

Interferometric measurement scheme for topological invariants of correlated many-body systems

¹Fabian Grusdt, ¹Eugene Demler

¹Department of Physics, Harvard University, Cambridge MA, USA

Collaborators:

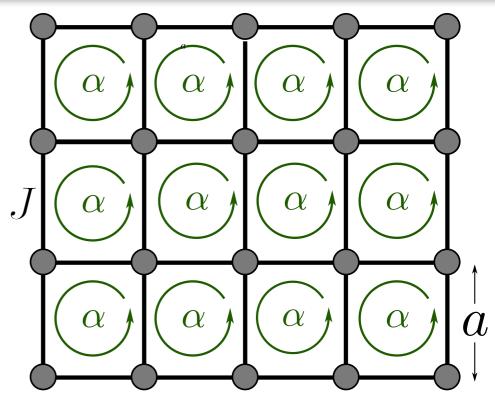
Michael Fleischhauer, Norman Yao, Dmitry Abanin Tracy Li, Manuel Endres, Immanuel Bloch, Ullrich Schneider

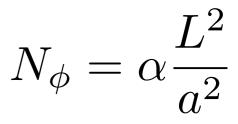
> Li et al., arXiv:1509.02185 (2015) Grusdt et al., arXiv:1512.03407 (2015)

artificial gauge fields

Hofstadter Hamiltonian

$$\mathcal{H}_0 = -J \sum_{\langle i,j \rangle} e^{i\varphi_{i,j}} \hat{a}_i^{\dagger} \hat{a}_j$$



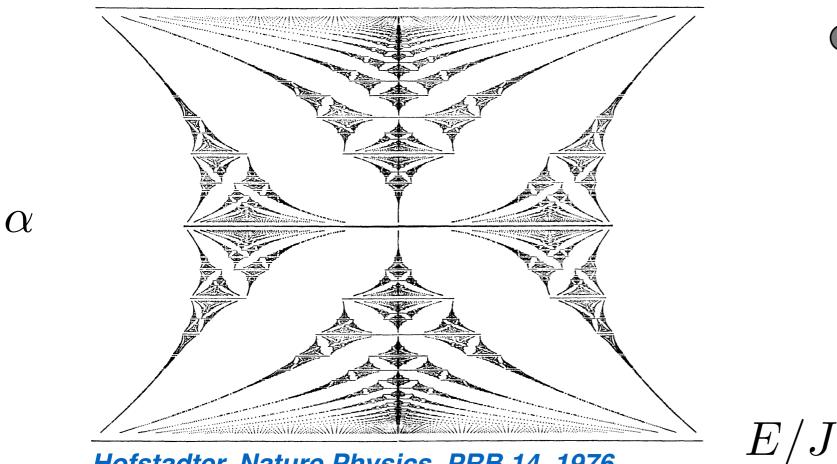


artificial gauge fields

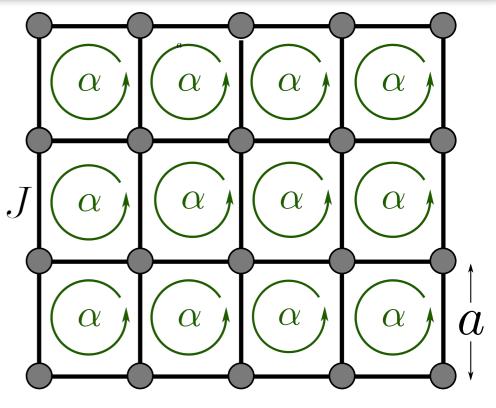
Hofstadter Hamiltonian

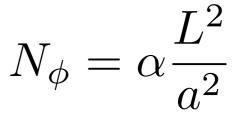
$$\mathcal{H}_0 = -J \sum_{\langle i,j \rangle} e^{i\varphi_{i,j}} \hat{a}_i^{\dagger} \hat{a}_j$$

Non-trivial band structure:



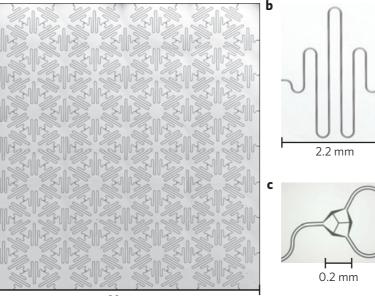
Hofstadter, Nature Physics, PRB 14, 1976



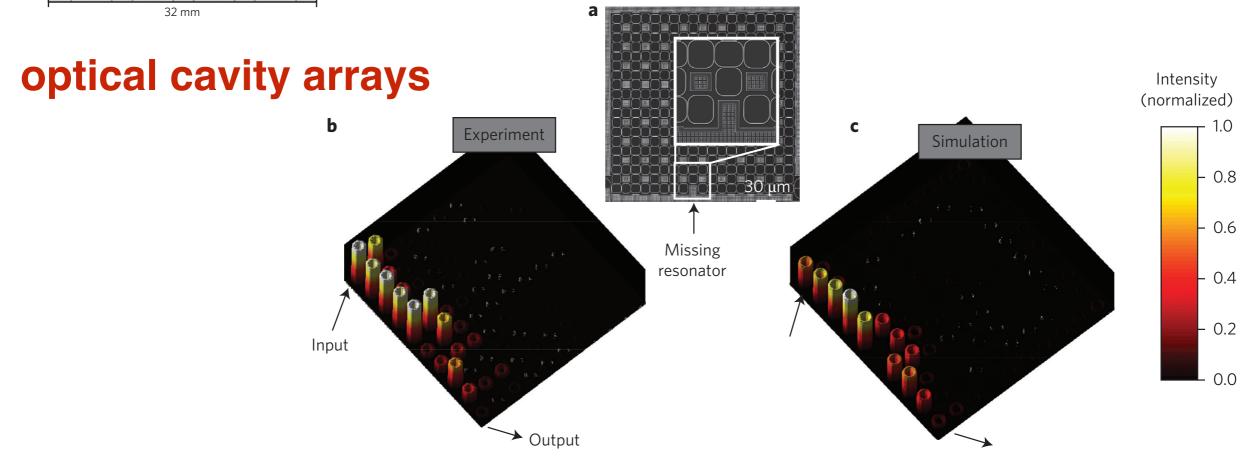


Topological states of light

Houck et.al., Nature Physics, 8, 2012

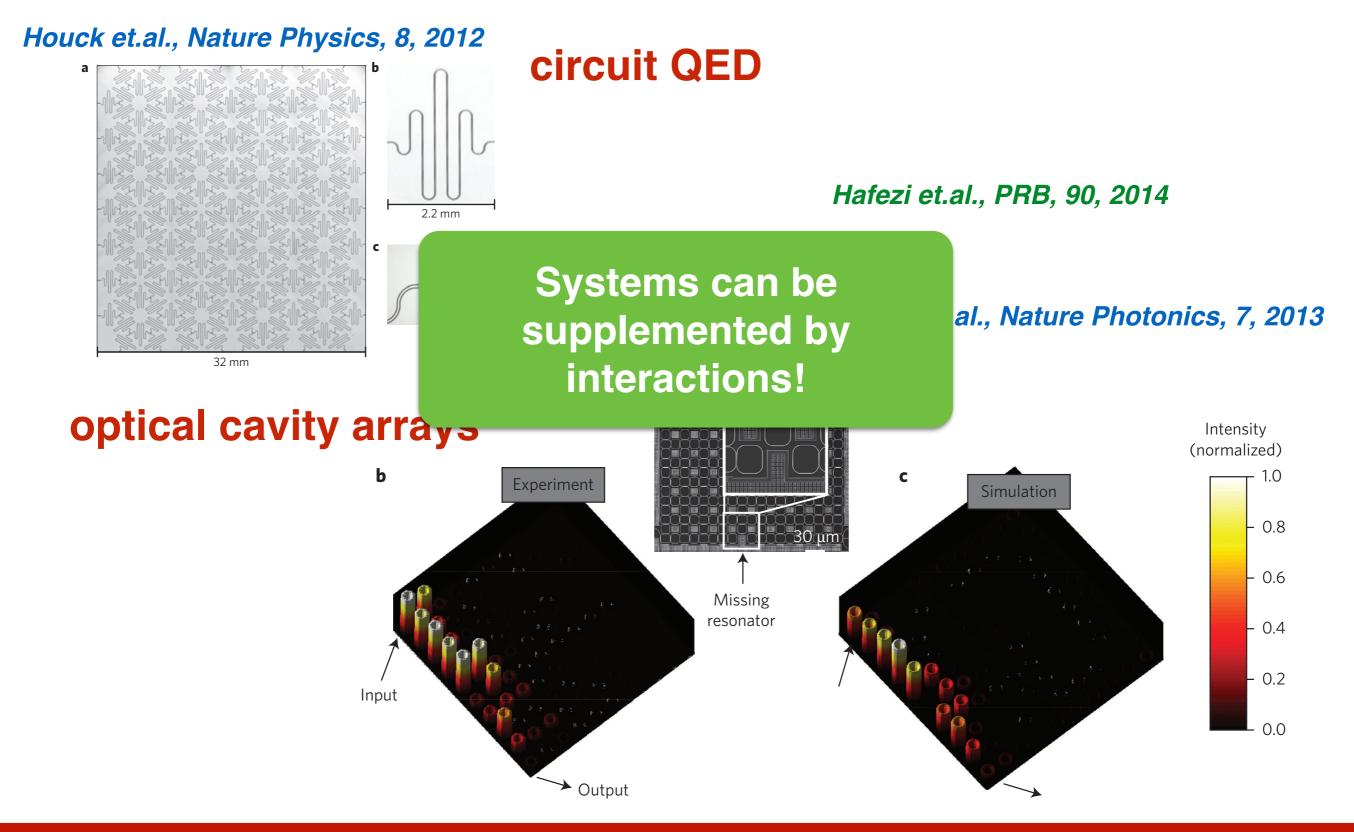


Hafezi et.al., Nature Photonics, 7, 2013



circuit QED

Topological states of light

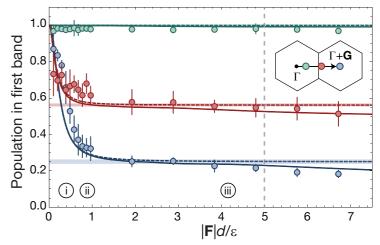


