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Non-trivial band structure:
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q; hence one might expect the above condition to
be satisfied in roughly q distinct regions of the
e axis (one region centered on each root). This
is indeed the case, and is the basis for a very
striking (and at first disturbing) fact about this
problem: when n =p/q, the Bloch band always
breaks up into i.-recisely q distinct energy bands.
Since small variations in the magnitude of o. can
produce enormous fluctuations in the value of the
denominator q, one is apparently faced with an
unacceptable physical prediction. However, nature
is ingenious enough to find a way out of this ap-
pax'ent, anomaly. Befox'e we go into the x'esolution
however, let us mention certain facts about the
spectrum belonging to any value of z. Most can
be proven trivially: (i) Spectrum(tr) and spectrum
(ci+N) are identical. (ii) Spectrum(n) and spec-
trum(-tr) are identical. (iii) & belongs to spec-
trum(a } if and only if -e belongs to spectrum(a}.
(iv) If e belongs to spectrum (a) for any a, then
-4 ~ &~+4. The last property is a little subtler
than the previous three; it can be proven in dif-
ferent ways. One proof has been published. "
From properties (i) and (iv), it follows that a

graph of the spectrum need only include values of
& between + 4 and -4, and values of e in any unit
interval. We shall look at the interval [0, 1]. Fur
thermore, as a consequence of pxoperties, the
graph inside the above-defined rectangular region
must have two axes of reflection, namely the hor-
izontal line z= &, and the vertical line &=0. A
plot of spectrum(o. ), with n along the vertical axis,
appears in Fig. 1. (Only rational values of a with
denominator less than 50 are shown. )

IV. RECURSIVE STRUCTURE OF THE GRAPH

This graph has some vexy unusual properties.
The large gaps form a very striking pattern some-
what resembling a butterfly; perhaps equally strik-
ing are the delicacy and beauty of the fine-grained
structure. These are due to a very intricate
scheme, by which bands cluster into groups, which
themselves may cluster into laxger groups, and
so on. The exact rules of formation of these hier-
archically organized clustering patterns (II's) are
what we now wish to cover. Our description of 0's
will be based on three statements, each of which
describes some aspect of the structure of the
graph. All of these statements are based on ex-
tremely close examination of the numex ical data,
and are to be taken as "empirically proven" theo-
rems of mathematics. It would be preferable to
have a rigorous proof but that has so far eluded
capture. Before we present the three statements,
let us first adopt some nomenclature. A "unit
cell" is any portion of the graph located between
successive integers N and N +1—in fact we will
call that unit cell the N th unit cell. Every unit cell
has a "local variable" P which runs from 0 to 1.
in particular, P is defined to be the fractional part
of rt, usually denoted as (a). At P=O and P= I,
there is one band which stretches across the full
width of the cell, separating it from its upper and
lower neighbors; this band is therefore called a
"cell wall. " It turns out that eex'tain rational val-
ues of I3 play a very important role in the descrip-
tion of the structure of a unit cell; these are the
"pure cases"

FIG. 1. Spectrum inside
a unit cell. & is the hori-
zontal variable, ranging
between+4 and -4, and
p=(n) is the vertical vari-
able, ranging from 0 to 1.
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Hofstadter, Nature Physics, PRB 14, 1976
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We next imaged the edge state for a system designed without a
phase slip; that is, the magnetic field was uniform over the entire
system. Figure 2 shows light propagation along the short
(Fig. 3a,c) and long (Fig. 3b,d) edges. Light was launched in a
specific frequency band v/J¼ 1.7+0.6 (21.7+0.6), corresponding

to the short (long) edge excitation. The physical transverse width of
the edge state was about one to two resonators, as observed both in
experiment and simulation. The width is slightly greater in the
experiment than in the numerical simulation due to the presence
of intrinsic disorder in the fabrication, which was ignored in the
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Figure 3 | Edge state propagation in a homogeneous magnetic field (8 3 8 array). a–d, Light enters from one corner and exits from the other. The
experiment shows that, depending on input frequency, the light takes the short edge (a) or the long edge (b). The experimental results (a,b) are in good
agreement with the simulation results (c,d). The simulation parameters are (kex, kin, J)¼ (31, 0.57, 26) GHz, which are extracted from experimental
measurement of simpler devices. e, SEM image of the system.
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Figure 4 | Edge state protection against a defect. a, SEM image showing that a resonator has been intentionally removed from the array. b,c, Topological
protection is observed in the experiment (b) as light propagating along the edge routes around the defect, in agreement with simulation (c). Parameters for
the simulation are as in Fig. 3.
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Figure 2 | Cavity lattice for quantum simulation. a, More than two hundred
7 GHz microwave cavities are coupled in a Kagome lattice, a natural
two-dimensional lattice for these long, one-dimensional structures. To
provide the necessary photon–photon interaction, qubits must be added to
each cavity using an additional lithography layer. b, Each individual
transmission-line cavity is nearly 10 mm long and only 20 µm across, and is
folded to pack cavities densely on a chip. c, At each end, the cavities are
capacitively coupled to two neighbours, enabling photon hopping. The
symmetry of this three-way capacitor ensures uniform hopping rates
throughout the array. (Device image: courtesy of D. Underwood and
A. A. Houck.)

As qubits and cavities are made lithographically, it is possible to
fabricate large arrays to observe many-body physics of interacting
polaritons. With a 32mm⇥32mm sample, it is feasible to couple
over 200 cavities in a two-dimensional lattice. This number can
easily be extended to more than 1,000 cavities on a full two-
inch wafer. Disorder in the cavities alone can be small, on the
order of a few parts in 104, because each cavity is ⇠1 cm long
and optical lithography is typically precise to the level of only
a few micrometres. Preliminary experimental work suggests that
this is indeed feasible (A. A. Houck, private communication).
The geometry of transmission-line cavities also dictates the types
of lattice that are natural. Each ‘site’ in a simple lattice is
essentially two-dimensional, with two distinct endpoints where
photons may enter. The real-space sketch of a resonator lattice,

depicting resonators as a line segment, is thus the dual, or line
graph of the actual lattice. The 200-cavity sample in Fig. 2,
for instance, is an array of resonators forming a honeycomb
pattern. The resulting lattice is the kagome lattice (of which the
honeycomb lattice is the line graph). Qubits, not yet included
in the sample of Fig. 2, can be added in a further step of
electron-beam lithography. Without individual tunability of qubit
frequencies, disorder in qubit parameters must be expected
to be larger than cavity disorder. However, because a strong
photon–photon interaction can be realized when qubits are far
off resonance, the effects of this disorder will be mitigated,
and many-body behaviour could potentially be observed using
only global control54.

From a theoretical standpoint, the infinite-system limit is
particularly appealing owing to the availability of tools that are
appropriate for large systems, ranging from ‘pedestrian’ mean-field
theory to powerful methods such as variational cluster techniques.
Depending on the specific method, approximate—and sometimes
exact—results can be obtained that reveal important properties of
the ground state, the elementary excitations, or relevant correlation
functions. The paradigmatic model exhibiting a quantum phase
transition akin to the superfluid–Mott insulator transition in the
Bose–Hubbard model2,73 is the Jaynes–Cummings lattice with
nearest-neighbour photon hopping (at rate ):

H =
X
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X
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Despite the apparent lack of interaction terms such as (a†
j aj)2,

the Jaynes–Cummings lattice is an interacting model equivalent
to a Bose–Hubbard-like model with two species of bosons, one of
which has an infinite Hubbard parameterU !1 to reproduce the
pseudo-spin 1/2. Analogous to the Bose–Hubbard model, the key
physics of the Jaynes–Cummings lattice consists of the competition
between polariton delocalization, induced by photon hopping,
and on-site interaction, which tends to freeze out hopping and
localize polaritons.

For an array of equivalent cavities, the Jaynes–Cummings lattice
described by equation (2) has a global U (1) symmetry, so that the
total polariton number N = P

j(a
†
j aj + �+

j ��
j ) is conserved. It is

convenient to employ a grand-canonical description, where the
Hamiltonian is replaced by H = H � µN , where µ denotes the
chemical potential, although experimental procedures for realizing
such an effective chemical potential will need to be developed.
Much of the qualitative physics contained in the Jaynes–Cummings
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Figure 3 | Superfluid-to-Mott-insulator transition in the Jaynes–Cummings lattice. Polaritons in an infinite lattice of Jaynes–Cummings sites with
nearest-neighbour photon hopping can undergo a quantum phase transition from a compressible superfluid (SF) phase to Mott insulating (MI) phases
with integer polariton number n on each site. a, The critical region can be accessed by tuning the photon hopping  , the qubit–resonator detuning �, or the
chemical potential µ (here denoted as µ0 = µ�!

r

). b, The transition follows the universality class of the Bose–Hubbard model, including the characteristic
switch of the dynamic critical exponent at the multicritical points located at the tips of each lobe. c, Within the canonical ensemble, the total polariton
number remains fixed, Mott lobes reduce to line segments at integer filling factor in the phase diagram.
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Figure 4 | Edge state protection against a defect. a, SEM image showing that a resonator has been intentionally removed from the array. b,c, Topological
protection is observed in the experiment (b) as light propagating along the edge routes around the defect, in agreement with simulation (c). Parameters for
the simulation are as in Fig. 3.
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7 GHz microwave cavities are coupled in a Kagome lattice, a natural
two-dimensional lattice for these long, one-dimensional structures. To
provide the necessary photon–photon interaction, qubits must be added to
each cavity using an additional lithography layer. b, Each individual
transmission-line cavity is nearly 10 mm long and only 20 µm across, and is
folded to pack cavities densely on a chip. c, At each end, the cavities are
capacitively coupled to two neighbours, enabling photon hopping. The
symmetry of this three-way capacitor ensures uniform hopping rates
throughout the array. (Device image: courtesy of D. Underwood and
A. A. Houck.)

