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  in	
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What	
  is	
  super	
  in	
  superradiance?

• Superradiance	
  (superfluorescence)	
  ∝	
  N2	
  	
  

(parDcle	
  number)	
  
• Build-­‐up	
  of	
  collecDve	
  dipoles
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What	
  is	
  “superradiance”?
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1.	
  Everything	
  that	
  involves	
  Dicke	
  states	
  
- (e.g.,	
  collecDve	
  √N	
  effects,	
  
-bad-­‐cavity	
  limit,	
  
-…)	
  
2.	
  Only	
  systems	
  involving	
  cooperaDve	
  (and	
  
nonlinear)	
  effects	
  
- i.e.,	
  effect	
  of	
  exchange	
  interacDon	
  
-more	
  than	
  single	
  excitaDon

only for purists



QuesDons	
  -­‐	
  guideline

• Superradiance	
  -­‐	
  What?	
  Why?	
  
• How	
  do	
  we	
  calculate	
  it	
  (beber)?	
  
• Is	
  there	
  a	
  collecDve	
  (Lamb)	
  shid?	
  	
  
• How	
  does	
  entanglement	
  come	
  into	
  the	
  
picture?
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QuesDons	
  -­‐	
  guideline

• Superradiance	
  -­‐	
  What?	
  Why?
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so	
  far…
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• ideal	
  (Dicke)	
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Coherence in Spontaneous Radiation Processes
R. H. DICKE
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JANUARY i, 19&4

By considering a radiating gas as a single quantum-mechanical system, energy levels corresponding to
certain correlations between individual molecules are described. Spontaneous emission of radiation in a
transition between two such levels leads to the emission of coherent radiation. The discussion is limited erst
to a gas of dimension small compared with a wavelength. Spontaneous radiation rates and natural line
breadths are calculated. For a gas of large extent the effect of photon recoil momentum on coherence is
calculated. The effect of a radiation pulse in exciting "super-radiant" states is discussed. The angular corre-
lation between successive photons spontaneously emitted by a gas initially in thermal equilibrium is calcu-
lated.

" 'N the usual treatment of spontaneous radiation by.- a gas, the radiation process is calculated as though
the separate molecules radiate independently of each
other. To justify this assumption it might be argued
that, as a result of the large distance between molecules
and subsequent weak interactions, the probability of a
given molecule emitting a photon should be independent
of the states of other molecules. It is clear that this
model is incapable of describing a coherent spontaneous
radiation process since the radiation rate is proportional
to the molecular concentration rather than to the square
of the concentration. This simplified picture overlooks
the fact that all the molecules are interacting with a
common radiation field and hence cannot be treated as
independent. The model is wrong in principle and many
of the results obtained from it are incorrect.
A simple example will be used to illustrate the inade-

quacy of this description. Assume that a neutron is
placed in a uniform magnetic field in the higher energy
of the two spin states. In due course the neutron will
spontaneously radiate a photon via a magnetic dipole
transition and drop to the lower energy state. The prob-
ability of 6nding the neutron in its upper energy state
falls exponentially to zero. ' '
If, now, a neutron in its ground state is placed near the

first excited neutron (a distance small compared with a
radiation wavelength but large compared with a particle
wavelength and such that the dipole-dipole interaction
is negligible), the radiation process would, according to
the above hypothesis of independence, be unaGected.
Actually, the radiation process would be strongly
affected. The initial transition probability would be the
same as before but the probability of finding an excited
neutron would fall exponentially to one-half rather than
to zero.
The justification for these assertions is the following:

The initial state of the neutron system 6nds neutron 1
excited and neutron 2 unexcited. (It is assumed that
the particles have nonoverlapping space functions, so
that particle symmetry plays no role. ) This initial
state may be considered to be a superposition of the
'W. Heitler, The Qttantnm Theory of Radiation (Clarendon

Press, Oxford, 1936), Grst edition, p. 112.' E. P. signer and V. Weisskopf, Z. Physik 63, 54 (1930).

triplet and singlet states of the particles. The triplet
state is capable of radiating to the ground state (triplet)
but the singlet state will not couple with the triplet
system. Consequently, only the triplet part is modi6ed
by the coupling with the field. After a long time there
is still a probability of one-half that a photon has not
been emitted. If, after a long period of time, no photon
has been emitted, the neutrons are in a singlet state and
it is impossible to predict which neutron is the excited
one.
On the other hand, if the initial state of the two

neutrons were triplet with s= I, m, =0 namely a state
with one excited neutron, a photon would be certain to
be emitted and the transition probability would be just
double that for a lone excited neutron. Thus, the
presence of the unexcited neutron in this case doubles
the radiation rate.
In recent years the excitation of correlated states of

atomic radiating systems with the subsequent emission
of spontaneous coherent radiation has become an im-
portant technique for nuclear magnetic resonance
research. ' The description usually given of this process
is a classical one based on a spin system in a magnetic
6eld. The purpose of this note is to generalize these
results to any system of radiators with a magnetic or
electric dipole transition and to see what eGects, if any,
result from a quantum mechanical treatment of the
radiation process. Most of the previous work4 was quite
early and not concerned with the problems being con-
sidered here. In a subsequent article to be published in
the Review of Scientific Instrunzents some of these results
will be applied to the problem of instrumentation for
microwave spectroscopy.
In this treatment the gas as a whole will be considered.

as a single quantum-mechanical system. The problem
will be one of finding those energy states representing
correlated motions in the system. The spontaneous
emission of coherent radiation will accompany transi-
tions between such levels. In the first problem to be
considered the gas volumes will be assumed to have
3 E. L. Hahn, Phys. Rev. 77, 297 (1950); 80, 580 (1950).
4 E.g., W. Pauli, Handbnch der Physth (Springer, Berlin, 1933},

Vol. 24, Part I, p. 210;G.Wentzel, Handbuch der Physik (Springer,
Berlin, 1933),Vol. 24, Part I, p. 758.
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Fully	
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  state	
  of	
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  excitaDons	
  in	
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• ideal	
  (Dicke)	
  

• classical	
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  et	
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Radiation from an N-Atom System. I. General Formalism

R. H. Lehmberg
U. S. Naval AA' Development Center, 8'axminster, Pennsylvania

(Received 19 November 1969)
We consider the radiation from a system of N identical two-level atoms coupled to a con-

tinuum of quantized em modes, and possibly, to an external driving field near resonance. The
atoms can be distributed over a region large in comparison to the resonant wavelength, but
smaller than the spontaneous pulse length. Radiation rates and correlation functions are ex-
pressed in terms of expectation values of time-dependent atomic operators, which are shown
to satisfy coupled first-order differential equations involving similar atomic operators and
the initia/ radiation operators. The corresponding equations for the expectation values sim-
plify considerably if no driving field is present. Similar results are derived for a model in
which each atom is replaced by a harmonic oscillator.

I. INTRODUCTION
The development of ultrashort light-pulse tech-

niques has led to renewed interest in a number of
spontaneous radiation effects that are related to
atomic coherence. Examples of such effects in-
clude superradiance and ray-forming properties, '
photon trapping, ' ' and coherent spectral line
broadening.
An appropriate model by which to study these

phenomena consists of N identical two-level atoms
coupled to a continuum of quantized em modes, and
possibly to an external driving field nearresonance.
This model has recently been treated by a nearly
exact operator formalism for the case in which the
atoms are confined to a region small in comparison
to the transition wavelength. ' '" The present for-
malism removes this restriction, and also takes
into account the frequency shifts due to em coupling
between the atoms. ' The only major limitation on
the size of the system, expressed by condition (13),
requires that the atoms be confined to a region
small in comparison to the spontaneous pulselength.
Although this precludes its application to macroscopic
lasing materials, the formalism can still apply to
multiatom systems extending over many wave-
lengths, and therefore capable of developing pro-
nounced directional effects.
The methods and results presented here differ

considerably from those of earlier treatments; in
particular, the emphasis is upon time-dependent
decay rates, intensity patterns, and correlation
functions, rather than upon quantities such as the
probability amplitude for finding a particular set
of photon states. Although these admittedly contain
less information than probability amplitudes, they
are usually the quantities of most direct physical
interest, and are easier to calculate.
In Sec. II, we derive a general equation of mo-

tion for an arbitrary atomic operator [Eq. (23)], and

compare this with earlier results. ' '" Expression
(23) contains only initial radiation operators, or-
dered so that they can be eliminated if vacuum ex-
pectation values are taken; hence, if no photons
are present initially, the equations for the expecta-
tion values simplify considerably [Eq. (29)]. Anal-
ogous results are presented for a model in which
each atom is replaced by an equivalent harmonic
oscillator.
In Sec. III, the average radiation intensity and

correlation function are defined in terms of ex-
pectation values of appropriate atomic operators
[Eqs. (37) and (40)]. They can therefore be evalu-
ated if solutions to (23) or (29) can be found.
In Sec. IV, we discuss the size limitation men-

tioned above, and estimate the decay time for a
many-atom system.
This formalism will be applied in the following

paper to investigate the spontaneous emission prop-
erties of a two-atom and two-oscillator system.

