei Shandarin

Introduction

Zeldovich Approximation (1970)

1 Gravitational Instability

1.1 The Transformation Excluding the Expansion of the Universe

Comoving coordinates, \mathbf{x}, and peculiar velocities, \mathbf{v}_{p}, are defined

$$
\begin{gather*}
\mathbf{x}=\frac{1}{a(t)} \mathbf{r} \tag{1}\\
\mathbf{v}_{p}=\mathbf{v}-H(t) \mathbf{r}=a(t) \frac{d \mathbf{x}}{d t} \tag{2}
\end{gather*}
$$

where $a(t)=(1+z)^{-1}$ is the scale factor, assuming the normalization: $a($ present time $)=1$; $H(t)=\dot{a} / a$ is the Habble parameter $\left(H(\right.$ present time $\left.)=H_{0}=100 \mathrm{hkm} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}\right)$.

Assuming the $\Lambda=0$ universe and $p=0$, the density $\rho(\mathbf{x}, t)$, peculiar velocities $\mathbf{v}_{p}(\mathbf{x}, t)$, and the perturbation of the gravitational potential $\phi(\mathbf{x}, t)$ are coupled by three nonrelativistic equations

$$
\begin{gather*}
\frac{\partial \rho}{\partial t}+\frac{1}{a} \nabla \cdot\left(\rho \mathbf{v}_{p}\right)=-3 H \rho \tag{3}\\
\frac{\partial \mathbf{v}_{p}}{\partial t}+\frac{1}{a}\left(\mathbf{v}_{p} \cdot \nabla\right) \mathbf{v}_{p}=-\frac{1}{a} \nabla \phi-H \mathbf{v}_{p} \tag{4}\\
\frac{1}{a^{2}} \nabla^{2} \phi=4 \pi G(\rho-\bar{\rho}) \tag{5}
\end{gather*}
$$

where $\bar{\rho}=\bar{\rho}(t)$ is the mean density.

Changing the variable from t to $D \equiv D_{g}(t)$ and rescaling the density, peculiar velocity and perturbation of the gravitational potential
one easily obtains

$$
\begin{gather*}
\eta=a^{3} \rho, \tag{6}\\
\mathbf{v}=(a \dot{D})^{-1} \mathbf{v}_{p}=\dot{D}^{-1} \frac{d \mathbf{x}}{d t}=\frac{d \mathbf{x}}{d D} \tag{9}\\
\varphi=\left(\frac{3}{2} \Omega_{0} \dot{a}^{2} D\right)^{-1} \phi . \\
\frac{\partial \eta}{\partial D}+\frac{\partial\left(\eta v_{i}\right)}{\partial x_{i}}=0, \\
\frac{\partial v_{i}}{\partial D}+v_{k} \frac{\partial v_{i}}{\partial x_{k}}=-\frac{3}{2} \frac{\Omega_{0}}{D f^{2}}\left(\frac{\partial \varphi}{\partial x_{i}}+v_{i}\right), \\
\frac{\partial^{2} \varphi}{\partial x_{i}^{2}}=\frac{\delta}{D}
\end{gather*}
$$

where $f(t)=d \ln D / d \ln a, \delta=(\eta-\bar{\eta}) / \bar{\eta}=(\rho-\bar{\rho}) / \bar{\rho}$ and summation over dummy indices is assumed.

1.2 Zel'dovich Approximation

Assuming that the linear relatior $\partial \varphi / \partial x_{i}=-v_{i}$ approximately holds in the nonlinear regime one obtains the set of equations

Equation 13 has an obvious solution

$$
\begin{equation*}
\mathbf{x}(\mathbf{q}, D)=\mathbf{q}+D \mathbf{v}_{0}(\mathbf{q}) \tag{15}
\end{equation*}
$$

where $\mathbf{v}_{0}(\mathbf{q})$ is the initial velocity feld. The velocity field remai as constant in the Lagrangian space

$$
\begin{equation*}
\mathbf{v}(\mathbf{q}, D)=\mathbf{v}_{0}(\mathbf{q}) \tag{16}
\end{equation*}
$$

but obviously changes with time in the Eulerian space.