As qubits and cavities are made lithographically, it is possible to
fabricate large arrays to observe many-body physics of interacting
polaritons. With a 32mm⇥32mm sample, it is feasible to couple
over 200 cavities in a two-dimensional lattice. This number can
easily be extended to more than 1,000 cavities on a full two-
inch wafer. Disorder in the cavities alone can be small, on the
order of a few parts in 104, because each cavity is ⇠1 cm long
and optical lithography is typically precise to the level of only
a few micrometres. Preliminary experimental work suggests that
this is indeed feasible (A. A. Houck, private communication).
The geometry of transmission-line cavities also dictates the types
of lattice that are natural. Each ‘site’ in a simple lattice is
essentially two-dimensional, with two distinct endpoints where
photons may enter. The real-space sketch of a resonator lattice,
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graph of the actual lattice. The 200-cavity sample in Fig. 2,
for instance, is an array of resonators forming a honeycomb
pattern. The resulting lattice is the kagome lattice (of which the
honeycomb lattice is the line graph). Qubits, not yet included
in the sample of Fig. 2, can be added in a further step of
electron-beam lithography. Without individual tunability of qubit
frequencies, disorder in qubit parameters must be expected
to be larger than cavity disorder. However, because a strong
photon–photon interaction can be realized when qubits are far
off resonance, the effects of this disorder will be mitigated,
and many-body behaviour could potentially be observed using
only global control54.

From a theoretical standpoint, the infinite-system limit is
particularly appealing owing to the availability of tools that are
appropriate for large systems, ranging from ‘pedestrian’ mean-field
theory to powerful methods such as variational cluster techniques.
Depending on the specific method, approximate—and sometimes
exact—results can be obtained that reveal important properties of
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Figure 3 | Superfluid-to-Mott-insulator transition in the Jaynes–Cummings lattice. Polaritons in an infinite lattice of Jaynes–Cummings sites with
nearest-neighbour photon hopping can undergo a quantum phase transition from a compressible superfluid (SF) phase to Mott insulating (MI) phases
with integer polariton number n on each site. a, The critical region can be accessed by tuning the photon hopping  , the qubit–resonator detuning �, or the
chemical potential µ (here denoted as µ0 = µ�!
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). b, The transition follows the universality class of the Bose–Hubbard model, including the characteristic
switch of the dynamic critical exponent at the multicritical points located at the tips of each lobe. c, Within the canonical ensemble, the total polariton
number remains fixed, Mott lobes reduce to line segments at integer filling factor in the phase diagram.
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CHAPTER 8. INTERFEROMETRIC MEASUREMENT OF MANY-BODY

TOPOLOGICAL INVARIANTS

(a)

Figure 8.1: We suggest an experimental scheme for the measurement of many-body topological
invariants of interacting states with topological order. It can be applied e.g. to measure the
Chern number characterizing Laughlin states, as illustrated in (a). We couple a topological
excitation, e.g. a quasihole, to a mobile spin-1/2 impurity. When the impurity is tightly bound
to the excitation, it forms a topological polaron shown in (a). It has two internal spin states
(red and green), and can be labeled by its (quasi-) momentum q. The resulting band structure
is depicted in (b) for a generic 1D case. We suggest to measure the topological properties
of this band structure using tools developed for non-interacting systems by a combination of
Bloch oscillations and Ramsey interferometry. The resulting geometric Zak or Berry phase
picked up by opposite spin-components (b) yields the many-body topological invariant.

to the resulting bound state as a topological polaron (TP), in analogy to mobile impurities
interacting with a bath of phonons [17]. The two internal (pseudo) spin degrees of freedom
of the impurity translate into two spin states of the TP. Now the rest of the protocol can be
straightforwardly generalized from a non-interacting two-component BEC to a spin-1/2 TP
in a topologically non-trivial band structure, see FIG.8.1.

In this chapter we consider phases where topological invariants are explicitly known that
can distinguish states from di↵erent topological classes. For example the one-dimensional
Su-Schrie↵er-Heeger type models are characterized by a quantized geometric phase [81, 13]
which can be generalized to interacting systems [P2]; similarly the quantum Hall e↵ect is
characterized by the Chern number [27, 88], see Chap.1.2.

More generally we consider gapped phases which are characterized by a topological in-
variant ⌫0 that can be expressed in terms of geometric Berry phases. We show explicitly for
di↵erent models of interacting topological phases in one and two dimensions that the topo-
logical invariant ⌫TP characterizing a TP is directly related to the topological invariant ⌫0 of
the underlying many-body phase,

⌫TP ' ⌫0. (8.1)

Precise definitions of ⌫0 and ⌫TP will be given separately for every model, and the meaning
of the relation ”'” will be clarified. We explain in detail how the measurement described in
FIG.8.1 yields ⌫TP. This allows to unravel the topological order of the many-body state.

The chapter is based on results which are currently prepared for publication [P13], and it
is organized as follows. In Sec. 8.2 we introduce a generic model and solve it using the strong
coupling approximation. We define topological invariants on a general ground and explain
how they relate to one another. In Sec. 8.3 we apply our theory to long-range entangled
Chern insulators and the quantum Hall e↵ect at integer magnetic filling. In Sec. 8.4 we
generalize to fractional quantum Hall states and Chern insulators where qps are fractionally
charged. In Sec. 8.5 we discuss short-range entangled Mott insulating phases which can be
realized in current experiments with ultra cold atoms. We give an example for a many-body
Thouless pump, characterized by a many-body Chern number that can be measured using
our scheme. Additionally we show how (inversion-) symmetry-protected topological invariants
can be measured. In Sec. 8.6 we close with concluding remarks and an outlook.

Geometric phases in non-interacting systems
Single-band: U(1) Zak phase

Multi-band: U(2) Wilson-Zak loops

Atala et al., Nat. Phys. 9 (2013)

Li et al., arXiv:1509.02185 (2015)
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Grusdt et al., arXiv:1512.03407
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| i = ÛLU |0i ⌦ |0i...| i 6= ÛLU |0i ⌦ |0i...
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Interferometry reveals topology
2-species BEC experiment:
Atala et.al., Nature Physics, 2013

wide applicability:

Chern invariants Abanin et.al., PRL, 2013

Z2 invariants Grusdt et.al., PRA 89, 043621

Atala et al., Nat. Phys. 9 (2013)
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CHAPTER 8. INTERFEROMETRIC MEASUREMENT OF MANY-BODY

TOPOLOGICAL INVARIANTS

(a)

Figure 8.1: We suggest an experimental scheme for the measurement of many-body topological
invariants of interacting states with topological order. It can be applied e.g. to measure the
Chern number characterizing Laughlin states, as illustrated in (a). We couple a topological
excitation, e.g. a quasihole, to a mobile spin-1/2 impurity. When the impurity is tightly bound
to the excitation, it forms a topological polaron shown in (a). It has two internal spin states
(red and green), and can be labeled by its (quasi-) momentum q. The resulting band structure
is depicted in (b) for a generic 1D case. We suggest to measure the topological properties
of this band structure using tools developed for non-interacting systems by a combination of
Bloch oscillations and Ramsey interferometry. The resulting geometric Zak or Berry phase
picked up by opposite spin-components (b) yields the many-body topological invariant.

to the resulting bound state as a topological polaron (TP), in analogy to mobile impurities
interacting with a bath of phonons [17]. The two internal (pseudo) spin degrees of freedom
of the impurity translate into two spin states of the TP. Now the rest of the protocol can be
straightforwardly generalized from a non-interacting two-component BEC to a spin-1/2 TP
in a topologically non-trivial band structure, see FIG.8.1.

In this chapter we consider phases where topological invariants are explicitly known that
can distinguish states from di↵erent topological classes. For example the one-dimensional
Su-Schrie↵er-Heeger type models are characterized by a quantized geometric phase [81, 13]
which can be generalized to interacting systems [P2]; similarly the quantum Hall e↵ect is
characterized by the Chern number [27, 88], see Chap.1.2.

More generally we consider gapped phases which are characterized by a topological in-
variant ⌫0 that can be expressed in terms of geometric Berry phases. We show explicitly for
di↵erent models of interacting topological phases in one and two dimensions that the topo-
logical invariant ⌫TP characterizing a TP is directly related to the topological invariant ⌫0 of
the underlying many-body phase,

⌫TP ' ⌫0. (8.1)

Precise definitions of ⌫0 and ⌫TP will be given separately for every model, and the meaning
of the relation ”'” will be clarified. We explain in detail how the measurement described in
FIG.8.1 yields ⌫TP. This allows to unravel the topological order of the many-body state.

The chapter is based on results which are currently prepared for publication [P13], and it
is organized as follows. In Sec. 8.2 we introduce a generic model and solve it using the strong
coupling approximation. We define topological invariants on a general ground and explain
how they relate to one another. In Sec. 8.3 we apply our theory to long-range entangled
Chern insulators and the quantum Hall e↵ect at integer magnetic filling. In Sec. 8.4 we
generalize to fractional quantum Hall states and Chern insulators where qps are fractionally
charged. In Sec. 8.5 we discuss short-range entangled Mott insulating phases which can be
realized in current experiments with ultra cold atoms. We give an example for a many-body
Thouless pump, characterized by a many-body Chern number that can be measured using
our scheme. Additionally we show how (inversion-) symmetry-protected topological invariants
can be measured. In Sec. 8.6 we close with concluding remarks and an outlook.

mostly: fractional quantum Hall, 
fractional Chern insulators

can be any other gapped, 
topological system!
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Strong-coupling wavefunction:

4

To bind qps to the impurity, a local interaction Ĥint with
the many-body system is introduced. Its concrete form
can di↵er from model to model, but for simplicity we will
assume throughout that it is independent of the internal
state of the impurity. Thus our system is described by
the Hamiltonian Ĥ = Ĥ0 + ĤI + Ĥint.

In equilibrium, i.e. for F = 0, the ground state
| TP(q,�)i describes a TP and can be labeled by its
(quasi) momentum q and its internal state � =", #. The
external force F couples to the (quasi) momentum q of
the TP. This drives Bloch oscillations where the (quasi)
momentum changes according to d

dt

q = �

zF . By ap-
plying the scheme described in Ref. [15] to the states
| TP(q,�)i the geometric Zak phases characterizing the
TP band structure can be measured, see FIG.1. As dis-
cussed in the methods, the corresponding Chern number
is obtained by integrating the Berry curvature seen by the
TP over the magnetic BZ of the host many-body system.