II. EQUATIONS OF MOTION

Consider a collection of N identical nonoverlap-
ping atoms, at positions r„.. . , r„, coupled to a
quantized multimode em field. Each atom A. is
assumed to have only the two states I+), separated
by energy E, = c = e, —& . Using the dipole approx-
imation, one can write for the Hamiltonian' (with
h-=1)

where o, —= I
—), (+ i is the lowering operator for

g, , and p-=(+
~ ex ~

—) is the dipole matrix element
(assumed real) . The assumption of no atomic over-
lap implies that [o„,oz ]=0 for n & P.
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III. RADIATION PROPERTIES

We now derive general expressions for the radi-
ation rates and spectral properties of the far field;
in particular, let 0 be an observation point (re-
ferred to an arbitrary origin within the atomic
system), and assume that ) 0- r, ]=—R, satisfies

KR~ »1 (30)

1.0
for all a.
The quantities of interest can be obtained from

the correlation functions

0.5 fs(t, t') -=(R'c/2 vs) &F, (K, t) ~ E (0, t')),
f(t, t') = .F d As fs-(t, t'),

(»)
(32)

0.0

-Q.5
rp/r y

t I

277

Kr (Radians)aP

where the average is taken over initial states of
the entire system, and E, (R, t) is thepositive fre-
quency field operator

E. (5, t) =Z, (2v(a, /V)~'e, a,(t)e'"&'" . (33

For t'=t,

FIG. 1. Dependence of the damping constants p&& and
frequency shifts 0&2 on interatomic spacing r2& for dipole
matrix elements p parallel and perpendicular to r2~.
Here, w = e/c = 27I'/X, and p is the damping constant of a
single atom.

f;(t, t) =nfl(t)-=wtt (t)
is the average photon emission rate into solid
angle d Q~, and

f(t, t) = n(t) =- w(t)

(s4)

ation properties of a system.
Returning to the general expression (23), we note

that for the case where the radiation is initially in
the vacuum state ) 0), one can take vacuum expec-
tation values to obtain the simplified form

&Q)o is Q&[-o' o„g]) o

+ ~ i n.o&[o.' oo, q]&o

is the total radiation rate. We note that although
W„-(t) does not correspond exactly to the classical
expression (i. e. , with real fields), it is the actual
intensity that would be measured by an ordinary
photodetector or similar device. '
Substituting Eq. (7) into (33), then applying con-

ditions (13), (16), and (30), we obtain, by arguments
similar to those used before (see the Appendix),

E, (5,, t„)=F,"(R, t„)+ '
xexp[iv(R, —R)]o (t), (s6)

+Z r.o&o.' Coo —2(o.'ooQ+Qo'oo))o,
where ( )o-=&0) ) 0) . This expression will be the
fundamental equation of motion in the theory of
spontaneous emission from an N-atom system.
Consider now the case where each atom A is

replaced by a harmonic oscillator 0 of frequency
s and energy states ( n) . If p is now defined as
&n=1[ ex )n=0), then &n I[ e+x [ n) =(n+1) p.
The radiation interaction is therefore identical to
the last term in expression (3) with s, replaced
by b +b~, where b is the lowering operator
(h ) n) =n~ ) n —1),). If Q (t) is an arbitrary
combination of oscillator operators, then we again
obtain Eq. (23) (by the same derivation), with Q- Q~ and o -b . The only difference is that 0
is now defined as 0 +0'

yp(tz, ts) = w't'I'& Rs (t„)Ry (ts ))
where

(37b)

K =-KR,

Ry =—Po, o'ye
and

~(.1& r [1 (P.P)2]sy
8m

(sa)

(39)

where t„=t+R/c, and E,' '(lT, t) is defined by (10).
The main interest here is in cases where the ini-

tial radiation is either confined to a narrow beam
or absent entirely. If K lies outside any such
beam, and if R» (r,&),„(so that R—R =, —A r, ),
then (31)becomes

fs(ts, ts)=~'„-"~ e'""""&o'(t)o (t')) (37a)
0t, g

collective shift
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The Super of Superradiance
PHYSICS

Cooperative single-photon emission from 

an atom ensemble will provide insights into

quantum electrodynamics and applications

in quantum communication.

          I
n 1954, Robert Dicke introduced the 

concept of superradiance in describing 

the cooperative, spontaneous emission 

of photons from a collection of atoms. The 

concept of superradiance can be understood 

by picturing each atom as a tiny antenna 

emitting electromagnetic waves. Ther-

mally excited atoms emit light randomly, 

and the emitted intensity is a function of 

the number of atoms, N. However, when 

the atomic “antennas” are coherently radi-

ating in phase with each other, the net elec-

tromagnetic fi eld is proportional to N, and 

therefore, the emitted intensity goes as N2. 

As a result, the atoms radiate their energy 

N times faster than for incoherent emission. 

It is this anomalous radiance that Dicke 

dubbed “superradiance” ( 1– 3).

An even more interesting kind of radia-

tion speedup can occur when a single pho-

ton is stored uniformly in a cloud of N atoms 

(see the fi gure, panel A). Suppose you have 

one atom that decays with a rate γ. Then sup-

pose there are N such atoms close together 

in an atom cloud with only one of the atoms 

excited (but we don’t know which one). 

Because there is only one atom excited, you 

might expect the decay rate to be γ. But if the 

atoms are symmetrically organized within 

the cloud, the decay rate is actually Nγ ( 1). 

This enhanced single-photon emission rate is 

“the greatest radiation anomaly” inherent in 

superradiance. Single-photon superradiance 

has become a subject of current interest ( 4–

 12), and promises to yield new tools for stor-

ing quantum information and deeper insight 

into the physics of virtual processes.

Dicke’s point is that the N atoms act like 

one big atom and decay collectively. This is 

intuitive when the atoms are close together 

compared to the wavelength of radiation λ. 

When the same symmetric state is formed but 

the atomic cloud size is larger than λ, there is 

no longer constructive cooperation in radia-

tion emission. The atoms will trap the light, 

decreasing the emission rate.

Nevertheless, it is possible to produce a 

state such that the large cloud also emits radi-

ation with an enhanced rate proportional to 

Nγ ( 4,  5). This is important because in quan-

tum optics the sample is usually large com-

pared to λ.

However, things are a bit trickier here. 

More subtle and interesting physics come 

into play, extending from quantum informa-

tion and a new kind of cavity quantum elec-

trodynamics (QED) ( 13), to new insights into 

quantum fi eld theory ( 9– 12).

The essential new physics is the transition 

from the coherent antenna array to the single-

photon state in which cooperative emission 

is due to N entangled atoms (not N coherent 

Marlan O. Scully 1, 2 and Anatoly A. Svidzinsky 1 

1Texas A&M University, College Station, TX 77843, USA.  
2Princeton University, Princeton, NJ 08544, USA. E-mail: 
scully@tamu.edu

into a bedload fl ow initially formed only of 

larger moving beads ( 13). After a while, a 

quasi-continuous layer of small particles 

developed beneath larger moving beads and 

above quasi-immobile larger beads (see the 

fi gure, panel B).

In the regime of partial mobility, processes 

are restricted to the surface of the bed, and all 

particles experience long periods of rest. This 

condition is characteristic of gravel trans-

port. The propensity for grains of similar size 

to block each other leads to accumulations 

of similar-sized grains in restricted areas of 

the channel bed. Two phenomena command 

attention. Mobile materials collect in patches 

of similar size in the streambed, a phenom-

enon that mediates the overall sediment fl ux 

( 14), while the largest stones in streambeds—

usually only marginally mobile—congregate 

into clusters, chains, and cell-like arrange-

ments that dramatically increase the overall 

stability of the bed ( 15).

The second case is particularly interest-

ing from the granular perspective, because 

the stone structures represent a natural case 

of force chains that have been studied in the 

laboratory for more than a decade ( 16). In 

the extreme case of steep mountain chan-

nels containing relatively large stones, stone 

lines become channel-spanning force chains, 

forming a distinctive step-and-pool morphol-

ogy that maintains a stable channel in situa-

tions when any unconstrained stone would be 

swept away.

Heuristic models have been constructed 

for the development of surface structures, but 

the mechanisms that promote patch develop-

ment and bed surface structures require addi-

tional experimental study before physically 

sound models may be developed. Stone lines 

and cells on the surface are relatively long-

lived because, during most fl ows, their ulti-

mate strength is not tested. This allows time 

for additional mechanisms to strengthen them 

further, beyond the state achieved by force 

chains in continuously deforming media. 

Hence, failure mechanisms are of particular 

interest. When extreme fl ows do break the 

stability of steep channels, life-threatening 

debris fl ows result.

Granular physics provides a good basis 

for improving our understanding of bed-

load transport at relatively high rates. How-

ever, surface phenomena that would simu-

late partial bedload transport remain essen-

tially uninvestigated in granular physics. 

While imparting insight into the bedload 

problem, experiments on these phenomena 

would also open a new perspective in granu-

lar physics.  
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emitters). This is made possible by condi-
tioned preparation of the initial atomic states 
(see the fi gure, panel A) ( 4,  5).

With the large sample, however, it is not 
so clear why the emitted photon should go 
in the same direction as the exciting photon 
given that there is no antenna dipole asso-
ciated with the atoms (see the fi gure, panel 
B). One atom is excited, but we do not know 
which one. The answer is associated with tim-
ing: The atoms at the front of the sample are 
excited fi rst and those at the back, last ( 4,  5). 
These excitations appear as spatial phase fac-

tors. It is this timing that yields directional-
ity in the emitted radiation. Without the timed 
excitation, the radiation will be substantially 
trapped in the gas ( 11).

In particular, in the conditioned excita-
tion case, the decay rate continues to be pro-
portional to the number of atoms; but it also 
involves the diffraction factor (λ/R)2, where 
R is the radius of the sample. This is the case 
for gas clouds that are large compared with 
λ but small compared with the size of the 
radiation pulse length L

p
. However, when 

R > L
p
, the coupled atom-radiation system 

shows absorption-emission oscillations 
(see the fi gure, panel C) that are similar to 
those observed in cavity QED ( 13), where 
the Rabi oscillation frequency is determined 
by the volume of the cavity and the number 
of photons in the cavity. In the present case, 
the oscillation frequency is determined by 
the volume of the cloud and the number of 
atoms ( 14). This surprising result is indeed a 
new kind of cavity QED.

Another fascinating aspect of single-pho-
ton superradiance is the collective N-atom 
Lamb shift, which is due to the rapid emission 
and reabsorption of (virtual) photons ( 10– 12). 
As the decay rate is enhanced by collective 
emission, so too is the frequency shift asso-
ciated with the virtual photons. Furthermore, 
the virtual photons dramatically change the 
evolution of trapped states ( 11). They provide 
new decay channels, which ultimately result 
in a slow decay of the otherwise trapped state. 
However, for the rapidly decaying states, these 
virtual processes are relatively unimportant 
( 11). In such a case, virtual photons excite 
other states with only a relatively small prob-
ability, depending on the size of the atomic 
cloud. In addition, the essentially new many-
particle Lamb shift is not divergent. That is, 
the usual single-atom Lamb shift calculations 
involve infi nities, high-frequency cutoffs, and 
so forth. However, in the many-atom version, 
the most interesting physics comes from this 
“infi nity-free QED.”