Zel'dovich derived the density from the conservation of mass

(3) In the limit $\left|D \lambda_{i}\right| \ll 1$ eq. 12 gives the density contrast known from the linear theory

$$
\begin{equation*}
\delta(\mathbf{q}, D) \approx D \frac{\partial v_{0 j}}{\partial q_{j}}=D\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \tag{19}
\end{equation*}
$$

I showed that the density can be also drived from the Poisson equation (14) (Doroshkevich, Ryabenki \& Shandarin 1973)

$$
\begin{equation*}
\tilde{\eta}(\mathbf{q}, D)=\frac{\bar{\eta}}{\left(1-D \lambda_{1}\right)\left(1-D \lambda_{2}\right)\left(1-D \lambda_{3}\right)}\left(1-D^{2} I_{2}+2 D^{3} I_{3}\right) \tag{20}
\end{equation*}
$$

If the Zel'dovich solution was exact both would give the same result: $\eta=\tilde{\eta}$.
Obviously η only approximatly equal to $\tilde{\eta}$

$$
\begin{equation*}
\frac{\tilde{\eta}}{\eta}=1-D^{2} I_{2}+2 D^{3} I_{3} \tag{21}
\end{equation*}
$$

but the ratio $\tilde{\eta} / \eta$ remains finite even at $\eta \rightarrow \infty$ and $\tilde{\eta} \rightarrow \infty$.

1.3 Eigen Values and Invariants

The joint probability distribution of an ordered set of eigenvalues $\lambda_{1}>\lambda_{2}>\lambda_{3}$, corresponding to a Gaussian field

$$
\begin{equation*}
P\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{675 \sqrt{5}}{8 \pi \sigma_{\delta}^{6}}\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{3}\right) \exp \left(\frac{-6 I_{1}^{2}+15 I_{2}}{2 \sigma_{\delta}^{2}}\right) \tag{22}
\end{equation*}
$$

where $I_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}$ and $I_{2}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}$ are the invariants of the deformation tensor; the third invariant is $I_{3}=\lambda_{1} \lambda_{2} \lambda_{3}$. Some moments of the eigen values are

$$
\begin{gather*}
<\lambda_{1}>=-<\lambda_{3}>=\frac{3}{\sqrt{10 \pi}} \sigma_{\delta} \approx 0.53 \sigma_{\delta}, \quad<\lambda_{2}>=0 \tag{23}\\
<\lambda_{1}^{2}>=<\lambda_{3}^{2}>=\frac{13}{30} \sigma_{\delta}^{2} \approx 0.43 \sigma_{\delta}^{2}, \quad<\lambda_{2}^{2}>=\frac{2}{15} \sigma_{\delta}^{2} \approx 0.13 \sigma_{\delta}^{2} \tag{24}\\
<\lambda_{1} \lambda_{2}>=<\lambda_{2} \lambda_{3}>=\frac{1}{10} \sigma_{\delta}^{2}, \quad<\lambda_{1} \lambda_{3}>=-\frac{1}{5} \sigma_{\delta}^{2} \tag{25}\\
<\lambda_{1} \lambda_{2} \lambda_{3}>=0 \tag{26}
\end{gather*}
$$

The mean values of the invariants are

$$
\begin{equation*}
<I_{1}>=0, \quad<I_{2}>=0, \quad<I_{3}>=0 \tag{27}
\end{equation*}
$$

Zel'dovich Approximation (1970)

[] Generation of the initial conditions for cosmological N -body simulations (first time in Moscow in 1973, first time in US in 1983)
Key features of cosmic web predicted by ZA
I] Anisotropic collapse and anisotropic expansion: pancakes/walls (1970), filaments (1982), along with compact clumps and voids

(]) Full Set of Caustics (1982)

I] Connectivity of the Large-Scale structure (1975)

I] Multi-stream flows (1970)
(V) Anisotropic accretion of mass on clumps from filaments (1989) https://www.astro.rug.nl/~hidding/go/go.html

Virial theorem

$<T>+t$ is total kinetic energy averaged over time $<\mathrm{V}>$ _ t is total potential energy averaged over time Gravitational potential between two particle $\sim 1 / r$ results in $n=-1$
The system must have N_p = const

$$
\langle T\rangle_{\tau}=-\frac{1}{2} \sum_{k=1}^{N}\left\langle\mathbf{F}_{k} \cdot \mathbf{r}_{k}\right\rangle_{\tau}=\frac{n}{2}\left\langle V_{\mathrm{TOT}}\right\rangle_{\tau}
$$

First Evidences of Web
in Theory and Observations
(Z 1970)

25 years later: Hogan 2001

Shandarin 1974

Publications: Doroshkevich, Sunyev, Zeldovich 1975 Doroshkevich, Shandarin, 1978; Shandarin, Zeldovich 1989 Three or four publications by Einasto)

In DSZ publication the caption state that the plot was made by Shandarin

Initial conditions for 3D N-body simulations Doroshkevich, Rubenkiy, Shandaron 1973
Translated from Astrofizika, Vol. 9, No. 2, pp. 257-272, April-June, 1973.