Strong coupling theory.– Before turning our atten-
tion to concrete models, we introduce the strong cou-
pling theory of TPs which is inspired by Landau’s and
Pekar’s treatment of the polaron problem in polar crys-
tals [39, 40]. There are several important energy scales
for describing TPs. Firstly qp excitations are character-
ized by the bandwidth Jqp of their e↵ective dispersion
and by the energy required for their creation which is set
by the bulk excitation gap �0. Secondly the impurity
is characterized by the e↵ective hopping JI and coupling
strength to the host particles V . Our description of TP
requires the following hierarchy of scales. The qp gap�0,
which is smaller than Jqp, should be larger than JI and
V , i.e. �0 � JI, V . The impurity-host particle interac-
tion strength V should be chosen such that the impurity
binds precisely one qp. We also need Jqp to be smaller
than JI, i.e. Jqp ⌧ JI, so that the total momentum of
TP, which is e↵ectively shared by the impurity and the
qp, resides predominantly in the qp. Another way of un-
derstanding this requirement is that the impurity should
be fast compared to the qp and thus follow its dynamics
adiabatically.

Next we introduce a frame where the total momen-
tum of the TP is conserved explicitly. To this end
we restrict ourselves to a single qp and approximate
Ĥ0 ⇡ P

k ✏qp(k) | qp(k)ih qp(k)|, with ✏qp(k) being
the e↵ective dispersion of qps and | qp(k)i the qp state
with momentum k. We apply the unitary transformation
ÛLLP = e

ip̂·R̂qp introduced by Lee, Low and Pines (LLP)
[41], where p̂ is the impurity momentum operator and
R̂qp is qp position operator conjugate to its momentum

operator P̂qp =
P

k k| qp(k)ih qp(k)|. The transformed

Hamiltonian Û

†
LLPĤÛLLP reads

ĤSC = Ĥ0
I + Ĥint

�
Rqp = 0

�� �

zF · �r̂ + R̂qp

�
+

+
X
k

✏qp(k � p̂) | qp(k)ih qp(k)|, (5)

as will be explained now.

The kinetic part of the impurity Hamiltonian com-
mutes with the impurity momentum, [p̂, Ĥ0

I ] = 0, and
remains unchanged. Ĥint

�
Rqp = 0

�
denotes the interac-

tion Hamiltonian for a qp localized in the origin of the
new polaron frame. Here we assumed that (within the
single qp approximation) Ĥint = Ĥint(r̂ � R̂qp) depends
only on the relative distance between impurity and qp,
and we used that Û†

LLPr̂ÛLLP = r̂+R̂qp. Finally because

[R̂qp, P̂qp] = i the qp momentum is shifted by an amount
p̂ in the last line, k ! k � p̂.
Under the strong coupling conditions outlined above

we can make a product ansatz for the TP wavefunction,
| TP(q)i = | qp(q)i ⌦ |�Ii, where the impurity follows
the qp adiabatically. In the polaron frame the impurity
sees a quasi-static potential created by the qp and its
wavefunction |�Ii is determined by the strong coupling
impurity Hamiltonian

ĤI,SC = Ĥ0
I � �

zF · r̂ + Ĥint

�
Rqp = 0

�
. (6)

This leads to a modification of the e↵ective qp dispersion
in Eq.(5), which we approximate by h�I|✏qp(k � p̂)|�Ii.
We proceed by eliminating the last term in the first
line of Eq.(5) by a time-dependent gauge transformation

Ûqp(t) = e

iR̂qp·�̂zF t. In the resulting e↵ective Hamilto-
nian the force F couples to the conserved momentum k
and the qp Hamiltonian in the strong coupling theory
thus reads

Ĥqp,SC =
X
k

h�I|✏qp(k��̂zF t�p̂)|�Ii | qp(k)ih qp(k)|.
(7)

Next we discuss how the topological invariant mea-
sured by the TP relates to the Chern number of the ef-
fective qp bandstructure using the strong coupling wave-
function. During the protocol described above (see also
FIG.1) the force �̂zF is applied and the TP wavefunc-
tion | TP(q, t)i = e

i'| qp(q � �

zF t)i ⌦ |�Ii follows its
ground state adiabatically. Thereby it picks up a phase
' containing a geometric part of 2⇡⌫TP which is mea-
sured by the Ramsey sequence (dynamical phases are
discussed in Refs. [15, 16]). Due to the product form
of the strong coupling wavefunction we find two contri-
butions, ⌫TP = ⌫qp + ⌫I.
The first contribution is picked up by the qp wave-

function, 2⇡⌫qp =
H
dk · h qp(k)|irk| qp(k)i. When the

path in momentum space described by the TP in the in-
terferometer encloses the (magnetic) BZ, the qp invariant
is related to the TP Chern number defined above,

⌫qp = CTP. (8)

The second contribution ⌫I is picked up by the impurity
part of the wavefunction. In the adiabatic limit of small
F it is 2⇡⌫I = ��z

H
dtF · h�I|r̂|�Ii. This term corre-

sponds to a geometric phase because it does not vanish
in the limit when F ! 0 and needs to be considered in
general. It measures the displacement of the impurity
wavefunction relative to the qp located in the origin of

4
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new polaron frame. Here we assumed that (within the
single qp approximation) Ĥint = Ĥint(r̂ � R̂qp) depends
only on the relative distance between impurity and qp,
and we used that Û†

LLPr̂ÛLLP = r̂+R̂qp. Finally because

[R̂qp, P̂qp] = i the qp momentum is shifted by an amount
p̂ in the last line, k ! k � p̂.
Under the strong coupling conditions outlined above

we can make a product ansatz for the TP wavefunction,
| TP(q)i = | qp(q)i ⌦ |�Ii, where the impurity follows
the qp adiabatically. In the polaron frame the impurity
sees a quasi-static potential created by the qp and its
wavefunction |�Ii is determined by the strong coupling
impurity Hamiltonian

ĤI,SC = Ĥ0
I � �

zF · r̂ + Ĥint

�
Rqp = 0

�
. (6)

This leads to a modification of the e↵ective qp dispersion
in Eq.(5), which we approximate by h�I|✏qp(k � p̂)|�Ii.
We proceed by eliminating the last term in the first
line of Eq.(5) by a time-dependent gauge transformation

Ûqp(t) = e

iR̂qp·�̂zF t. In the resulting e↵ective Hamilto-
nian the force F couples to the conserved momentum k
and the qp Hamiltonian in the strong coupling theory
thus reads

Ĥqp,SC =
X
k

h�I|✏qp(k��̂zF t�p̂)|�Ii | qp(k)ih qp(k)|.
(7)

Next we discuss how the topological invariant mea-
sured by the TP relates to the Chern number of the ef-
fective qp bandstructure using the strong coupling wave-
function. During the protocol described above (see also
FIG.1) the force �̂zF is applied and the TP wavefunc-
tion | TP(q, t)i = e

i'| qp(q � �

zF t)i ⌦ |�Ii follows its
ground state adiabatically. Thereby it picks up a phase
' containing a geometric part of 2⇡⌫TP which is mea-
sured by the Ramsey sequence (dynamical phases are
discussed in Refs. [15, 16]). Due to the product form
of the strong coupling wavefunction we find two contri-
butions, ⌫TP = ⌫qp + ⌫I.
The first contribution is picked up by the qp wave-

function, 2⇡⌫qp =
H
dk · h qp(k)|irk| qp(k)i. When the

path in momentum space described by the TP in the in-
terferometer encloses the (magnetic) BZ, the qp invariant
is related to the TP Chern number defined above,

⌫qp = CTP. (8)

The second contribution ⌫I is picked up by the impurity
part of the wavefunction. In the adiabatic limit of small
F it is 2⇡⌫I = ��z

H
dtF · h�I|r̂|�Ii. This term corre-

sponds to a geometric phase because it does not vanish
in the limit when F ! 0 and needs to be considered in
general. It measures the displacement of the impurity
wavefunction relative to the qp located in the origin of

Topological invariant (Zak phase):
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the many-body system is introduced. Its concrete form
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cussed in the methods, the corresponding Chern number
is obtained by integrating the Berry curvature seen by the
TP over the magnetic BZ of the host many-body system.
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LLPr̂ÛLLP = r̂+R̂qp. Finally because

[R̂qp, P̂qp] = i the qp momentum is shifted by an amount
p̂ in the last line, k ! k � p̂.
Under the strong coupling conditions outlined above

we can make a product ansatz for the TP wavefunction,
| TP(q)i = | qp(q)i ⌦ |�Ii, where the impurity follows
the qp adiabatically. In the polaron frame the impurity
sees a quasi-static potential created by the qp and its
wavefunction |�Ii is determined by the strong coupling
impurity Hamiltonian
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CHAPTER 8. INTERFEROMETRIC MEASUREMENT OF MANY-BODY

TOPOLOGICAL INVARIANTS

(a)

Figure 8.1: We suggest an experimental scheme for the measurement of many-body topological
invariants of interacting states with topological order. It can be applied e.g. to measure the
Chern number characterizing Laughlin states, as illustrated in (a). We couple a topological
excitation, e.g. a quasihole, to a mobile spin-1/2 impurity. When the impurity is tightly bound
to the excitation, it forms a topological polaron shown in (a). It has two internal spin states
(red and green), and can be labeled by its (quasi-) momentum q. The resulting band structure
is depicted in (b) for a generic 1D case. We suggest to measure the topological properties
of this band structure using tools developed for non-interacting systems by a combination of
Bloch oscillations and Ramsey interferometry. The resulting geometric Zak or Berry phase
picked up by opposite spin-components (b) yields the many-body topological invariant.

to the resulting bound state as a topological polaron (TP), in analogy to mobile impurities
interacting with a bath of phonons [17]. The two internal (pseudo) spin degrees of freedom
of the impurity translate into two spin states of the TP. Now the rest of the protocol can be
straightforwardly generalized from a non-interacting two-component BEC to a spin-1/2 TP
in a topologically non-trivial band structure, see FIG.8.1.

In this chapter we consider phases where topological invariants are explicitly known that
can distinguish states from di↵erent topological classes. For example the one-dimensional
Su-Schrie↵er-Heeger type models are characterized by a quantized geometric phase [81, 13]
which can be generalized to interacting systems [P2]; similarly the quantum Hall e↵ect is
characterized by the Chern number [27, 88], see Chap.1.2.