A single photon stored in a large cloud of 
atoms provides new insights into the radia-
tion physics of single-photon superradiance, 
virtual photons, and more. The single-photon 
states also have potential for application to 
quantum informatics. 
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Textbook arguments [1,2] tell us that in a dielectric
medium the local electric field El seen by an atom
(molecule) is different from the macroscopic electric field
E by an amount proportional to the polarization P of the
medium, El ¼ Eþ P=3ϵ0. This is the origin of the local-
field corrections in electrodynamics embodied in the
Clausius-Mossotti and Lorentz-Lorenz relations. As a
result, the frequency dependence of the microscopic polar-
izability and the macroscopic susceptibility are different. If
the polarizability has a Lorentzian line shape then so does
the susceptibility, but the resonance is shifted by what is
known as the Lorentz-Lorenz (LL) shift [3]. The LL shift
serves as the generic frequency scale for other density
dependent phenomena in an atomic sample such as colli-
sional self-broadening of absorption lines [4,5] and col-
lective Lamb shift (CLS) [6–10].
Local-field corrections are a standard workhorse in solid

and liquid media. On the other hand, in a resonant atomic
gas a density conducive to LL shift and CLS results in an
optically thick sample, which might explain the sparsity of
laser spectroscopy era experiments. There are careful
experiments on related phenomenology that agree with
the respective theory [8,9,11–13], but except for the
nuclear-physics experiment of Ref. [9] the published
experiments we know of deal with inhomogeneously
broadened samples with a substantial line broadening
due to the motion of the atoms. Atomic-physics experi-
ments with cold and dense clouds such as those in Ref. [14]
are presently underway [15]. Optically thick samples are
needed for a good quantum interface between photons and
matter [16], so that local-field effects, and, more generally,
cooperative response of matter to light, are likely to become
issues in the quest toward quantum technologies.
Here we study the cooperative response of a dense

atomic sample to light in the limit of low excitation
essentially exactly [17] using classical-electrodynamics
simulations [18–25] in a slab geometry analogously to
theory [6] and experiments [8] on CLS. In these simulations
with an unprecedentedly large scale, we have discovered
that a homogeneously broadened sample with fixed atomic

positions in fact does not exhibit the expected Lorentz-
Lorenz or collective Lamb shifts. However, when we add
inhomogeneous broadening [24] to the atomic samples, the
traditional phenomenology of local-field corrections
together with density-dependent collective effects ree-
merges. Basically, in a homogeneously broadened sample
the correlations between nearby atoms established by the
dipole-dipole interactions are important, while inhomo-
geneous broadening suppresses the correlations and makes
the sample behave more like a continuous polarization.
Let us first look at the logical status of the LL shift and

CLS as in Ref. [6] from the standpoint of our earlier
analysis of the coupled theory for light and matter [17,26].
Atomic polarization acts as a source of scattered dipole
radiation. Scattered light then induces correlations between
the atoms. In particular, for a J ¼ 0 → J0 ¼ 1 atomic
transition the response of the medium is isotropic, and
in the limit of low light intensity the equation of motion for
the polarization reads

P
:
ðr1Þ ¼ ðiΔ − γÞPðr1Þ þ iζρðr1ÞE0ðr1Þ

þ iζ
Z

d3r2Gðr1 − r2ÞP2ðr1; r2Þ: (1)

Here ρ is the density, and, P2ðr1; r2Þ represents a corre-
lation function with polarization at r2, given a ground-state
atom density at r1. We consider a near-monochromatic
response, such that P and P2 correspond to positive-
frequency parts of quantities oscillating at the “laser
frequency” ω. Δ ¼ ω − ω0 is the detuning from the atomic
resonance ω0, γ is the HWHM linewidth of the transition,
ζ ¼ D2=ℏ, D is the dipole moment matrix element, and
ϵ0E0 would be the electric displacement of the driving light
if the matter were absent.G is the dipole field propagator, a
3 × 3 matrix such that Gðr − r0Þd is the usual [1] electric
field at r from a dipole d at r0.
Owing to light-mediated dipole-dipole interactions, the

polarization obtained from Eq. (1) depends on the two-
atom correlation function P2ðr1; r2Þ. Similarly, P2 is
coupled to three-atom correlation functions, which are
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thus avoid the question of the operational meaning of the
fields inside the sample.
The overall protocol is that we generate a number of

random samples, from 64 to millions, of atomic positions
evenly distributed inside the disk, compute the absorption
as a function of the detuning Δ for each sample, and
average the results. At times we also compute the depend-
ence of backscattered power on frequency. By energy
conservation, for an infinite radius of the disk the line
shapes in absorption and backscattering should be the
same. A comparison strongly suggests that our observa-
tions are not an artifact of the rather small radius of the disk.
We express the final results in terms of optical thickness
(depth, density)D defined asD ¼ − lnT. The advantage is
that in a medium that obeys Beer’s law the line shape of
optical thickness D would be independent of the thickness
h of the sample.
The numerical experiments are similar to the real experi-

ments of Keaveney et al. [8], with the significant exception
that they had thermal samples at temperatures substantially
higher than room temperature while our atoms are standing
still. Our simulations also differ from the experiments in
that the densities are lower. This is because the computer
time for a simulation grows as the cube of the atom number,
and our runs add up to ∼105 h of CPU time as is.
Figure 1 shows the optical thickness D as a function of

detuning Δ for the sample thicknesses hk ¼ 0.25, 0.5, 1.0
and 2.0, with the corresponding atom numbers N ¼ 128,
256, 512, and 1024. For comparison we also give the
predicted LL shift for this atom density as the dashed
vertical line. The absorption lines are not Lorentzian. While
the line broadens with increasing atom number and may be
noticeably asymmetric, the maximum moves very little.
The shift, if any, is at most a few percent of the LL shift.
There is no manifest LL shift, nor a CLS.

The traditional density dependent shifts are predicted
from mean-field theory that ignores the correlations
between the dipoles. Here all correlations are included,
and there is no mystery to the observation that our results
differ from the established predictions. This, however,
leaves the question of why experiments [8] that by
definition include all orders of dipole-dipole correlations
agree with theoretical arguments [6] that do not. Our next
goal, therefore, is to demonstrate that under proper con-
ditions our simulations can also produce usual mean-field
results.
In real experiments with gaseous media the environment

of a radiating atom is complex. The atom moves, there are
atom-atom collisions, and the atoms collide with the walls
of the container. Overall, the electric field that each atom
sees changes as a function of time because both the
spectator atom and the other atoms move. In the zeroth
order picture of laser spectroscopy all of this is represented
by inhomogeneous broadening: In the laboratory frame the
resonance frequency of an atom depends on its velocity
because of the Doppler shift, and, accordingly, the reso-
nance frequencies of the atoms are simply regarded as
random quantities. Here we adopt this generic model.
We repeat the numerical experiments with the atoms in

the circular disk, except that this time we assume that the
resonance frequency of each atom is also shifted by a
Gaussian random variable with zero mean and the rms
value ωD ¼ 100γ. This value would be a reasonable
estimate for the D lines in a room-temperature alkali vapor.
An example spectrum is shown in Fig. 2, left panel. The
line shape has the appearance common in the spectroscopy
of inhomogeneously broadened samples. Accordingly, we
fit it with the Voigt profile VðΔ;Γ;ΩDÞ, convolution of a
Lorentzian with the HWHM width Γ and a Gaussian with
the rms width ΩD. More precisely, the fit function is
MVðΔ − s;Γ;ΩDÞ, where the fit parameters are the overall
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FIG. 1 (color online). Optical depth D versus detuning Δ in a
homogeneously broadened sample for sample thicknesses
hk ¼ 0.25, 0.5, 1.0, and 2.0, from bottom to top; the correspond-
ing atom numbers are N ¼ 128, 256, 512, and 1024. The dashed
vertical line shows where the center of the line would be if the
naive Lorentz-Lorenz shift applied.
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FIG. 2 (color online). Left: Optical depth of the sample D with
thickness hk ¼ 1.5, and, hence, N ¼ 768 atoms, as a function of
the detuning for a sample with the inhomogeneous linewidth
ωD ¼ 100γ. This numerical experiment (solid red line) is an
average of 1024 samples, the fit with a Voigt profile (dashed
black line) has the parameters s ¼ 2.15γ, Γ ¼ 17.74γ, and
ΩD ¼ 112.83γ. Right: The shift of the absorption line s plotted
as a function of the thickness of the sample h as solid circles. The
statistical error bars are smaller than the size of the circles. Also
shown as a solid line is the collective Lamb shift, Eq. (2), and as a
dashed line a vertically translated version of Eq. (2) fitted to the
numerical data points with hk ≥ 1.
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Textbook arguments [1,2] tell us that in a dielectric
medium the local electric field El seen by an atom
(molecule) is different from the macroscopic electric field
E by an amount proportional to the polarization P of the
medium, El ¼ Eþ P=3ϵ0. This is the origin of the local-
field corrections in electrodynamics embodied in the
Clausius-Mossotti and Lorentz-Lorenz relations. As a
result, the frequency dependence of the microscopic polar-
izability and the macroscopic susceptibility are different. If
the polarizability has a Lorentzian line shape then so does
the susceptibility, but the resonance is shifted by what is
known as the Lorentz-Lorenz (LL) shift [3]. The LL shift
serves as the generic frequency scale for other density
dependent phenomena in an atomic sample such as colli-
sional self-broadening of absorption lines [4,5] and col-
lective Lamb shift (CLS) [6–10].
Local-field corrections are a standard workhorse in solid

and liquid media. On the other hand, in a resonant atomic
gas a density conducive to LL shift and CLS results in an
optically thick sample, which might explain the sparsity of
laser spectroscopy era experiments. There are careful
experiments on related phenomenology that agree with
the respective theory [8,9,11–13], but except for the
nuclear-physics experiment of Ref. [9] the published
experiments we know of deal with inhomogeneously
broadened samples with a substantial line broadening
due to the motion of the atoms. Atomic-physics experi-
ments with cold and dense clouds such as those in Ref. [14]
are presently underway [15]. Optically thick samples are
needed for a good quantum interface between photons and
matter [16], so that local-field effects, and, more generally,
cooperative response of matter to light, are likely to become
issues in the quest toward quantum technologies.
Here we study the cooperative response of a dense

atomic sample to light in the limit of low excitation
essentially exactly [17] using classical-electrodynamics
simulations [18–25] in a slab geometry analogously to
theory [6] and experiments [8] on CLS. In these simulations
with an unprecedentedly large scale, we have discovered
that a homogeneously broadened sample with fixed atomic

positions in fact does not exhibit the expected Lorentz-
Lorenz or collective Lamb shifts. However, when we add
inhomogeneous broadening [24] to the atomic samples, the
traditional phenomenology of local-field corrections
together with density-dependent collective effects ree-
merges. Basically, in a homogeneously broadened sample
the correlations between nearby atoms established by the
dipole-dipole interactions are important, while inhomo-
geneous broadening suppresses the correlations and makes
the sample behave more like a continuous polarization.
Let us first look at the logical status of the LL shift and