Fig. 2.-(a) (left panel) Wedge diagram for all galaxies in our sample. The Supercluster is clearly seen at an average redshift of approximately $7000 \mathrm{~km} \mathrm{~s}^{-1}$. The distribution fig. 2.Supercluster The distance scale assumes $H_{0}=75 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, and the angular size of the survey has been magnified by approximately 2 times. (b) (right panel) An interpretive form of the wedge diagram.

Gregory, Thompson June 1978

N-body simulations

Shandarin 1981, Erici workshop

In The Origin and Evolution of Galaxies, Eds. B.J.T. Jones and J.E. Jones
(Reidel, Dordrecht), p. 171

Klypin, Shandarin 1983, MNRAS

"The region of high density seem to form
a single three-dimensional web structure"

CAUSTICS

(1) Density is formally infinite
(In reality density is discontinuous)
(2) Caustics separate regions with different number of streams

Zeldovich Approximation in 1D

Phase space

Density

L-space ZA E-space in 2D

Fig. 3

3444 J. Hidding, S. F. Shandarin and R. van de Weygaert

Figure 1. ZA: Lagrangian and Eulerian singularity structure. First panel: the Lagrangian skeleton that we find using the method presented in this paper. In dark red is the contour of the major eigenvalue corresponding to the time at which we plotted the Eulerian images that occupy the other three panels. Top-right panel: structural and singularity information from the first panel mapped to Eulerian space, as proscribed by the ZA. Bottom-left panel: density distribution in Eulerian space. Bottom-right panel: density field in Eulerian space, with the singularity outline superimposed (red edges).

Castics in 2D N-body simulations

Melott, Shandarin 1989

ZA E-space A - caustics in 3D
Arnold 1982

D - caustics in 3D

Caustics in 3D

J. Hidding, S. F. Shandarin and R. van de Weygaert

Caustic Structure of Filaments and Halos

Melot, Shandarin 1989

N-body simulation:
Np=256^3, L=100/h Mpc
Force res. $=0.8 / \mathrm{h} \mathrm{Mpc}$
k_cutoff $=4$ (2pi / L)
R_sphere $=20 \mathrm{Mpc} / \mathrm{h}$

Shandarin 2021

$$
\begin{gathered}
\text { Flip-flop : } \\
\text { Change of sign of } \\
\text { det(dx_i/dq_j) }
\end{gathered}
$$

Particles in 3D with number of flip-flops >0

Five distinct components (blue, magenta, green, yellow, and red) of the central caustic structure shown in bottom right of the previous slide

Caustics (in gray) inside of two red caustics

Slice by a plane through two convex red caustic shells

Eulerian space

Lagrangian space

Slice by an orthogonal plane through the middle of the structure
 (do not exist in Zeldovich approximation)

Slice by a plane through two convex red caustic shells

Slice by an orthogonal plane through the middle of the structure

Eulerian space

Slice by a plane through two convex red caustic shells

Slice by an orthogonal plane through the middle of the structure

Eulerian space

Lagrangian space

Caustics within a sphere of $R \sim 25 \mathrm{Mpc} / \mathrm{h}$

Velocities

speed

$4<=$ particles with flip-flops <= 7

Vir: $K=-E ; K=-P / 2=1 / 2$

Shape of the caustic boundary of the halo in E

5 slices parallel to
X, Y and Z axes
Black dots are particles with n_ff > 4

Slice thickness $\sim 0.1 \mathrm{Mpc} / \mathrm{h}$
Red contours are 2D convex hulls

Shape of the caustic boundary of the halo in L

Slice thickness $\sim 0.4 \mathrm{Mpc} / \mathrm{h}$

Three mutually orthogonal slices thought Delaunay tessellations of the both hallos in the dumbbell

Summary

(*) Caustics allow to study the shapes of the DM web in cosmological simulations without assumptions about their boundaries.

(*) The shapes of caustic are direct products to the complex gravitational dynamics in collisionless media.
(*) The dumbbell structure consisting of two halos connected by a filament is one of the most common structures occurring in N -body simulations.
(*) It demonstrates two cylindrical caustic shells. The radius of the internal shell has the diameter similar to the sizes of the halos attached on both sides.
(*) Both caustic tubes supply mass to the halos.
(*)The halos are neither spherical no ellipsoidal. However, there shapes look like convex hulles.
(*) The count of flip-flops provide additional indicator helping to sort out multistrim * Flows.
(*) There * are streems that are not gravitationally bound to halos