More generally we consider gapped phases which are characterized by a topological in-
variant ⌫0 that can be expressed in terms of geometric Berry phases. We show explicitly for
di↵erent models of interacting topological phases in one and two dimensions that the topo-
logical invariant ⌫TP characterizing a TP is directly related to the topological invariant ⌫0 of
the underlying many-body phase,

⌫TP ' ⌫0. (8.1)

Precise definitions of ⌫0 and ⌫TP will be given separately for every model, and the meaning
of the relation ”'” will be clarified. We explain in detail how the measurement described in
FIG.8.1 yields ⌫TP. This allows to unravel the topological order of the many-body state.

The chapter is based on results which are currently prepared for publication [P13], and it
is organized as follows. In Sec. 8.2 we introduce a generic model and solve it using the strong
coupling approximation. We define topological invariants on a general ground and explain
how they relate to one another. In Sec. 8.3 we apply our theory to long-range entangled
Chern insulators and the quantum Hall e↵ect at integer magnetic filling. In Sec. 8.4 we
generalize to fractional quantum Hall states and Chern insulators where qps are fractionally
charged. In Sec. 8.5 we discuss short-range entangled Mott insulating phases which can be
realized in current experiments with ultra cold atoms. We give an example for a many-body
Thouless pump, characterized by a many-body Chern number that can be measured using
our scheme. Additionally we show how (inversion-) symmetry-protected topological invariants
can be measured. In Sec. 8.6 we close with concluding remarks and an outlook.



Fabian Grusdt

Fractional Quantum Hall Effects

17

Charge e/m vortex sees particles as a source of flux

qp = vortex
host particles



Fabian Grusdt

Fractional Quantum Hall Effects

17

Charge e/m vortex sees particles as a source of flux

qp = vortex

'AB = 2⇡

host particles



Fabian Grusdt

Fractional Quantum Hall Effects

17

Charge e/m vortex sees particles as a source of flux

qp = vortex

'AB = 2⇡

host particles

Host particle density: 1/m x flux density

reduced effective magnetic field: b⇤z = bz/m



Fabian Grusdt

Fractional Quantum Hall Effects

17

Charge e/m vortex sees particles as a source of flux

qp = vortex

'AB = 2⇡

host particles

Host particle density: 1/m x flux density

reduced effective magnetic field: b⇤z = bz/m

enhanced Berry curvature: F⇤ = F ⇥m



Fabian Grusdt

Fractional Quantum Hall Effects

17

Charge e/m vortex sees particles as a source of flux

qp = vortex

'AB = 2⇡

host particles

Host particle density: 1/m x flux density

reduced effective magnetic field: b⇤z = bz/m

enhanced Berry curvature: F⇤ = F ⇥m

enhanced TP Chern number: CTP =
1

2⇡

Z

BZ
d2k F⇤ = m



Fabian Grusdt

Fractional Quantum Hall Effects

18

Effective field theory description of bulk:

7

tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1

2⇡

Z
BZ

d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y

! k

y

+G

y

.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]

L =
1

4⇡
a

T

µ

K@

⌫

a

�

✏

µ⌫� � e

2⇡
A

µ

t

T

@

⌫

a

�

✏

µ⌫�+

+
nX

I=1

a

Iµ

`

I

j

Iµ

+ kin. energy. (13)

Here a

µ

= a

I=1...n,µ are the auxiliary compact U(1)
gauge fields from which the conserved current J

µ

of the many-body system can be derived, J

µ

=
e

2⇡

P
I

@

⌫

a

I�

✏

µ⌫�. As usual, µ, ⌫, ... = t, x, y denote tem-
poral and spatial coordinates.

The first two terms of the Lagrangian (13) describe the
response of the many-body system to the external U(1)
gauge field A

µ

. Here e denotes the A

µ

-charge of the
indistinguishable host particles constituting the many-
body system. From the Euler-Lagrange equations the
quantized Hall response is obtained, J

µ

= C e

2

2⇡ ✏
µ⌫�

@

⌫

A

�

,
where the many-body Chern number is given by

C =
nX

I,J=1

t

I

�
K

�1
�
IJ

. (14)

The third term in (13) describes the conserved currents
j

Iµ

of the I = 1...n di↵erent qps (in the bulk of the sys-
tem). The integers `

I

denote the number of qps which
are bound together, in particular `

I

= +1 (`
I

= �1)
for elementary qp (quasihole) excitations. Edge terms
and kinetic energy corrections will be ignored in the La-
grangian (13) in the following. The qps carry fractional
charges e

⇤
J

/e =
P

n

I=1 tI

�
K

�1
�
IJ

, see Ref.[4]. Thus we
note that the Chern number of the incompressible ground
state is given by the sum of the fractional charges of ele-
mentary topological excitations, C =

P
J

e

⇤
J

/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j

µ

by j

Iµ

= `

I

j

µ

. This is demonstrated
by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge

Wen, Adv.Phys. 44 (1995)
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tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1

2⇡

Z
BZ

d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y

! k

y

+G

y

.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]
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response of the many-body system to the external U(1)
gauge field A
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. Here e denotes the A
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quantized Hall response is obtained, J

µ

= C e

2

2⇡ ✏
µ⌫�

@

⌫

A

�

,
where the many-body Chern number is given by

C =
nX

I,J=1

t

I

�
K

�1
�
IJ

. (14)

The third term in (13) describes the conserved currents
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of the I = 1...n di↵erent qps (in the bulk of the sys-
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I

denote the number of qps which
are bound together, in particular `

I

= +1 (`
I
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, see Ref.[4]. Thus we
note that the Chern number of the incompressible ground
state is given by the sum of the fractional charges of ele-
mentary topological excitations, C =
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⇤
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/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j

µ

by j

Iµ

= `

I

j

µ

. This is demonstrated
by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge
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tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1

2⇡

Z
BZ

d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y

! k

y

+G

y

.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]

L =
1
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Here a
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I=1...n,µ are the auxiliary compact U(1)
gauge fields from which the conserved current J

µ

of the many-body system can be derived, J

µ

=
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2⇡

P
I

@

⌫
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✏

µ⌫�. As usual, µ, ⌫, ... = t, x, y denote tem-
poral and spatial coordinates.

The first two terms of the Lagrangian (13) describe the
response of the many-body system to the external U(1)
gauge field A

µ

. Here e denotes the A

µ

-charge of the
indistinguishable host particles constituting the many-
body system. From the Euler-Lagrange equations the
quantized Hall response is obtained, J

µ

= C e

2
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⌫
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,
where the many-body Chern number is given by

C =
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I,J=1
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. (14)

The third term in (13) describes the conserved currents
j

Iµ

of the I = 1...n di↵erent qps (in the bulk of the sys-
tem). The integers `

I

denote the number of qps which
are bound together, in particular `

I

= +1 (`
I

= �1)
for elementary qp (quasihole) excitations. Edge terms
and kinetic energy corrections will be ignored in the La-
grangian (13) in the following. The qps carry fractional
charges e

⇤
J

/e =
P

n

I=1 tI
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, see Ref.[4]. Thus we
note that the Chern number of the incompressible ground
state is given by the sum of the fractional charges of ele-
mentary topological excitations, C =

P
J

e

⇤
J

/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j

µ

by j

Iµ

= `

I

j

µ

. This is demonstrated
by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge
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tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1

2⇡

Z
BZ

d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y

! k

y

+G

y

.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]

L =
1

4⇡
a
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⌫
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Here a

µ

= a

I=1...n,µ are the auxiliary compact U(1)
gauge fields from which the conserved current J

µ

of the many-body system can be derived, J
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=
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2⇡
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⌫
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✏

µ⌫�. As usual, µ, ⌫, ... = t, x, y denote tem-
poral and spatial coordinates.

The first two terms of the Lagrangian (13) describe the
response of the many-body system to the external U(1)
gauge field A

µ

. Here e denotes the A

µ

-charge of the
indistinguishable host particles constituting the many-
body system. From the Euler-Lagrange equations the
quantized Hall response is obtained, J

µ

= C e
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⌫
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,
where the many-body Chern number is given by

C =
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The third term in (13) describes the conserved currents
j

Iµ

of the I = 1...n di↵erent qps (in the bulk of the sys-
tem). The integers `

I

denote the number of qps which
are bound together, in particular `

I

= +1 (`
I

= �1)
for elementary qp (quasihole) excitations. Edge terms
and kinetic energy corrections will be ignored in the La-
grangian (13) in the following. The qps carry fractional
charges e

⇤
J

/e =
P

n

I=1 tI
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, see Ref.[4]. Thus we
note that the Chern number of the incompressible ground
state is given by the sum of the fractional charges of ele-
mentary topological excitations, C =

P
J

e

⇤
J

/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j

µ

by j

Iµ

= `

I

j

µ

. This is demonstrated
by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge
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tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1

2⇡

Z
BZ

d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y

! k

y

+G

y

.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]
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1
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Here a
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response of the many-body system to the external U(1)
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. Here e denotes the A
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The third term in (13) describes the conserved currents
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of the I = 1...n di↵erent qps (in the bulk of the sys-
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denote the number of qps which
are bound together, in particular `
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= +1 (`
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for elementary qp (quasihole) excitations. Edge terms
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mentary topological excitations, C =

P
J

e

⇤
J

/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j
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by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge
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tations on topological superconductors, or systems with
symmetry-protected topological orders. An other inter-
esting direction would be to probe the (non-Abelian)
braiding statistics of anyons by coupling them to impu-
rities and form topological polarons. In this case inter-
ferometric sequences can be envisioned which work in
real-space rather than momentum-space as considered in
this work.

METHODS

Chern number of topological polarons In the
main text we generalized the interferometric protocol de-
veloped for the measurement of Chern numbers of non-
interacting particles [15, 16] to a single qp excitation in a
strongly-correlated many-body system. The coupling to
an impurity particle was necessary for adapting the inter-
ferometric protocol. In this way a topological invariant
of the TP was defined which, as we will now argue, is the
Chern number of the TP.

Consider a qp state | TP(kx, ky)i which is character-
ized by its quasimomentum (k

x

, k

y

). Let us assume that
the state is non-degenerate for all quasimomenta. The
corresponding Chern number CTP is then defined by the
quantized Hall response to an external force F . In the
case of TPs the external force F acts directly on the
impurity and couples to the quasimomentum according
to d

dt

k = F . Using the Kubo-formula, Thouless et al.
[38] have shown that the Chern number can be defined
as an integral of the TP Berry curvature FTP over the
(magnetic) Brillouin zone (BZ),

CTP =
1
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Z
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d

2
k FTP(k). (12)

The Berry curvature FTP = rk ⇥huk|irk|uki is defined
through the Bloch wavefunction |uki constructed from
| TP(k)i. The magnetic BZ is defined by the periodicity
of the qp Hamiltonian, including gauge-dependent vector
potentials [47]. The periodicity of the TP wavefunction
| TP(k+G)i = | TP(k)i, where G is a reciprocal lattice
vector, guarantees the integer quantization of the Chern
number [38, 48].