CLS as in Ref. [6] from the standpoint of our earlier
analysis of the coupled theory for light and matter [17,26].
Atomic polarization acts as a source of scattered dipole
radiation. Scattered light then induces correlations between
the atoms. In particular, for a J ¼ 0 → J0 ¼ 1 atomic
transition the response of the medium is isotropic, and
in the limit of low light intensity the equation of motion for
the polarization reads

P
:
ðr1Þ ¼ ðiΔ − γÞPðr1Þ þ iζρðr1ÞE0ðr1Þ

þ iζ
Z

d3r2Gðr1 − r2ÞP2ðr1; r2Þ: (1)

Here ρ is the density, and, P2ðr1; r2Þ represents a corre-
lation function with polarization at r2, given a ground-state
atom density at r1. We consider a near-monochromatic
response, such that P and P2 correspond to positive-
frequency parts of quantities oscillating at the “laser
frequency” ω. Δ ¼ ω − ω0 is the detuning from the atomic
resonance ω0, γ is the HWHM linewidth of the transition,
ζ ¼ D2=ℏ, D is the dipole moment matrix element, and
ϵ0E0 would be the electric displacement of the driving light
if the matter were absent.G is the dipole field propagator, a
3 × 3 matrix such that Gðr − r0Þd is the usual [1] electric
field at r from a dipole d at r0.
Owing to light-mediated dipole-dipole interactions, the

polarization obtained from Eq. (1) depends on the two-
atom correlation function P2ðr1; r2Þ. Similarly, P2 is
coupled to three-atom correlation functions, which are
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thus avoid the question of the operational meaning of the
fields inside the sample.
The overall protocol is that we generate a number of

random samples, from 64 to millions, of atomic positions
evenly distributed inside the disk, compute the absorption
as a function of the detuning Δ for each sample, and
average the results. At times we also compute the depend-
ence of backscattered power on frequency. By energy
conservation, for an infinite radius of the disk the line
shapes in absorption and backscattering should be the
same. A comparison strongly suggests that our observa-
tions are not an artifact of the rather small radius of the disk.
We express the final results in terms of optical thickness
(depth, density)D defined asD ¼ − lnT. The advantage is
that in a medium that obeys Beer’s law the line shape of
optical thickness D would be independent of the thickness
h of the sample.
The numerical experiments are similar to the real experi-

ments of Keaveney et al. [8], with the significant exception
that they had thermal samples at temperatures substantially
higher than room temperature while our atoms are standing
still. Our simulations also differ from the experiments in
that the densities are lower. This is because the computer
time for a simulation grows as the cube of the atom number,
and our runs add up to ∼105 h of CPU time as is.
Figure 1 shows the optical thickness D as a function of

detuning Δ for the sample thicknesses hk ¼ 0.25, 0.5, 1.0
and 2.0, with the corresponding atom numbers N ¼ 128,
256, 512, and 1024. For comparison we also give the
predicted LL shift for this atom density as the dashed
vertical line. The absorption lines are not Lorentzian. While
the line broadens with increasing atom number and may be
noticeably asymmetric, the maximum moves very little.
The shift, if any, is at most a few percent of the LL shift.
There is no manifest LL shift, nor a CLS.

The traditional density dependent shifts are predicted
from mean-field theory that ignores the correlations
between the dipoles. Here all correlations are included,
and there is no mystery to the observation that our results
differ from the established predictions. This, however,
leaves the question of why experiments [8] that by
definition include all orders of dipole-dipole correlations
agree with theoretical arguments [6] that do not. Our next
goal, therefore, is to demonstrate that under proper con-
ditions our simulations can also produce usual mean-field
results.
In real experiments with gaseous media the environment

of a radiating atom is complex. The atom moves, there are
atom-atom collisions, and the atoms collide with the walls
of the container. Overall, the electric field that each atom
sees changes as a function of time because both the
spectator atom and the other atoms move. In the zeroth
order picture of laser spectroscopy all of this is represented
by inhomogeneous broadening: In the laboratory frame the
resonance frequency of an atom depends on its velocity
because of the Doppler shift, and, accordingly, the reso-
nance frequencies of the atoms are simply regarded as
random quantities. Here we adopt this generic model.
We repeat the numerical experiments with the atoms in

the circular disk, except that this time we assume that the
resonance frequency of each atom is also shifted by a
Gaussian random variable with zero mean and the rms
value ωD ¼ 100γ. This value would be a reasonable
estimate for the D lines in a room-temperature alkali vapor.
An example spectrum is shown in Fig. 2, left panel. The
line shape has the appearance common in the spectroscopy
of inhomogeneously broadened samples. Accordingly, we
fit it with the Voigt profile VðΔ;Γ;ΩDÞ, convolution of a
Lorentzian with the HWHM width Γ and a Gaussian with
the rms width ΩD. More precisely, the fit function is
MVðΔ − s;Γ;ΩDÞ, where the fit parameters are the overall
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FIG. 1 (color online). Optical depth D versus detuning Δ in a
homogeneously broadened sample for sample thicknesses
hk ¼ 0.25, 0.5, 1.0, and 2.0, from bottom to top; the correspond-
ing atom numbers are N ¼ 128, 256, 512, and 1024. The dashed
vertical line shows where the center of the line would be if the
naive Lorentz-Lorenz shift applied.
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FIG. 2 (color online). Left: Optical depth of the sample D with
thickness hk ¼ 1.5, and, hence, N ¼ 768 atoms, as a function of
the detuning for a sample with the inhomogeneous linewidth
ωD ¼ 100γ. This numerical experiment (solid red line) is an
average of 1024 samples, the fit with a Voigt profile (dashed
black line) has the parameters s ¼ 2.15γ, Γ ¼ 17.74γ, and
ΩD ¼ 112.83γ. Right: The shift of the absorption line s plotted
as a function of the thickness of the sample h as solid circles. The
statistical error bars are smaller than the size of the circles. Also
shown as a solid line is the collective Lamb shift, Eq. (2), and as a
dashed line a vertically translated version of Eq. (2) fitted to the
numerical data points with hk ≥ 1.
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In Fig. 4 we plot the gradient of the line shift as a
function of cell thickness. For the Rb D2 resonance,
!LL=N ¼ "2!"k"3, where we have used the relationship
between the dipole moment for the s1=2 ! p3=2 transit-

ion and the spontaneous decay rate, d ¼
ffiffiffiffiffiffiffiffi
2=3

p
hLe ¼

1jerjLg ¼ 0i (see Ref. [27]). We extract the collisional

shift by comparing the data to Eq. (8) with !col the only
free parameter. The amplitude and period of the oscillatory
part are fully constrained by Eq. (7). We find the collisional
shift to be !col=2! ¼ ð"0:25$ 0:01Þ & 10"7Hzcm3,
similar to previous measurements on potassium vapor
[24]. In this high density limit, the collisional shift is also
independent of hyperfine splitting. The solid line is the
prediction of Eq. (7), and the agreement between the
measured shifts and the theoretical prediction is remark-
able (the reduced "2 for the data is 1.7). As well as
measuring the thickness dependence of the cooperative

Lamb shift, our data also provide a determination of the
Lorentz shift which can only be measured in the limit of
zero thickness. An important advance on previous studies
[8] is that the results clearly show the oscillations in the
shift versus the thickness which arises due to the relative
phase of the reradiated dipolar field.
The demonstration of the cooperative Lamb shift and

coherent dipole-dipole interactions in media with thickness
'#=4 opens the door to a new domain for quantum optics,
analogous to the strong dipole-dipole nonlinearity in
blockaded Rydberg systems [29,30]. As the cooperative
Lamb shift depends on the degree of excitation [5], exotic
nonlinear effects such as mirrorless bistability [31,32] are
now accessible experimentally. In addition, given the
fundamental link between the cooperative Lamb shift and
superradiance, subquarterwave thickness vapors offer an
attractive system to study superradiance in the small
volume limit. Finally, we note that the measured coopera-
tive Lamb shift is the average dipole-dipole interaction
for a homogeneous gas which contains both positive and
negative contributions. It could therefore be enhanced by
eliminating directions that contribute with the undesired
sign, for example, by patterning the distribution of dipoles.
These topics will form the focus of future research.
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EPSRC and Durham University.
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FIG. 4 (color online). Experimental verification of the coop-
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is plotted against cell thickness ‘. A collisional shift !col=2! ¼
"0:25& 10"7 Hz cm3 has been subtracted. The solid black line
is Eq. (7) with no other free parameters. The conversion between
experimental and universal units is outlined in the main text.
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We present an experimental measurement of the cooperative Lamb shift and the Lorentz shift using a

nanothickness atomic vapor layer with tunable thickness and atomic density. The cooperative Lamb shift

arises due to the exchange of virtual photons between identical atoms. The interference between the

forward and backward propagating virtual fields is confirmed by the thickness dependence of the shift,

which has a spatial frequency equal to twice that of the optical field. The demonstration of cooperative

interactions in an easily scalable system opens the door to a new domain for nonlinear optics.

DOI: 10.1103/PhysRevLett.108.173601 PACS numbers: 42.50.Nn, 32.30.!r, 32.70.Jz

One of the more surprising aspects of quantum electro-
dynamics is that virtual processes give rise to real phe-
nomena. For example, the Lamb shift [1] arises from a
modification of the transition frequency of an atom due to
the emission and reabsorption of virtual photons. Similarly,
in cavity quantum electrodynamics [2–4] the reflection of
the virtual field by a mirror modifies the absorptive and
emissive properties of the atom. In a cooperative process
such as superradiance, the light-matter interaction is modi-
fied by the proximity of identical emitters. The dispersive
counterpart of superradiance is known as the cooperative
Lamb shift [5] (also sometimes referred to as the collective
or N -atom Lamb shift [6]). The cooperative Lamb shift
and the cooperative decay rate (i.e., super- or subradiance)
arise from the real and imaginary parts of the dipole-dipole
interaction, respectively.

Although superradiance has been investigated exten-
sively [7], experimental studies of the cooperative Lamb
shift are scarce. Evidence for the shift is restricted to two
particular cases, involving three-photon excitation in the
limit of the thickness ‘ being much larger than the tran-
sition wavelength ! in an atomic gas [8], and x-ray scat-
tering from Fe layers in a planar cavity [9], demonstrating
the fundamental link between the cooperative shift and
superradiance. However, the full thickness dependence of
the shift in a planar geometry with ‘ < ! predicted four
decades ago [5] has not been observed.