The magnetic BZ of the TP is determined by the
microscopic details of the model for both the impurity as
well as the host many-body system. Let us assume that
the impurity either lives in the continuum (such that
e↵ectively the impurity lattice constant a ! 0 vanishes)
or that the unit-cell of the impurity lattice fits into the
magnetic unit-cell of the host many-body system an
integer number of times in a commensurable way. In
either case, the magnetic BZ of the TP is then equal to
the magnetic BZ of the host many-body system. This
explains why, in our interferometric protocol, the TP
Chern number needs to be defined as the winding of the
Zak phase of the TP 'Zak(ky) over the magnetic BZ of
the host many-body system, k

y
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y
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.

Field theory of topological polarons Here we dis-
cuss a field theory description of TPs, allowing us to de-
rive the topological invariants characterizing their e↵ec-
tive bandstructure. We consider a more general situation
than discussed in the main text and allow quantum Hall
states with arbitrary Abelian topological order. The gen-
eralization of our interferometric protocol to this case is
discussed in the end.

Our starting point is a field-theoretical description of
the topologically ordered host many-body system. We
consider an incompressible ground state with Abelian
topological order, described by a Chern-Simons theory of
level n. It is characterized by the symmetric integer n-
by-n matrix K and the charge vector t. The Lagrangian

is [4]

L =
1

4⇡
a

T

µ

K@

⌫

a

�

✏

µ⌫� � e

2⇡
A

µ

t

T

@

⌫

a

�

✏

µ⌫�+

+
nX

I=1

a

Iµ

`

I

j

Iµ

+ kin. energy. (13)

Here a

µ

= a

I=1...n,µ are the auxiliary compact U(1)
gauge fields from which the conserved current J

µ

of the many-body system can be derived, J

µ

=
e

2⇡

P
I

@

⌫

a

I�

✏

µ⌫�. As usual, µ, ⌫, ... = t, x, y denote tem-
poral and spatial coordinates.

The first two terms of the Lagrangian (13) describe the
response of the many-body system to the external U(1)
gauge field A

µ

. Here e denotes the A

µ

-charge of the
indistinguishable host particles constituting the many-
body system. From the Euler-Lagrange equations the
quantized Hall response is obtained, J

µ

= C e

2

2⇡ ✏
µ⌫�

@

⌫

A

�

,
where the many-body Chern number is given by

C =
nX

I,J=1

t

I

�
K

�1
�
IJ

. (14)

The third term in (13) describes the conserved currents
j

Iµ

of the I = 1...n di↵erent qps (in the bulk of the sys-
tem). The integers `

I

denote the number of qps which
are bound together, in particular `

I

= +1 (`
I

= �1)
for elementary qp (quasihole) excitations. Edge terms
and kinetic energy corrections will be ignored in the La-
grangian (13) in the following. The qps carry fractional
charges e

⇤
J

/e =
P

n

I=1 tI

�
K

�1
�
IJ

, see Ref.[4]. Thus we
note that the Chern number of the incompressible ground
state is given by the sum of the fractional charges of ele-
mentary topological excitations, C =

P
J

e

⇤
J

/e.

When the impurity (in a given internal state) binds `
I

qps of type I, their currents can be directly related to
the TP current j

µ

by j

Iµ

= `

I

j

µ

. This is demonstrated
by a microscopic calculation in the main text. Using this
expression and integrating out the auxiliary U(1) gauge

Jµ =
e

2⇡

X

I

@⌫aI�✏
µ⌫�

C =
nX

I,J=1

tI(K
�1)IJ =

X

J

e⇤J
e
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in the Lagrangian (13), see Ref.[49], we obtain

Le↵ = � e

2

4⇡
t

T

K

�1
t ✏

µ⌫�

A

µ

@

⌫

A

�

+⇡`TK�1
` j

µ

✏

µ⌫�

@

⌫

@

2
j

�

+
⇣
qB

µ

+ eA

µ

t

T

K

�1
`

⌘
j

µ

, (15)

where @2 = @

⌧

@

⌧

. We also included a coupling qB

µ

j

µ

of
the impurity to an additional external field B

µ

. The first
term in Eq. (3) is a Chern Simons term for the external
gauge field A

µ

. The second term describes the braiding
statistics of the TP, which coincides with the expected
qp statistics, see e.g. Ref.[50]. The statistical phase e

i✓

picked up when interchanging two TPs adiabatically is
given by ✓ = ⇡`

T

K

�1
` [4]. The last term, most impor-

tant to our discussion, corresponds to an e↵ective gauge
field (A

µ

e

⇤
TP +B

µ

q) /e seen by the TP, where the A

µ

-
charge of the TP is given by e

⇤
TP = e t

T

K

�1
`.

By applying the interferometric protocol introduced in
the main text to di↵erent flavors J = 1, ..., n of TPs, all
the Chern numbers (or, equivalently, all the fractional
charges)

C(J)
TP =

1

C
J

=
e

e

⇤
J

(16)

of elementary topological excitations can be measured.
To this end a single qp (or quasihole) of flavor J is bound
to the impurity. The last equation is then derived as
Eq.(4) in the main text. When the TP Chern numbers
of all qps are known, the Chern number of the incom-
pressible ground state can be derived from Eq.(14),

C =
nX

J=1

(±1)

C(J)
TP

. (17)

Here (�1) needs to be inserted if the elementary quasi-
hole excitation of flavor J is used, with `

I

= ��
I,J

, and
(+1) for elementary qps with `

I

= �

I,J

.
In the main text we discuss the case of ⌫ = 1/m

Laughlin states where n = t = 1 and K = m. In this
case there exists one quasihole branch, with fractional
charge e

⇤ = �e/m. According to Eq.(16) the Chern
number of the TP consisting of an impurity bound to
a hole is given by CTP = �m. We confirm this by a
microscopic calculation for a fractional Chern insulator
in FIG.3. Then Eq.(17) predicts a fractional Chern
number C = 1/m of the incompressible Laughlin state,
in agreement with the established result by Niu et al.[5].

Exact polaron transformation To calculate the topo-
logical invariants characterizing TPs exactly, we need its
full wavefunction | TP(q)i for any given value of the total
TP (quasi-) momentum q. Here we develop a method al-
lowing to calculate | TP(q)i using exact numerical meth-
ods. Our approach is based on the Lee-Low-Pines (LLP)
unitary transformation [41] introduced in the context of
conventional polaron physics, which makes the conserva-
tion of the polaron momentum explicit. The e↵ect of the

external force F acting on the impurity is also discussed
in this framework.
Our starting point is the impurity-centered LLP trans-

formation

ÛLLP(t) = exp
h
iR̂I · (p̂c + F t)

i
. (18)

To define the impurity position operator R̂I and the
fermion momentum operator p̂c, a gauge choice is made.
We introduce the magnetic unit cell of size a

x

⇥a

y

for the

fermion Hamiltonian Ĥ0, see Eq.(9), which contains an
integer number of flux quanta. Using the Landau gauge
as in Eq.(9) and assuming ↵ = r/s with r, s integers, we
have a

x

= a and a

y

= sa. Next we label sites within the
unit cell by an integer µ and define the impurity position
operator

R̂I =
X

j

x

,j

y

,µ

(j
x

a

x

, j

y

a

y

)T| {z }
=rj

b̂

†
j,µb̂j,µ. (19)

Here the integers j
x,y

label unit cells and (j, µ) is merely
an alternative way of parametrizing the site indices
(m,n) which were used previously in the definition of
the model. Hence we see that R̂I represents only the po-
sition of the unit cell, but not the positions of individual
sites within one cell. Similarly the fermion momentum
operator is

p̂c =
X
k,µ

k ĉ

†
k,µĉk,µ, (20)

where we introduced operators in momentum space

ĉk,µ :=
q

a

x

a

y

L

x

L

y

P
j e

ik·(j
x

a

x

e
x

+j

y

a

y

e
y

)
ĉj,µ. The wave vec-

tor k takes quantized values k = 2⇡ (i
x

/L

x

, i

y

/L

y

)T for
integers i

x

= 1, ..., L
x

/a

x

and i

y

= 1, ...., L
y

/a

y

and with
L

x,y

denoting system size in x and y direction. Note that
although the impurity lattice has a smaller period of a we
have chosen the larger magnetic unit cell of the fermion
model in Eq.(19). This is necessary to distinguish be-
tween inequivalent sites µ within one magnetic unit cell
for both the fermions and the impurity.
We proceed by applying the LLP transformation de-

fined above to the Hamiltonian Ĥ = Ĥ0 + ĤI + Ĥint,
see Eqs.(9), (10). The new e↵ective Hamiltonian in
the polaron frame reads H̃(t) = Û

†
LLP(t)ĤÛLLP(t) �

iÛ

†
LLP(t)@tÛLLP(t). First we note that the many-body

(fermion) Hamiltonian Ĥ0 trivially commutes with the
LLP transformation because of its translational invari-
ance by multiples of one magnetic unit-cell. The poten-
tial term F · P

m,n

r
m,n

b̂

†
m,n

b̂

m,n

in Eq.(10) also com-
mutes with the LLP transformation, as can easily be
checked.
To transform the kinetic energy of the impurity, we

introduce the single-particle band Hamiltonian h

I
µ,µ

0(k)
defined in the magnetic unit-cell of the fermions. This
allows us to write ĤI =

P
k,µ,µ0 b̂

†
k,µb̂k,µ0

h

I
µ,µ

0(k) in the

Limp = qBµ jµ
integrate out aµ
J.Moore, Oxford 
Univ.Press (2014)
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in the Lagrangian (13), see Ref.[49], we obtain

Le↵ = � e

2

4⇡
t

T

K

�1
t ✏

µ⌫�

A

µ

@

⌫

A

�

+⇡`TK�1
` j

µ

✏

µ⌫�

@

⌫

@

2
j

�

+
⇣
qB

µ

+ eA

µ

t

T

K

�1
`

⌘
j

µ

, (15)

where @2 = @

⌧

@

⌧

. We also included a coupling qB

µ

j

µ

of
the impurity to an additional external field B

µ

. The first
term in Eq. (3) is a Chern Simons term for the external
gauge field A

µ

. The second term describes the braiding
statistics of the TP, which coincides with the expected
qp statistics, see e.g. Ref.[50]. The statistical phase e

i✓

picked up when interchanging two TPs adiabatically is
given by ✓ = ⇡`

T

K

�1
` [4]. The last term, most impor-

tant to our discussion, corresponds to an e↵ective gauge
field (A

µ

e

⇤
TP +B

µ

q) /e seen by the TP, where the A

µ

-
charge of the TP is given by e

⇤
TP = e t

T

K

�1
`.

By applying the interferometric protocol introduced in
the main text to di↵erent flavors J = 1, ..., n of TPs, all
the Chern numbers (or, equivalently, all the fractional
charges)

C(J)
TP =

1

C
J

=
e

e

⇤
J

(16)

of elementary topological excitations can be measured.
To this end a single qp (or quasihole) of flavor J is bound
to the impurity. The last equation is then derived as
Eq.(4) in the main text. When the TP Chern numbers
of all qps are known, the Chern number of the incom-
pressible ground state can be derived from Eq.(14),

C =
nX

J=1

(±1)

C(J)
TP

. (17)

Here (�1) needs to be inserted if the elementary quasi-
hole excitation of flavor J is used, with `

I

= ��
I,J

, and
(+1) for elementary qps with `

I

= �

I,J

.
In the main text we discuss the case of ⌫ = 1/m

Laughlin states where n = t = 1 and K = m. In this
case there exists one quasihole branch, with fractional
charge e

⇤ = �e/m. According to Eq.(16) the Chern
number of the TP consisting of an impurity bound to
a hole is given by CTP = �m. We confirm this by a
microscopic calculation for a fractional Chern insulator
in FIG.3. Then Eq.(17) predicts a fractional Chern
number C = 1/m of the incompressible Laughlin state,
in agreement with the established result by Niu et al.[5].

Exact polaron transformation To calculate the topo-
logical invariants characterizing TPs exactly, we need its
full wavefunction | TP(q)i for any given value of the total
TP (quasi-) momentum q. Here we develop a method al-
lowing to calculate | TP(q)i using exact numerical meth-
ods. Our approach is based on the Lee-Low-Pines (LLP)
unitary transformation [41] introduced in the context of
conventional polaron physics, which makes the conserva-
tion of the polaron momentum explicit. The e↵ect of the

external force F acting on the impurity is also discussed
in this framework.
Our starting point is the impurity-centered LLP trans-

formation

ÛLLP(t) = exp
h
iR̂I · (p̂c + F t)

i
. (18)

To define the impurity position operator R̂I and the
fermion momentum operator p̂c, a gauge choice is made.
We introduce the magnetic unit cell of size a

x

⇥a

y

for the

fermion Hamiltonian Ĥ0, see Eq.(9), which contains an
integer number of flux quanta. Using the Landau gauge
as in Eq.(9) and assuming ↵ = r/s with r, s integers, we
have a

x

= a and a

y

= sa. Next we label sites within the
unit cell by an integer µ and define the impurity position
operator

R̂I =
X

j

x

,j

y

,µ

(j
x

a

x

, j

y

a

y

)T| {z }
=rj

b̂

†
j,µb̂j,µ. (19)

Here the integers j
x,y

label unit cells and (j, µ) is merely
an alternative way of parametrizing the site indices
(m,n) which were used previously in the definition of
the model. Hence we see that R̂I represents only the po-
sition of the unit cell, but not the positions of individual
sites within one cell. Similarly the fermion momentum
operator is

p̂c =
X
k,µ

k ĉ

†
k,µĉk,µ, (20)

where we introduced operators in momentum space

ĉk,µ :=
q

a

x

a

y

L

x

L

y

P
j e

ik·(j
x

a

x

e
x

+j

y

a

y

e
y

)
ĉj,µ. The wave vec-

tor k takes quantized values k = 2⇡ (i
x

/L

x

, i

y

/L

y

)T for
integers i

x

= 1, ..., L
x

/a

x

and i

y

= 1, ...., L
y

/a

y

and with
L

x,y

denoting system size in x and y direction. Note that
although the impurity lattice has a smaller period of a we
have chosen the larger magnetic unit cell of the fermion
model in Eq.(19). This is necessary to distinguish be-
tween inequivalent sites µ within one magnetic unit cell
for both the fermions and the impurity.
We proceed by applying the LLP transformation de-

fined above to the Hamiltonian Ĥ = Ĥ0 + ĤI + Ĥint,
see Eqs.(9), (10). The new e↵ective Hamiltonian in
the polaron frame reads H̃(t) = Û

†
LLP(t)ĤÛLLP(t) �

iÛ

†
LLP(t)@tÛLLP(t). First we note that the many-body

(fermion) Hamiltonian Ĥ0 trivially commutes with the
LLP transformation because of its translational invari-
ance by multiples of one magnetic unit-cell. The poten-
tial term F · P

m,n

r
m,n

b̂

†
m,n

b̂

m,n

in Eq.(10) also com-
mutes with the LLP transformation, as can easily be
checked.
To transform the kinetic energy of the impurity, we

introduce the single-particle band Hamiltonian h

I
µ,µ

0(k)
defined in the magnetic unit-cell of the fermions. This
allows us to write ĤI =

P
k,µ,µ0 b̂

†
k,µb̂k,µ0

h

I
µ,µ

0(k) in the

Limp = qBµ jµ
integrate out aµ
J.Moore, Oxford 
Univ.Press (2014)
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in the Lagrangian (13), see Ref.[49], we obtain

Le↵ = � e

2

4⇡
t

T

K

�1
t ✏

µ⌫�

A

µ

@

⌫

A

�

+⇡`TK�1
` j

µ

✏

µ⌫�

@

⌫

@

2
j

�

+
⇣
qB

µ

+ eA

µ

t

T

K

�1
`

⌘
j

µ

, (15)

where @2 = @

⌧

@

⌧

. We also included a coupling qB

µ

j

µ

of
the impurity to an additional external field B

µ

. The first
term in Eq. (3) is a Chern Simons term for the external
gauge field A

µ

. The second term describes the braiding
statistics of the TP, which coincides with the expected
qp statistics, see e.g. Ref.[50]. The statistical phase e

i✓

picked up when interchanging two TPs adiabatically is
given by ✓ = ⇡`

T

K

�1
` [4]. The last term, most impor-

tant to our discussion, corresponds to an e↵ective gauge
field (A

µ

e

⇤
TP +B

µ

q) /e seen by the TP, where the A

µ

-
charge of the TP is given by e

⇤
TP = e t

T

K

�1
`.

By applying the interferometric protocol introduced in
the main text to di↵erent flavors J = 1, ..., n of TPs, all
the Chern numbers (or, equivalently, all the fractional
charges)

C(J)
TP =

1

C
J

=
e

e

⇤
J

(16)

of elementary topological excitations can be measured.
To this end a single qp (or quasihole) of flavor J is bound
to the impurity. The last equation is then derived as
Eq.(4) in the main text. When the TP Chern numbers
of all qps are known, the Chern number of the incom-
pressible ground state can be derived from Eq.(14),

C =
nX

J=1

(±1)

C(J)
TP

. (17)

Here (�1) needs to be inserted if the elementary quasi-
hole excitation of flavor J is used, with `

I

= ��
I,J

, and
(+1) for elementary qps with `

I

= �

I,J

.
In the main text we discuss the case of ⌫ = 1/m

Laughlin states where n = t = 1 and K = m. In this
case there exists one quasihole branch, with fractional
charge e

⇤ = �e/m. According to Eq.(16) the Chern
number of the TP consisting of an impurity bound to
a hole is given by CTP = �m. We confirm this by a
microscopic calculation for a fractional Chern insulator
in FIG.3. Then Eq.(17) predicts a fractional Chern
number C = 1/m of the incompressible Laughlin state,
in agreement with the established result by Niu et al.[5].

Exact polaron transformation To calculate the topo-
logical invariants characterizing TPs exactly, we need its
full wavefunction | TP(q)i for any given value of the total
TP (quasi-) momentum q. Here we develop a method al-
lowing to calculate | TP(q)i using exact numerical meth-
ods. Our approach is based on the Lee-Low-Pines (LLP)
unitary transformation [41] introduced in the context of
conventional polaron physics, which makes the conserva-
tion of the polaron momentum explicit. The e↵ect of the

external force F acting on the impurity is also discussed
in this framework.
Our starting point is the impurity-centered LLP trans-

formation

ÛLLP(t) = exp
h
iR̂I · (p̂c + F t)

i
. (18)

To define the impurity position operator R̂I and the
fermion momentum operator p̂c, a gauge choice is made.
We introduce the magnetic unit cell of size a

x

⇥a

y

for the

fermion Hamiltonian Ĥ0, see Eq.(9), which contains an
integer number of flux quanta. Using the Landau gauge
as in Eq.(9) and assuming ↵ = r/s with r, s integers, we
have a

x

= a and a

y

= sa. Next we label sites within the
unit cell by an integer µ and define the impurity position
operator

R̂I =
X

j

x

,j

y

,µ

(j
x

a

x

, j

y

a

y

)T| {z }
=rj

b̂

†
j,µb̂j,µ. (19)

Here the integers j
x,y

label unit cells and (j, µ) is merely
an alternative way of parametrizing the site indices
(m,n) which were used previously in the definition of
the model. Hence we see that R̂I represents only the po-
sition of the unit cell, but not the positions of individual
sites within one cell. Similarly the fermion momentum
operator is

p̂c =
X
k,µ

k ĉ

†
k,µĉk,µ, (20)

where we introduced operators in momentum space

ĉk,µ :=
q

a

x

a

y

L

x

L

y

P
j e

ik·(j
x

a

x

e
x

+j

y

a

y

e
y

)
ĉj,µ. The wave vec-

tor k takes quantized values k = 2⇡ (i
x

/L

x

, i

y

/L

y

)T for
integers i

x

= 1, ..., L
x

/a

x

and i

y

= 1, ...., L
y

/a

y

and with
L

x,y

denoting system size in x and y direction. Note that
although the impurity lattice has a smaller period of a we
have chosen the larger magnetic unit cell of the fermion
model in Eq.(19). This is necessary to distinguish be-
tween inequivalent sites µ within one magnetic unit cell
for both the fermions and the impurity.
We proceed by applying the LLP transformation de-

fined above to the Hamiltonian Ĥ = Ĥ0 + ĤI + Ĥint,
see Eqs.(9), (10). The new e↵ective Hamiltonian in
the polaron frame reads H̃(t) = Û