Here we present experimental measurements of the
cooperative Lamb shift in a nanothickness vapor layer of
Rb atoms as a function of both density and vapor thickness.
The atoms are confined in a cell between two super-
polished sapphire plates. Similar nanothickness vapors
have been studied extensively over the last two decades,
see, e.g., [10–15]. We extend this work to the high density
regime where dipole-dipole interactions dominate. In
addition, by incorporating the effects of dipole-dipole
interactions into a sophisticated model of the absorption
spectra we are able to extract the thickness dependence
of the resonant shift and thereby verify that the spatial

frequency of the cooperative Lamb shift is equal to twice
that of the light field [5]. We thus confirm the fundamental
mechanism of the cooperative Lamb shift as the exchange
of virtual photons.
The underlying mechanism of light scattering is the

interference between the incident field and the local field
produced by induced oscillatory dipoles. In a medium with
N two level dipoles per unit volume, the dipolar field is
proportional to the susceptibility which, for a weak field, is
given by the steady state solution to the optical Bloch
equations (see, e.g., [16]),

" ¼ ! N

#0@ d2

!þ i$ge
; (1)

where d is the transition dipole moment, $ge is the decay
rate of the coherence between the ground and excited
states, and ! is the detuning from resonance. The res-
ponse of an individual dipole is described in terms of the
polarizability,

%p ¼ "

4&N
¼ ! 1

4&#0@ d2

!þ i$ge
: (2)

In a dense medium, the field produced by the dipoles
modifies the optical response of each individual dipole.
This modified response is found by adding the incident
field to the dipolar field, Eloc ¼ E þ P=3#0, where Eloc is
known as the Lorentz local field [17]. The susceptibility
determines the bulk response P ¼ #0"E, whereas the
polarizability determines the local response P ¼
4&#0N%pEloc. Substituting for E and P we find a relation
between the macroscopic variable " and the single dipole
parameter %p which is referred to as the Lorentz-Lorenz
(LL) law [17]:

" ¼ 4&N%p

1! 4
3&N%p

: (3)

Substituting for %p we find
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Collective atomic emission and motional effects in a

dense coherent medium

S. L. Bromley1, B. Zhu1, M. Bishof1, X. Zhang1, T. Bothwell1, J. Schachenmayer1, T. L. Nicholson1,
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Understanding interactions between light and matter in a dense atomic medium is a long-

standing problem in physical science. In addition to their fundamental importance in optical

physics, such interactions play a central role in enabling a range of new quantum technolo-

gies including optical lattice atomic clocks and quantum networks. Here we report a set of

experimental observations and detailed study of collective emission from a coherently driven

ultracold gas of 88Sr atoms, which offer simple and unique level structure. We perform two

sets of experiments using a strong atomic transition with natural linewidth of � = 32 MHZ

and a weak transition with � = 7.5 kHz at a temperature of ⇠ 1 µK, making them sen-

sitive and insensitive to atomic motions respectively. We observe highly directional forward

emission with the peak intensity that is enhanced, for the strong transition, by more than

1
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A steady-state superradiant laser with less than one
intracavity photon
Justin G. Bohnet1, Zilong Chen1, Joshua M. Weiner1, Dominic Meiser1{, Murray J. Holland1 & James K. Thompson1

The spectral purity of an oscillator is central to many applications,
such as detecting gravity waves1, defining the second2,3, ground-
state cooling and quantum manipulation of nanomechanical
objects4, and quantum computation5. Recent proposals6–9 suggest
that laser oscillators which use very narrow optical transitions in
atoms can be orders of magnitude more spectrally pure than pre-
sent lasers. Lasers of this high spectral purity are predicted to
operate deep in the ‘bad-cavity’, or superradiant, regime, where
the bare atomic linewidth is much less than the cavity linewidth.
Here we demonstrate a Raman superradiant laser source in which
spontaneous synchronization of more than one million rubidium-
87 atomic dipoles is continuously sustained by less than 0.2
photons on average inside the optical cavity. By operating at low
intracavity photon number, we demonstrate isolation of the
collective atomic dipole from the environment by a factor of more
than ten thousand, as characterized by cavity frequency pulling
measurements. The emitted light has a frequency linewidth,
measured relative to the Raman dressing laser, that is less than that
of single-particle decoherence linewidths and more than ten
thousand times less than the quantum linewidth limit typically
applied to ‘good-cavity’ optical lasers10, for which the cavity
linewidth is much less than the atomic linewidth. These results
demonstrate several key predictions for future superradiant lasers,
which could be used to improve the stability of passive atomic
clocks3 and which may lead to new searches for physics beyond
the standard model11,12.

The most-coherent man-made oscillators are based on stable length
references3,13 that, for optical frequencies, exist as lasers stabilized to

optical reference cavities. Even in state-of-the-art stable lasers, the
mirrors of the reference cavity to which they are stabilized vibrate as
a result of thermal noise, causing time-integrated phase drifts that limit
the laser linewidth to 0.125–0.3 Hz (refs 3, 14).

The fundamental linewidth of a laser is given by a generalized expres-
sion for the Schawlow–Townes full-width at half-maximum (FWHM),
DfST, in hertz15 and which can be written in a simplified form as16

DfST~
1

4p
hf

Pout

2c\k

2c\zk

! "2

ð1Þ

Here Pout is the power exiting the cavity, f is the oscillation frequency,
h is Planck’s constant and k is the cavity power decay rate. The
transverse decoherence rate of the lasing optical transition is
cH 5 ceg/2 1 1/T2, where ceg is the rate of decay from the excited state
to the ground state and 1/T2 parameterizes additional atomic dephas-
ing mechanisms. In the good-cavity limit (2cH? k), the generalized
linewidth expression reduces to DfGST 5 k/4pMc, where Mc is the
average intracavity photon number (Supplementary Information).

If the cavity and atomic transition frequencies, respectively fcav and
fatomic, are not identical, the system oscillates at a weighted average
frequency f 5 (2cHfcav 1 kfatomic)/(2cH 1 k). The cavity frequency
changes the oscillation frequency from the atomic transition frequency
by an amount P ; df/dfcav 5 2cH/(2cH 1 k), called the frequency
pulling coefficient. In the good-cavity limit, P < 1 (Fig. 1a).

In the bad-cavity, or superradiant, limit (2cH= k), the FWHM
linewidth reduces to DfBST~c2

\=pkMc, a result intimately related to
cavity narrowing using slowed light16,17. The collective atom–light
excitation is stored predominantly in the gain medium, making the

1JILA, NIST and University of Colorado, Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA. {Present address: Tech-X Corporation, 5621 Arapahoe Avenue, Suite A,
Boulder, Colorado 80303, USA.
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Figure 1 | A steady-state superradiant laser. a, Left: in a standard, good-
cavity laser far above threshold, many photons (yellow) circulate inside the
cavity, extracting energy from the largely incoherent atomic gain medium
(blue). Thermal vibrations of the mirror surfaces modulate the cavity resonance
frequency, limiting the linewidth of the laser. Right: in a superradiant laser, the
collective atomic dipole stores the coherence, and continuous stimulated
emission can be achieved even with less than one photon in the cavity. The
stimulation enables phase information to be extracted at a useful rate, and the
small intracavity photon number leads to only weak cavity-induced backaction

on the collective atomic dipole. b, To mimic a narrow optical atomic transition,
we dress the metastable ground state | eæ with a laser (red) to induce a
spontaneous two-photon Raman transition to | gæ (blue), with tunable rate ceg.
c, With no repumping light, a single superradiant pulse is emitted. d, With
optical repumping back to | eæ, we observe quasi-continuous emission limited
by atom loss. The atoms emit into a single spatial mode of the cavity (TEM00)
imaged on a charge-coupled device (inset). e, The measured peak power output
(black circles) scales as the square of the number of atoms. The red line is a
quadratic fit to the data.
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The spectral purity of an oscillator is central to many applications,
such as detecting gravity waves1, defining the second2,3, ground-
state cooling and quantum manipulation of nanomechanical
objects4, and quantum computation5. Recent proposals6–9 suggest
that laser oscillators which use very narrow optical transitions in
atoms can be orders of magnitude more spectrally pure than pre-
sent lasers. Lasers of this high spectral purity are predicted to
operate deep in the ‘bad-cavity’, or superradiant, regime, where
the bare atomic linewidth is much less than the cavity linewidth.
Here we demonstrate a Raman superradiant laser source in which
spontaneous synchronization of more than one million rubidium-
87 atomic dipoles is continuously sustained by less than 0.2
photons on average inside the optical cavity. By operating at low
intracavity photon number, we demonstrate isolation of the
collective atomic dipole from the environment by a factor of more
than ten thousand, as characterized by cavity frequency pulling
measurements. The emitted light has a frequency linewidth,
measured relative to the Raman dressing laser, that is less than that
of single-particle decoherence linewidths and more than ten
thousand times less than the quantum linewidth limit typically
applied to ‘good-cavity’ optical lasers10, for which the cavity
linewidth is much less than the atomic linewidth. These results
demonstrate several key predictions for future superradiant lasers,
which could be used to improve the stability of passive atomic
clocks3 and which may lead to new searches for physics beyond
the standard model11,12.

The most-coherent man-made oscillators are based on stable length
references3,13 that, for optical frequencies, exist as lasers stabilized to

optical reference cavities. Even in state-of-the-art stable lasers, the
mirrors of the reference cavity to which they are stabilized vibrate as
a result of thermal noise, causing time-integrated phase drifts that limit
the laser linewidth to 0.125–0.3 Hz (refs 3, 14).

The fundamental linewidth of a laser is given by a generalized expres-
sion for the Schawlow–Townes full-width at half-maximum (FWHM),
DfST, in hertz15 and which can be written in a simplified form as16
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Here Pout is the power exiting the cavity, f is the oscillation frequency,
h is Planck’s constant and k is the cavity power decay rate. The
transverse decoherence rate of the lasing optical transition is
cH 5 ceg/2 1 1/T2, where ceg is the rate of decay from the excited state
to the ground state and 1/T2 parameterizes additional atomic dephas-
ing mechanisms. In the good-cavity limit (2cH? k), the generalized
linewidth expression reduces to DfGST 5 k/4pMc, where Mc is the
average intracavity photon number (Supplementary Information).

If the cavity and atomic transition frequencies, respectively fcav and
fatomic, are not identical, the system oscillates at a weighted average
frequency f 5 (2cHfcav 1 kfatomic)/(2cH 1 k). The cavity frequency
changes the oscillation frequency from the atomic transition frequency
by an amount P ; df/dfcav 5 2cH/(2cH 1 k), called the frequency
pulling coefficient. In the good-cavity limit, P < 1 (Fig. 1a).

In the bad-cavity, or superradiant, limit (2cH= k), the FWHM
linewidth reduces to DfBST~c2

\=pkMc, a result intimately related to
cavity narrowing using slowed light16,17. The collective atom–light
excitation is stored predominantly in the gain medium, making the
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Figure 1 | A steady-state superradiant laser. a, Left: in a standard, good-
cavity laser far above threshold, many photons (yellow) circulate inside the
cavity, extracting energy from the largely incoherent atomic gain medium
(blue). Thermal vibrations of the mirror surfaces modulate the cavity resonance
frequency, limiting the linewidth of the laser. Right: in a superradiant laser, the
collective atomic dipole stores the coherence, and continuous stimulated
emission can be achieved even with less than one photon in the cavity. The
stimulation enables phase information to be extracted at a useful rate, and the
small intracavity photon number leads to only weak cavity-induced backaction

on the collective atomic dipole. b, To mimic a narrow optical atomic transition,
we dress the metastable ground state | eæ with a laser (red) to induce a
spontaneous two-photon Raman transition to | gæ (blue), with tunable rate ceg.
c, With no repumping light, a single superradiant pulse is emitted. d, With
optical repumping back to | eæ, we observe quasi-continuous emission limited
by atom loss. The atoms emit into a single spatial mode of the cavity (TEM00)
imaged on a charge-coupled device (inset). e, The measured peak power output
(black circles) scales as the square of the number of atoms. The red line is a
quadratic fit to the data.
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What	
  is	
  “superradiance”?
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1.	
  Everything	
  that	
  involves	
  Dicke	
  states	
  
- (e.g.,	
  collecDve	
  √N	
  effects,	
  
-bad-­‐cavity	
  limit,	
  
-…)	
  
2.	
  Only	
  systems	
  involving	
  cooperaDve	
  (and	
  
nonlinear)	
  effects	
  
- i.e.,	
  effect	
  of	
  exchange	
  interacDon	
  
-more	
  than	
  single	
  excitaDon

only for purists
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Example:	
  two	
  atoms

|ee⇥ � |1, 1⇥

|gg⇤ ⇥ |1,�1⇤

1⇤
2

(|eg⇥+ |ge⇥) � |1, 0⇥ 1⌅
2

(|eg⇤ � |ge⇤) ⇥ |0, 0⇤
Di

ck
e

CooperaDvity



CooperaDvity
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Example:	
  two	
  atoms

|ee⇥ � |1, 1⇥

|gg⇤ ⇥ |1,�1⇤

1⇤
2

(|eg⇥+ |ge⇥) � |1, 0⇥ 1⌅
2

(|eg⇤ � |ge⇤) ⇥ |0, 0⇤

(anti)symmetry costs energy: “exchange interaction” 
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Example:	
  two	
  atoms

|ee⇥ � |1, 1⇥

|gg⇤ ⇥ |1,�1⇤

1⇤
2

(|eg⇥+ |ge⇥) � |1, 0⇥

1⌅
2

(|eg⇤ � |ge⇤) ⇥ |0, 0⇤

(anti)symmetry costs energy: “exchange interaction” 

CooperaDvity
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Example:	
  two	
  atoms

exchange interaction:
• usually dipole-dipole mediated
• creates shift and broadening    

(Kramers-Kronig) 
•

|ee⇥ � |1, 1⇥

|gg⇤ ⇥ |1,�1⇤

1⇤
2

(|eg⇥+ |ge⇥) � |1, 0⇥

1⌅
2

(|eg⇤ � |ge⇤) ⇥ |0, 0⇤

CooperaDvity



Dicke	
  model

Dicke	
  states: |J,MJ� = Sym
⇥⇥ ge . . . e⇧ ⌅⇤ ⌃

J+MJ

g . . . g⇧ ⌅⇤ ⌃
J�MJ

�
e

g

(=	
  max.	
  excitaDon)	
  

(=	
  actual	
  excitaDon)
angular	
  momentum	
  

formulaDon
⇒ J ⇥ N

2
MJ = �J . . . J
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RadiaDon	
  couples	
  only	
  states	
  with	
  equal	
  J	
  
Example:	
  two	
  atoms

|ee⇥ � |1, 1⇥

|gg⇤ ⇥ |1,�1⇤

1⇤
2

(|eg⇥+ |ge⇥) � |1, 0⇥ 1⌅
2

(|eg⇤ � |ge⇤) ⇥ |0, 0⇤



QuesDons	
  -­‐	
  guideline

• Superradiance	
  -­‐	
  What?	
  Why?
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• How	
  do	
  we	
  calculate	
  it	
  (beber)?



Full	
  dynamics	
  (all	
  degrees	
  of	
  freedom	
  of	
  atoms,	
  fields)

Dynamics	
  of	
  atoms	
  in	
  dense	
  media	
  -­‐	
  Schwinger-­‐Keldysh	
  &	
  Dyson	
  Eq.	
  

Gauss: field	
  degrees	
  	
  
of	
  freedom

Two	
  atom	
  Master	
  equaDon

two	
  probe	
  atoms	
  
+	
  

surrounding	
  atoms

Two	
  atoms	
  +	
  field

effecDve	
  two-­‐atom	
  descripDon

Two	
  atoms	
  +	
  field

Vprobe =
�

i=1,2

piEiH � S = Te�
i
�

R
d�Vprobe(�)

effecDve	
  two-­‐atom	
  descripDon

Full	
  dynamics	
  (all	
  degrees	
  of	
  freedom	
  of	
  atoms,	
  fields)
H = Hatoms + Hfield �

�

i=1,2

piEi

24
Fleischhauer, Yelin, PRA 59, 2427 (99); Lin, Yelin, Adv. Atom. Mol. Opt. Phys. 61, 295 (2012)
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ȧ = �� (� + 2�) a� �̄ x� i⌦ (⇢eg � ⇢ge)
ṅ = 2� � 2(� + 2�) n� 4� a + 4(�̄ + 2�̄) x� 4 i⌦ (meg �mge)� 4 i C�(⇢gemeg � ⇢egmge)

ẋ = �(� + 2�) x +
�̄ + 2�̄

2
n + �̄ a� �̄

2
+ i⌦ (meg �mge) + i C�(⇢gemeg � ⇢egmge)

⇢̇eg = �
✓

� + 2�
2

+ i (� + 2���⌦)
◆

⇢eg +
�̄ � 2 i �̄

2
meg � i (⌦ + C�⇢eg) (2 a� 1)

ṁeg = �
✓

3
� + 2�

2
+ �̄ + 2�̄ + i (� + 2���⌦)

◆
meg � (� +

�̄

2
+ i �̄) ⇢eg

�i (⌦ + C�⇢eg) (n� 2 x)� 2 i (⌦ + C�⇢ge)⇢eg,eg

⇢̇eg,eg = � ((� + 2�) + 2 i (� + 2���⌦)) ⇢eg,eg � 2 i (⌦ + C�⇢eg) meg



ȧ = �� (� + 2�) a� �̄ x� i⌦ (⇢eg � ⇢ge)
ṅ = 2� � 2(� + 2�) n� 4� a + 4(�̄ + 2�̄) x� 4 i⌦ (meg �mge)� 4 i C�(⇢gemeg � ⇢egmge)

ẋ = �(� + 2�) x +
�̄ + 2�̄

2
n + �̄ a� �̄

2
+ i⌦ (meg �mge) + i C�(⇢gemeg � ⇢egmge)

⇢̇eg = �
✓

� + 2�
2

+ i (� + 2���⌦)
◆

⇢eg +
�̄ � 2 i �̄

2
meg � i (⌦ + C�⇢eg) (2 a� 1)

ṁeg = �
✓

3
� + 2�

2
+ �̄ + 2�̄ + i (� + 2���⌦)

◆
meg � (� +

�̄

2
+ i �̄) ⇢eg

�i (⌦ + C�⇢eg) (n� 2 x)� 2 i (⌦ + C�⇢ge)⇢eg,eg

⇢̇eg,eg = � ((� + 2�) + 2 i (� + 2���⌦)) ⇢eg,eg � 2 i (⌦ + C�⇢eg) meg
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Same parameters as before: C=10

with exchange

no exchange
(“amplified spontaneous emission”)

Fleischhauer, Yelin, PRA 59, 2427 (99); Lin, Yelin, Adv. Atom. Mol. Opt. Phys. 61, 295 (2012)
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Can	
  one	
  expect	
  superradiance?

The	
  important	
  parameter	
  is	
  

n�2r

n:	
  density,	
  λ:	
  wavelength,	
  r:	
  system	
  size

opDcal	
  depth

Lin, Yelin, Adv. Atom. Mol. Opt. Phys. 61, 295 (2012)

or nλ3 ?



New	
  experimental	
  	
  systems:	
  example

•	
  Ultracold	
  Rydberg	
  atoms

(Phil	
  Gould,	
  Ed	
  Eyler,	
  Uconn)
…

…

40P
39S
38S

5S

39D
38D

5D

Rb
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EffecDve	
  decay	
  Dmes	
  from	
  40P	
  into	
  nS

principle	
  quantum	
  number	
  n

τ e
ff/
µ
s	
  (
in
ve
rs
e	
  
Ei
ns
te
in
	
  A
)

vacuum	
  
(Daniel	
  

Vrinceanu)

dense	
  
gas

In	
  vacuum:	
  decay	
  into	
  low	
  n	
  is	
  favored	
  
In	
  dense	
  gas:	
  decay	
  into	
  high	
  n	
  is	
  favored	
  ➱	
  λ	
  large,	
  n	
  λ2	
  r	
  large!	
  	
  	
  	
  	
  

superradiant	
  decay! 33

long wavelengths are much favored ⇒ 

experiments with Rydberg, molecular, 

microwave transitions likely involve 

superradiance

Wang, et al.,PRA 75, 033802 (2007); Lin & Yelin Mol. Phys. 111, 1917 (2013).
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QuesDons	
  -­‐	
  guideline

• Superradiance	
  -­‐	
  What?	
  Why?	
  
• How	
  do	
  we	
  calculate	
  it	
  (beber)?

35

• Is	
  there	
  a	
  collecDve	
  (Lamb)	
  shid?	
  