†
LLP(t)ĤÛLLP(t) �

iÛ

†
LLP(t)@tÛLLP(t). First we note that the many-body

(fermion) Hamiltonian Ĥ0 trivially commutes with the
LLP transformation because of its translational invari-
ance by multiples of one magnetic unit-cell. The poten-
tial term F · P

m,n

r
m,n

b̂

†
m,n

b̂

m,n

in Eq.(10) also com-
mutes with the LLP transformation, as can easily be
checked.
To transform the kinetic energy of the impurity, we

introduce the single-particle band Hamiltonian h

I
µ,µ

0(k)
defined in the magnetic unit-cell of the fermions. This
allows us to write ĤI =

P
k,µ,µ0 b̂

†
k,µb̂k,µ0

h

I
µ,µ

0(k) in the

Limp = qBµ jµ
integrate out aµ
J.Moore, Oxford 
Univ.Press (2014)

reduced effective magnetic field: b⇤z = bz
X

J

`J
e⇤J
e

fractional 
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in the Lagrangian (13), see Ref.[49], we obtain

Le↵ = � e

2

4⇡
t

T

K

�1
t ✏

µ⌫�

A
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⌫
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�

+⇡`TK�1
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µ

✏

µ⌫�

@

⌫

@

2
j

�

+
⇣
qB

µ

+ eA

µ

t

T

K

�1
`

⌘
j

µ

, (15)

where @2 = @

⌧

@

⌧

. We also included a coupling qB

µ

j

µ

of
the impurity to an additional external field B

µ

. The first
term in Eq. (3) is a Chern Simons term for the external
gauge field A

µ

. The second term describes the braiding
statistics of the TP, which coincides with the expected
qp statistics, see e.g. Ref.[50]. The statistical phase e

i✓

picked up when interchanging two TPs adiabatically is
given by ✓ = ⇡`

T

K

�1
` [4]. The last term, most impor-

tant to our discussion, corresponds to an e↵ective gauge
field (A

µ

e

⇤
TP +B

µ

q) /e seen by the TP, where the A

µ

-
charge of the TP is given by e

⇤
TP = e t

T

K

�1
`.

By applying the interferometric protocol introduced in
the main text to di↵erent flavors J = 1, ..., n of TPs, all
the Chern numbers (or, equivalently, all the fractional
charges)

C(J)
TP =

1

C
J

=
e

e

⇤
J

(16)

of elementary topological excitations can be measured.
To this end a single qp (or quasihole) of flavor J is bound
to the impurity. The last equation is then derived as
Eq.(4) in the main text. When the TP Chern numbers
of all qps are known, the Chern number of the incom-
pressible ground state can be derived from Eq.(14),

C =
nX

J=1

(±1)

C(J)
TP

. (17)

Here (�1) needs to be inserted if the elementary quasi-
hole excitation of flavor J is used, with `

I

= ��
I,J

, and
(+1) for elementary qps with `

I

= �

I,J

.
In the main text we discuss the case of ⌫ = 1/m

Laughlin states where n = t = 1 and K = m. In this
case there exists one quasihole branch, with fractional
charge e

⇤ = �e/m. According to Eq.(16) the Chern
number of the TP consisting of an impurity bound to
a hole is given by CTP = �m. We confirm this by a
microscopic calculation for a fractional Chern insulator
in FIG.3. Then Eq.(17) predicts a fractional Chern
number C = 1/m of the incompressible Laughlin state,
in agreement with the established result by Niu et al.[5].

Exact polaron transformation To calculate the topo-
logical invariants characterizing TPs exactly, we need its
full wavefunction | TP(q)i for any given value of the total
TP (quasi-) momentum q. Here we develop a method al-
lowing to calculate | TP(q)i using exact numerical meth-
ods. Our approach is based on the Lee-Low-Pines (LLP)
unitary transformation [41] introduced in the context of
conventional polaron physics, which makes the conserva-
tion of the polaron momentum explicit. The e↵ect of the

external force F acting on the impurity is also discussed
in this framework.
Our starting point is the impurity-centered LLP trans-

formation

ÛLLP(t) = exp
h
iR̂I · (p̂c + F t)

i
. (18)

To define the impurity position operator R̂I and the
fermion momentum operator p̂c, a gauge choice is made.
We introduce the magnetic unit cell of size a

x

⇥a

y

for the

fermion Hamiltonian Ĥ0, see Eq.(9), which contains an
integer number of flux quanta. Using the Landau gauge
as in Eq.(9) and assuming ↵ = r/s with r, s integers, we
have a

x

= a and a

y

= sa. Next we label sites within the
unit cell by an integer µ and define the impurity position
operator

R̂I =
X

j

x

,j

y

,µ

(j
x

a

x

, j

y

a

y

)T| {z }
=rj

b̂

†
j,µb̂j,µ. (19)

Here the integers j
x,y

label unit cells and (j, µ) is merely
an alternative way of parametrizing the site indices
(m,n) which were used previously in the definition of
the model. Hence we see that R̂I represents only the po-
sition of the unit cell, but not the positions of individual
sites within one cell. Similarly the fermion momentum
operator is

p̂c =
X
k,µ

k ĉ

†
k,µĉk,µ, (20)

where we introduced operators in momentum space

ĉk,µ :=
q

a

x

a

y

L

x

L

y

P
j e

ik·(j
x

a

x

e
x

+j

y

a

y

e
y

)
ĉj,µ. The wave vec-

tor k takes quantized values k = 2⇡ (i
x

/L

x

, i

y

/L

y

)T for
integers i

x

= 1, ..., L
x

/a

x

and i

y

= 1, ...., L
y

/a

y

and with
L

x,y

denoting system size in x and y direction. Note that
although the impurity lattice has a smaller period of a we
have chosen the larger magnetic unit cell of the fermion
model in Eq.(19). This is necessary to distinguish be-
tween inequivalent sites µ within one magnetic unit cell
for both the fermions and the impurity.
We proceed by applying the LLP transformation de-

fined above to the Hamiltonian Ĥ = Ĥ0 + ĤI + Ĥint,
see Eqs.(9), (10). The new e↵ective Hamiltonian in
the polaron frame reads H̃(t) = Û

†
LLP(t)ĤÛLLP(t) �

iÛ

†
LLP(t)@tÛLLP(t). First we note that the many-body

(fermion) Hamiltonian Ĥ0 trivially commutes with the
LLP transformation because of its translational invari-
ance by multiples of one magnetic unit-cell. The poten-
tial term F · P

m,n

r
m,n

b̂

†
m,n

b̂

m,n

in Eq.(10) also com-
mutes with the LLP transformation, as can easily be
checked.
To transform the kinetic energy of the impurity, we

introduce the single-particle band Hamiltonian h

I
µ,µ

0(k)
defined in the magnetic unit-cell of the fermions. This
allows us to write ĤI =

P
k,µ,µ0 b̂

†
k,µb̂k,µ0

h

I
µ,µ

0(k) in the

Limp = qBµ jµ
integrate out aµ
J.Moore, Oxford 
Univ.Press (2014)

reduced effective magnetic field: b⇤z = bz
X

J

`J
e⇤J
e

fractional 
statistics

enhanced TP Chern number: C(J)
TP =

e

e⇤J



Fabian Grusdt

Fractional Chern insulators

20

5

FIG. 2. A single mobile impurity can be coupled to an elementary hole excitation of an integer (a) or fractional (b) Chern
insulator, and form a TP. The winding of the many-body Zak phase 'Zak(ky) across the BZ defines the many-body Chern
number of the TP. In (a) we compare predictions for ICIs without (U = 0) and with inter-fermion interactions (U 6= 0).
Parameters are J = t/2, V = 2t, ↵ = 1/4 and we simulated 4-by-4 sites with N = 3 fermions. In (b) a ⌫ = 1/3 FCI is
considered, for parameters J = t/2, V = 2t, ↵ = 1/4, U = 10t. We simulated 4-by-7 sites filled with N = 2 fermions.

the polaron frame (recall that Rqp = 0 in the interaction
Hamiltonian) and can become relevant in lattice systems.
However when a closed loop

H
dtF = 0 is considered as

in the interferometric sequence we discuss, the impurity
invariant vanishes, ⌫I = 0.

Topological polarons in Chern insulators.– Now we
turn our attention to a concrete model of interacting par-
ticles on a lattice, described by the Hofstadter-Hubbard
Hamiltonian

Ĥ0 = �t

X
m,n

h
e

�i2⇡↵n
ĉ

†
m+1,nĉm,n

+ ĉ

†
m,n+1ĉm,n

+ h.c.
i
+

+ U

X
h(m,n),(m0

,n

0)i

ĉ

†
m,n

ĉ

m,n

ĉ

†
m

0
,n

0 ĉ
m

0
,n

0
. (9)

The first term is the celebrated Hofstadter model [42]
and it describes free particles hopping between the sites
(m,n) of a square lattice in a magnetic field (using Lan-
dau gauge), where ↵ denotes the magnetic flux den-
sity per plaquette (in units of the flux quantum) and
t is the hopping amplitude. The second term describes
nearest neighbor interactions of strength U between the
particles. Here we consider fermions for concreteness,
{ĉ

m,n

, ĉ

†
m

0
,n

0} = �

m,m

0
�

n,n

0 , but a similar Hofstadter-
Hubbard model has also been discussed for bosons with
contact interactions [28, 29]. For su�ciently small values
of ↵, the ground states of (9) show the IQHE and FQHE
depending on the filling fraction ⌫.