CollecDve	
  Lamb	
  shid
“Lamb	
  shid”	
  is	
  the	
  result	
  of	
  interacDon	
  with	
  the	
  
vacuum	
  fluctuaDons	
  
In	
  the	
  case	
  of	
  altered	
  density	
  of	
  states	
  of	
  the	
  
“vacuum”	
  (i.e.,	
  the	
  surrounding	
  space),	
  the	
  value	
  of	
  
the	
  shid	
  changes	
  
With	
  a	
  high	
  (superradiant)	
  density	
  of	
  radiators,	
  the	
  
density	
  of	
  states	
  inside	
  the	
  medium	
  can	
  be	
  
considerably	
  altered

36
“CollecDve	
  Lamb	
  shid”
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CollecDve	
  Lamb	
  Shid	
  in	
  the	
  low-­‐excitaDon	
  
limit	
  (∝Ω2)

39solve self-consistently, normalized vs. (vacuum) Lamb shift
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In Fig. 4 we plot the gradient of the line shift as a
function of cell thickness. For the Rb D2 resonance,
!LL=N ¼ "2!"k"3, where we have used the relationship
between the dipole moment for the s1=2 ! p3=2 transit-

ion and the spontaneous decay rate, d ¼
ffiffiffiffiffiffiffiffi
2=3

p
hLe ¼

1jerjLg ¼ 0i (see Ref. [27]). We extract the collisional

shift by comparing the data to Eq. (8) with !col the only
free parameter. The amplitude and period of the oscillatory
part are fully constrained by Eq. (7). We find the collisional
shift to be !col=2! ¼ ð"0:25$ 0:01Þ & 10"7Hzcm3,
similar to previous measurements on potassium vapor
[24]. In this high density limit, the collisional shift is also
independent of hyperfine splitting. The solid line is the
prediction of Eq. (7), and the agreement between the
measured shifts and the theoretical prediction is remark-
able (the reduced "2 for the data is 1.7). As well as
measuring the thickness dependence of the cooperative

Lamb shift, our data also provide a determination of the
Lorentz shift which can only be measured in the limit of
zero thickness. An important advance on previous studies
[8] is that the results clearly show the oscillations in the
shift versus the thickness which arises due to the relative
phase of the reradiated dipolar field.
The demonstration of the cooperative Lamb shift and

coherent dipole-dipole interactions in media with thickness
'#=4 opens the door to a new domain for quantum optics,
analogous to the strong dipole-dipole nonlinearity in
blockaded Rydberg systems [29,30]. As the cooperative
Lamb shift depends on the degree of excitation [5], exotic
nonlinear effects such as mirrorless bistability [31,32] are
now accessible experimentally. In addition, given the
fundamental link between the cooperative Lamb shift and
superradiance, subquarterwave thickness vapors offer an
attractive system to study superradiance in the small
volume limit. Finally, we note that the measured coopera-
tive Lamb shift is the average dipole-dipole interaction
for a homogeneous gas which contains both positive and
negative contributions. It could therefore be enhanced by
eliminating directions that contribute with the undesired
sign, for example, by patterning the distribution of dipoles.
These topics will form the focus of future research.
We would like to thank M. P. A. Jones for stimulating

discussions. We acknowledge financial support from
EPSRC and Durham University.
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FIG. 4 (color online). Experimental verification of the coop-
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is plotted against cell thickness ‘. A collisional shift !col=2! ¼
"0:25& 10"7 Hz cm3 has been subtracted. The solid black line
is Eq. (7) with no other free parameters. The conversion between
experimental and universal units is outlined in the main text.
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Collective Shift: decay of inverted TLS
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Collective Shift: decay of inverted TLS

C ∝ Nλ3 Cρ ∝ Nλ2L
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0
Collective Shift: low-excitation limit (∝Ω2)
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Shifts of a Resonance Line in a Dense Atomic Sample

Juha Javanainen,1 Janne Ruostekoski,2 Yi Li,1 and Sung-Mi Yoo1,*
1Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046, USA

2Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
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We study the collective response of a dense atomic sample to light essentially exactly using classical-
electrodynamics simulations. In a homogeneously broadened atomic sample there is no overt Lorentz-
Lorenz local field shift of the resonance, nor a collective Lamb shift. However, the addition of
inhomogeneous broadening restores the usual mean-field phenomenology.

DOI: 10.1103/PhysRevLett.112.113603 PACS numbers: 42.50.Nn, 32.70.Jz, 42.25.Bs

Textbook arguments [1,2] tell us that in a dielectric
medium the local electric field El seen by an atom
(molecule) is different from the macroscopic electric field
E by an amount proportional to the polarization P of the
medium, El ¼ Eþ P=3ϵ0. This is the origin of the local-
field corrections in electrodynamics embodied in the
Clausius-Mossotti and Lorentz-Lorenz relations. As a
result, the frequency dependence of the microscopic polar-
izability and the macroscopic susceptibility are different. If
the polarizability has a Lorentzian line shape then so does
the susceptibility, but the resonance is shifted by what is
known as the Lorentz-Lorenz (LL) shift [3]. The LL shift
serves as the generic frequency scale for other density
dependent phenomena in an atomic sample such as colli-
sional self-broadening of absorption lines [4,5] and col-
lective Lamb shift (CLS) [6–10].
Local-field corrections are a standard workhorse in solid

and liquid media. On the other hand, in a resonant atomic
gas a density conducive to LL shift and CLS results in an
optically thick sample, which might explain the sparsity of
laser spectroscopy era experiments. There are careful
experiments on related phenomenology that agree with
the respective theory [8,9,11–13], but except for the
nuclear-physics experiment of Ref. [9] the published
experiments we know of deal with inhomogeneously
broadened samples with a substantial line broadening
due to the motion of the atoms. Atomic-physics experi-
ments with cold and dense clouds such as those in Ref. [14]
are presently underway [15]. Optically thick samples are
needed for a good quantum interface between photons and
matter [16], so that local-field effects, and, more generally,
cooperative response of matter to light, are likely to become
issues in the quest toward quantum technologies.
Here we study the cooperative response of a dense

atomic sample to light in the limit of low excitation
essentially exactly [17] using classical-electrodynamics
simulations [18–25] in a slab geometry analogously to
theory [6] and experiments [8] on CLS. In these simulations
with an unprecedentedly large scale, we have discovered
that a homogeneously broadened sample with fixed atomic

positions in fact does not exhibit the expected Lorentz-
Lorenz or collective Lamb shifts. However, when we add
inhomogeneous broadening [24] to the atomic samples, the
traditional phenomenology of local-field corrections
together with density-dependent collective effects ree-
merges. Basically, in a homogeneously broadened sample
the correlations between nearby atoms established by the
dipole-dipole interactions are important, while inhomo-
geneous broadening suppresses the correlations and makes
the sample behave more like a continuous polarization.
Let us first look at the logical status of the LL shift and

CLS as in Ref. [6] from the standpoint of our earlier
analysis of the coupled theory for light and matter [17,26].
Atomic polarization acts as a source of scattered dipole
radiation. Scattered light then induces correlations between
the atoms. In particular, for a J ¼ 0 → J0 ¼ 1 atomic
transition the response of the medium is isotropic, and
in the limit of low light intensity the equation of motion for
the polarization reads

P
:
ðr1Þ ¼ ðiΔ − γÞPðr1Þ þ iζρðr1ÞE0ðr1Þ

þ iζ
Z

d3r2Gðr1 − r2ÞP2ðr1; r2Þ: (1)

Here ρ is the density, and, P2ðr1; r2Þ represents a corre-
lation function with polarization at r2, given a ground-state
atom density at r1. We consider a near-monochromatic
response, such that P and P2 correspond to positive-
frequency parts of quantities oscillating at the “laser
frequency” ω. Δ ¼ ω − ω0 is the detuning from the atomic
resonance ω0, γ is the HWHM linewidth of the transition,
ζ ¼ D2=ℏ, D is the dipole moment matrix element, and
ϵ0E0 would be the electric displacement of the driving light
if the matter were absent.G is the dipole field propagator, a
3 × 3 matrix such that Gðr − r0Þd is the usual [1] electric
field at r from a dipole d at r0.
Owing to light-mediated dipole-dipole interactions, the

polarization obtained from Eq. (1) depends on the two-
atom correlation function P2ðr1; r2Þ. Similarly, P2 is
coupled to three-atom correlation functions, which are
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thus avoid the question of the operational meaning of the
fields inside the sample.
The overall protocol is that we generate a number of

random samples, from 64 to millions, of atomic positions
evenly distributed inside the disk, compute the absorption
as a function of the detuning Δ for each sample, and
average the results. At times we also compute the depend-
ence of backscattered power on frequency. By energy
conservation, for an infinite radius of the disk the line
shapes in absorption and backscattering should be the
same. A comparison strongly suggests that our observa-
tions are not an artifact of the rather small radius of the disk.
We express the final results in terms of optical thickness
(depth, density)D defined asD ¼ − lnT. The advantage is
that in a medium that obeys Beer’s law the line shape of
optical thickness D would be independent of the thickness
h of the sample.
The numerical experiments are similar to the real experi-

ments of Keaveney et al. [8], with the significant exception
that they had thermal samples at temperatures substantially
higher than room temperature while our atoms are standing
still. Our simulations also differ from the experiments in
that the densities are lower. This is because the computer
time for a simulation grows as the cube of the atom number,
and our runs add up to ∼105 h of CPU time as is.
Figure 1 shows the optical thickness D as a function of

detuning Δ for the sample thicknesses hk ¼ 0.25, 0.5, 1.0
and 2.0, with the corresponding atom numbers N ¼ 128,
256, 512, and 1024. For comparison we also give the
predicted LL shift for this atom density as the dashed
vertical line. The absorption lines are not Lorentzian. While
the line broadens with increasing atom number and may be
noticeably asymmetric, the maximum moves very little.
The shift, if any, is at most a few percent of the LL shift.
There is no manifest LL shift, nor a CLS.