To study TPs we consider the Hofstadter-Hubbard
model (9) at filling ⌫ = 1/m on a torus. We choose
the number of flux quanta in the host many-body sys-
tem N

�

= Nm + 1 such that the ground state of Ĥ0

contains one quasihole excitation. Next we add a single
impurity, described by b̂

†
m,n

, hopping between the sites

of the same two-dimensional lattice,

ĤI = �J

X
m,n

h
b̂

†
m+1,nb̂m,n

+ b̂

†
m,n+1b̂m,n

+ h.c.
i
�

� F ·
X
m,n

r
m,n

b̂

†
m,n

b̂

m,n

. (10)

To bind the impurity to the quasihole, its interaction
with the surrounding fermions is modeled by a repulsive
contact potential, Ĥint = V

P
m,n

ĉ

†
m,n

ĉ

m,n

b̂

†
m,n

b̂

m,n

. In
the following we consider an impurity with only a single
internal state for simplicity.
In the methods we present a formalism for calculating

the full many-body TP wavefunction | TP(q)i exactly
for a given total momentum q, based on the LLP polaron
transformation. Here we use this approach to obtain both
the dispersion relation and the Chern number of TPs.

In FIG.2 (a) our results are shown for an ICI, with and
without fermion-fermion interactions U . We consider the
case ↵ = 1/4 and use Landau gauge where the size of the
magnetic unit cell is (a

x

= 4a)-by-a, with a denoting
the lattice constant. We calculate the Chern number of
the TP from the winding of the many-body Zak phase,

C = 1
2⇡

R
⇡/a

�⇡/a

dk

y

@

k

y

'Zak(ky) [37], see methods for de-
tails. For comparison, the result of a simple strong cou-
pling analysis is shown, where the impurity is bound to
a free hole. Although the distribution of Berry curvature
di↵ers, the strong coupling theory predicts correctly the
TP Chern number, C = 1.
In FIG.2 (b) we repeat our calculations for a FCI at

⌫ = 1/3, corresponding to a 1/3 Laughlin state. (We
checked numerically that the incompressible ground state
has a fractional Chern number C0 = 1/3 and the expected
three-fold ground state degeneracy on a torus.) As ex-
pected from the field-theoretical arguments given in the
beginning, the Chern number of the TP has the value
C = 3. This is consistent with Eq.(2) from which we
derive C0 = 1/3.

Hofstadter Fermi-Hubbard model:

Numerical simulation:
↵ = 1/4, ⌫ = 1/3

5
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FIG. 2. A single mobile impurity can be coupled to an elementary hole excitation of an integer (a) or fractional (b) Chern
insulator, and form a TP. The winding of the many-body Zak phase 'Zak(ky) across the BZ defines the many-body Chern
number of the TP. In (a) we compare predictions for ICIs without (U = 0) and with inter-fermion interactions (U 6= 0).
Parameters are J = t/2, V = 2t, ↵ = 1/4 and we simulated 4-by-4 sites with N = 3 fermions. In (b) a ⌫ = 1/3 FCI is
considered, for parameters J = t/2, V = 2t, ↵ = 1/4, U = 10t. We simulated 4-by-7 sites filled with N = 2 fermions.

groundstate adiabatically. Thereby it picks up a phase
' containing a geometric part of 2⇡⌫

TP

which is mea-
sured by the Ramsey sequence (dynamical phases are
discussed in Refs. [17, 18]). Due to the product form
of the strong coupling wavefunction we find two contri-
butions, ⌫

TP

= ⌫

qp

+ ⌫

I

.
The first contribution is picked up by the qp wave-

function, 2⇡⌫
qp

=
H
dk · h 

qp

(k)|irk| qp

(k)i. When the
path in momentum space described by the TP in the in-
terferometer encloses the (magnetic) BZ, the qp invariant
is related to the TP Chern number defined above,

⌫

qp

= C
TP

. (8)

The second contribution ⌫
I

is picked up by the impurity
part of the wavefunction. In the adiabatic limit of small
F it is 2⇡⌫

I

= ��z

H
dtF · h�

I

|r̂|�
I

i. This term corre-
sponds to a geometric phase because it does not vanish
in the limit when F ! 0 and needs to be considered in
general. It measures the displacement of the impurity
wavefunction relative to the qp located in the origin of
the polaron frame (recall that R

qp

= 0 in the interaction
Hamiltonian) and can become relevant in lattice systems.
However when a closed loop

H
dtF = 0 is considered as

in the interferometric sequence we discuss, the impurity
invariant vanishes, ⌫

I

= 0.
Topological polarons in Chern insulators.– Now we

turn our attention to a concrete model of interacting par-
ticles on a lattice, described by the Hofstadter-Hubbard
Hamiltonian

Ĥ
0

= �t

X
m,n

h
e

�i2⇡↵n

ĉ

†
m+1,n

ĉ

m,n

+ ĉ

†
m,n+1

ĉ

m,n

+ h.c.
i
+

+ U

X
h(m,n),(m

0
,n

0
)i

ĉ

†
m,n

ĉ

m,n

ĉ

†
m

0
,n

0 ĉ
m

0
,n

0
. (9)

The first term is the celebrated Hofstadter model [43]
and it describes free particles hopping between the sites

(m,n) of a square lattice in a magnetic field (using Lan-
dau gauge), where ↵ denotes the magnetic flux den-
sity per plaquette (in units of the flux quantum) and
t is the hopping amplitude. The second term describes
nearest neighbor interactions of strength U between the
particles. Here we consider fermions for concreteness,
{ĉ

m,n

, ĉ

†
m

0
,n

0} = �

m,m

0
�

n,n

0 , but a similar Hofstadter-
Hubbard model has also been discussed for bosons with
contact interactions [28, 29]. For su�ciently small values
of ↵, the groundstates of (9) show the IQHE and FQHE
depending on the filling fraction ⌫.

To study TPs we consider the Hofstadter-Hubbard
model (9) at filling ⌫ = 1/m on a torus. We choose the
number of flux quanta in the host many-body system
N

�

= Nm+ 1 such that the groundstate of Ĥ
0

contains
one quasihole excitation. Next we add a single impurity,
described by b̂

†
m,n

, hopping between the sites of the same
two-dimensional lattice,

Ĥ
I

= �J

X
m,n

h
b̂

†
m+1,n

b̂

m,n

+ b̂

†
m,n+1

b̂

m,n

+ h.c.
i
�

� F ·
X
m,n

r
m,n

b̂

†
m,n

b̂

m,n

. (10)

To bind the impurity to the quasihole, its interaction
with the surrounding fermions is modeled by a repulsive
contact potential, Ĥ

int

= V

P
m,n

ĉ

†
m,n

ĉ

m,n

b̂

†
m,n

b̂

m,n

. In
the following we consider an impurity with only a single
internal state for simplicity.

In the Methods Section we present a formalism for cal-
culating the full many-body TP wavefunction | 

TP

(q)i
exactly for a given total momentum q, based on the LLP
polaron transformation. Here we use this approach to ob-
tain both the dispersion relation and the Chern number
of TPs.

In FIG.2 (a) our results are shown for an ICI, with and
without fermion-fermion interactions U . We consider the
case ↵ = 1/4 and use Landau gauge where the size of the

CTP = 3
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CHAPTER 8. INTERFEROMETRIC MEASUREMENT OF MANY-BODY

TOPOLOGICAL INVARIANTS

(a)

Figure 8.1: We suggest an experimental scheme for the measurement of many-body topological
invariants of interacting states with topological order. It can be applied e.g. to measure the
Chern number characterizing Laughlin states, as illustrated in (a). We couple a topological
excitation, e.g. a quasihole, to a mobile spin-1/2 impurity. When the impurity is tightly bound
to the excitation, it forms a topological polaron shown in (a). It has two internal spin states
(red and green), and can be labeled by its (quasi-) momentum q. The resulting band structure
is depicted in (b) for a generic 1D case. We suggest to measure the topological properties
of this band structure using tools developed for non-interacting systems by a combination of
Bloch oscillations and Ramsey interferometry. The resulting geometric Zak or Berry phase
picked up by opposite spin-components (b) yields the many-body topological invariant.

to the resulting bound state as a topological polaron (TP), in analogy to mobile impurities
interacting with a bath of phonons [17]. The two internal (pseudo) spin degrees of freedom
of the impurity translate into two spin states of the TP. Now the rest of the protocol can be
straightforwardly generalized from a non-interacting two-component BEC to a spin-1/2 TP
in a topologically non-trivial band structure, see FIG.8.1.

In this chapter we consider phases where topological invariants are explicitly known that
can distinguish states from di↵erent topological classes. For example the one-dimensional
Su-Schrie↵er-Heeger type models are characterized by a quantized geometric phase [81, 13]
which can be generalized to interacting systems [P2]; similarly the quantum Hall e↵ect is
characterized by the Chern number [27, 88], see Chap.1.2.

More generally we consider gapped phases which are characterized by a topological in-
variant ⌫0 that can be expressed in terms of geometric Berry phases. We show explicitly for
di↵erent models of interacting topological phases in one and two dimensions that the topo-
logical invariant ⌫TP characterizing a TP is directly related to the topological invariant ⌫0 of
the underlying many-body phase,

⌫TP ' ⌫0. (8.1)

Precise definitions of ⌫0 and ⌫TP will be given separately for every model, and the meaning
of the relation ”'” will be clarified. We explain in detail how the measurement described in
FIG.8.1 yields ⌫TP. This allows to unravel the topological order of the many-body state.

The chapter is based on results which are currently prepared for publication [P13], and it
is organized as follows. In Sec. 8.2 we introduce a generic model and solve it using the strong
coupling approximation. We define topological invariants on a general ground and explain
how they relate to one another. In Sec. 8.3 we apply our theory to long-range entangled
Chern insulators and the quantum Hall e↵ect at integer magnetic filling. In Sec. 8.4 we
generalize to fractional quantum Hall states and Chern insulators where qps are fractionally
charged. In Sec. 8.5 we discuss short-range entangled Mott insulating phases which can be
realized in current experiments with ultra cold atoms. We give an example for a many-body
Thouless pump, characterized by a many-body Chern number that can be measured using
our scheme. Additionally we show how (inversion-) symmetry-protected topological invariants
can be measured. In Sec. 8.6 we close with concluding remarks and an outlook.

Many-body:

Summary

Outlook

Investigation of other correlated phases?

Measure geometrical phases:
Bloch-oscillations + Ramsey interferometry

Measure topology of 
elementary qp excitations
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