The traditional density dependent shifts are predicted
from mean-field theory that ignores the correlations
between the dipoles. Here all correlations are included,
and there is no mystery to the observation that our results
differ from the established predictions. This, however,
leaves the question of why experiments [8] that by
definition include all orders of dipole-dipole correlations
agree with theoretical arguments [6] that do not. Our next
goal, therefore, is to demonstrate that under proper con-
ditions our simulations can also produce usual mean-field
results.
In real experiments with gaseous media the environment

of a radiating atom is complex. The atom moves, there are
atom-atom collisions, and the atoms collide with the walls
of the container. Overall, the electric field that each atom
sees changes as a function of time because both the
spectator atom and the other atoms move. In the zeroth
order picture of laser spectroscopy all of this is represented
by inhomogeneous broadening: In the laboratory frame the
resonance frequency of an atom depends on its velocity
because of the Doppler shift, and, accordingly, the reso-
nance frequencies of the atoms are simply regarded as
random quantities. Here we adopt this generic model.
We repeat the numerical experiments with the atoms in

the circular disk, except that this time we assume that the
resonance frequency of each atom is also shifted by a
Gaussian random variable with zero mean and the rms
value ωD ¼ 100γ. This value would be a reasonable
estimate for the D lines in a room-temperature alkali vapor.
An example spectrum is shown in Fig. 2, left panel. The
line shape has the appearance common in the spectroscopy
of inhomogeneously broadened samples. Accordingly, we
fit it with the Voigt profile VðΔ;Γ;ΩDÞ, convolution of a
Lorentzian with the HWHM width Γ and a Gaussian with
the rms width ΩD. More precisely, the fit function is
MVðΔ − s;Γ;ΩDÞ, where the fit parameters are the overall
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FIG. 1 (color online). Optical depth D versus detuning Δ in a
homogeneously broadened sample for sample thicknesses
hk ¼ 0.25, 0.5, 1.0, and 2.0, from bottom to top; the correspond-
ing atom numbers are N ¼ 128, 256, 512, and 1024. The dashed
vertical line shows where the center of the line would be if the
naive Lorentz-Lorenz shift applied.
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FIG. 2 (color online). Left: Optical depth of the sample D with
thickness hk ¼ 1.5, and, hence, N ¼ 768 atoms, as a function of
the detuning for a sample with the inhomogeneous linewidth
ωD ¼ 100γ. This numerical experiment (solid red line) is an
average of 1024 samples, the fit with a Voigt profile (dashed
black line) has the parameters s ¼ 2.15γ, Γ ¼ 17.74γ, and
ΩD ¼ 112.83γ. Right: The shift of the absorption line s plotted
as a function of the thickness of the sample h as solid circles. The
statistical error bars are smaller than the size of the circles. Also
shown as a solid line is the collective Lamb shift, Eq. (2), and as a
dashed line a vertically translated version of Eq. (2) fitted to the
numerical data points with hk ≥ 1.
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QuesDons	
  -­‐	
  guideline

• Superradiance	
  -­‐	
  What?	
  Why?	
  
• How	
  do	
  we	
  calculate	
  it	
  (beber)?	
  
• Is	
  there	
  a	
  collecDve	
  (Lamb)	
  shid?	
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• How	
  does	
  entanglement	
  come	
  into	
  the	
  
picture?
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Superradiance	
  and	
  Entanglement

Does	
  (Dicke)	
  superradiance	
  need/create	
  entanglement?

NO

Wolfe,	
  Yelin,	
  PRL	
  112,	
  140402	
  (’14)



Spin	
  Squeezing	
  InequaliDes	
  and	
  Entanglement	
  of	
  N	
  Qubit	
  States	
  J.	
  
K.	
  Korbicz,	
  J.	
  I.	
  Cirac,	
  M.	
  Lewenstein	
  	
  
Separability	
  in	
  2×N	
  composite	
  quantum	
  systems	
  B.	
  Kraus,	
  J.	
  I.	
  
Cirac,	
  S.	
  Karnas,	
  M.	
  Lewenstein	
  	
  	
  
Entangled	
  symmetric	
  states	
  of	
  N	
  qubits	
  with	
  all	
  posiDve	
  parDal	
  
transposiDons	
  R.	
  Augusiak,	
  J.	
  Tura,	
  J.	
  Samsonowicz,	
  M.	
  
Lewenstein	
  	
  
Four-­‐qubit	
  entangled	
  symmetric	
  states	
  with	
  posiDve	
  parDal	
  
transposiDons	
  J.	
  Tura,	
  R.	
  Augusiak,	
  P.	
  Hyllus,	
  M.	
  Kuś,	
  J.	
  
Samsonowicz,	
  M.	
  Lewenstein	
  	
  
Separability	
  criteria	
  and	
  entanglement	
  witnesses	
  for	
  symmetric	
  
quantum	
  states	
  G.	
  Tóth,	
  O.	
  Gühne	
  	
  
Three	
  qubits	
  can	
  be	
  entangled	
  in	
  two	
  inequivalent	
  ways	
  W.	
  Dür,	
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How	
  to	
  define/calculate	
  many-­‐parDcle	
  entanglement?

Superradiance	
  and	
  Entanglement

http://prl.aps.org/abstract/PRL/v95/i12/e120502
http://pra.aps.org/abstract/PRA/v61/i6/e062302
http://arxiv.org/abs/1206.3088
http://pra.aps.org/abstract/PRA/v85/i6/e060302
http://link.springer.com/article/10.1007%2Fs00340-009-3839-7
http://pra.aps.org/abstract/PRA/v62/i6/e062314
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Superradiance	
  and	
  Entanglement

Does	
  (Dicke)	
  superradiance	
  need/create	
  
entanglement?	
  (IniDal	
  state:	
  no	
  entanglement)

Dicke	
  superradiant	
  
Dme	
  evoluDon separable	
  states=

construc*ve	
  proof

Wolfe,	
  Yelin,	
  PRL	
  112,	
  140402	
  (’14)



Dicke	
  superradiant	
  
states separable	
  states
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Superradiance	
  and	
  Entanglement

our	
  system:	
  mixed	
  state	
  of	
  
N-­‐atom	
  Dicke	
  states	
  with	
  
N+1	
  known	
  independent	
  

coefficients	
  pi

compare	
  to	
  mixture	
  of	
  
symmetric	
  product	
  states	
  of	
  
N	
  (two-­‐level)	
  atoms	
  (needs	
  

N+1	
  coefficients	
  yi)

=

(N+1)	
  -­‐	
  dim.	
  
equaDon	
  
system

Does	
  (Dicke)	
  superradiance	
  need/create	
  
entanglement?	
  (IniDal	
  state:	
  no	
  entanglement)

Wolfe,	
  Yelin,	
  Wolfe,	
  Yelin,	
  PRL	
  112,	
  140402	
  (’14)
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Superradiance	
  and	
  Entanglement

our	
  system:	
  mixed	
  state	
  of	
  
N-­‐atom	
  Dicke	
  states	
  with	
  
N+1	
  known	
  independent	
  

coefficients	
  pi

compare	
  to	
  mixture	
  of	
  
symmetric	
  product	
  states	
  of	
  
N	
  (two-­‐level)	
  atoms	
  (needs	
  

N+1	
  coefficients	
  yi)

=

(N+1)	
  -­‐	
  dim.	
  
equaDon	
  
system

con
diDo

n:	
  	
  

all	
  c
oeffi

cien
ts	
  

0	
  ≤	
  
pi	
  ≤

	
  1	
  	
  

Does	
  (Dicke)	
  superradiance	
  need/create	
  
entanglement?	
  (IniDal	
  state:	
  no	
  entanglement)

Wolfe,	
  Yelin,	
  PRL	
  112,	
  140402	
  (’14)
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Superradiance	
  and	
  Entanglement

our	
  system:	
  mixed	
  state	
  of	
  
N-­‐atom	
  Dicke	
  states	
  with	
  
N+1	
  known	
  independent	
  

coefficients	
  pi

compare	
  to	
  mixture	
  of	
  
symmetric	
  product	
  states	
  of	
  
N	
  (two-­‐level)	
  atoms	
  (needs	
  

N+1	
  coefficients	
  yi)

=

(N+1)	
  -­‐	
  dim.	
  
equaDon	
  
system

con
diDo

n:	
  	
  

all	
  c
oeffi

cien
ts	
  

0	
  ≤	
  
pi	
  ≤

	
  1	
  	
  

😊

Does	
  (Dicke)	
  superradiance	
  need/create	
  
entanglement?	
  (IniDal	
  state:	
  no	
  entanglement)

Wolfe,	
  Yelin,	
  PRL	
  112,	
  140402	
  (’14)

(wo
rks!

)
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Superradiance	
  and	
  Entanglement

Driven	
  superradiant	
  system:	
  

• Driving	
  alone	
  does	
  not	
  entangle	
  
atoms	
  

• Superradiance	
  alone	
  does	
  not	
  
entangle	
  atoms	
  

• Driving	
  and	
  superradiance	
  together	
  
entangle	
  atoms!	
  	
  



Fuzzy	
  Bunny?

57



Spin	
  Squeezing

• Correlated	
  (“squeezed”)	
  spins	
  could	
  improve	
  
resoluDon	
  in	
  one	
  direcDon	
  (“quadrature”).

58



(Spin)	
  Squeezing

• How	
  to	
  measure	
  squeezing/measurement	
  
improvement?

59Kitagawa, Ueda, PRA 47, 5138 (93)



Spin	
  squeezing

Old	
  problem:	
  How	
  to	
  improve	
  metrology	
  by	
  
spin	
  squeezing	
  ensembles	
  

➡	
  Groups	
  of	
  Bigelow,	
  Kuzmich,	
  Lewenstein,	
  
Mølmer,	
  Polzik,	
  Sanders,	
  Sørensen,	
  VuleDc,	
  
Wineland,…
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Spin	
  Squeezing

• Correlated	
  (“squeezed”)	
  spins	
  could	
  improve	
  
resoluDon	
  in	
  one	
  direcDon	
  (“quadrature”).

61Kitagawa, Ueda, PRA 47, 5138 (93)



Superradiant	
  Spin	
  Squeezing

62(driving field)
Wolfe, Yelin, arXiv:1405.5288



Best	
  case	
  for	
  Dicke	
  ensemble

63Wolfe, Yelin, arXiv:1405.5288, González Tudela, Porras, PRL 110, 080502 (’13)



Conclusions,	
  ApplicaDons	
  and	
  Outlook

64

• Superradiance	
  -­‐	
  What?	
  Why?	
  
✴CollecDve	
  effect	
  +	
  exchange	
  

• How	
  do	
  we	
  calculate	
  it	
  (beber)?	
  
✴large,	
  homogeneous,	
  self-­‐consistently	
  

➡	
  small,	
  ordered?	
  higher	
  correlaDons?	
  

• Is	
  there	
  a	
  collecDve	
  (Lamb)	
  shid?	
  	
  
✴Yes,	
  and	
  yes.	
  	
  

➡	
  Find	
  schemes	
  to	
  measure!	
  

• How	
  does	
  entanglement	
  come	
  into	
  the	
  picture?	
  
✴CooperaDvity	
  alone	
  does	
  not	
  create	
  entanglement,	
  but	
  
cooperaDve	
  +	
  driving	
  interacDon	
  squeeze	
  

➡	
  Find	
  in	
  more	
  realisDc	
  systems	
  +	
  squeeze	
  THz	
  light	
  fields



Thank 
you!
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