Outline

Remarks on topological order

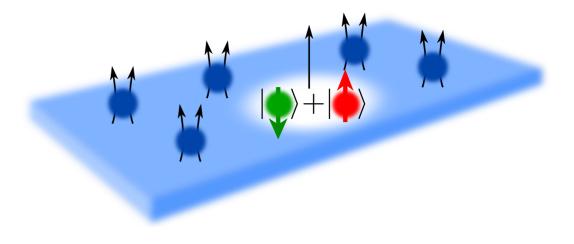
Geometric phases in non-interacting systems

- Single-band: U(1) Zak phase Atala et al., Nat. Phys. 9 (2013)
- Multi-band: U(2) Wilson-Zak loops Li et al., arXiv:1509.02185 (2015)

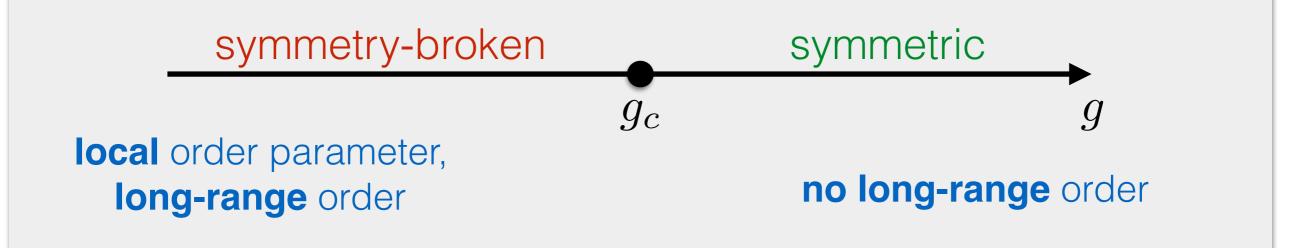


Geometric phases in correlated systems

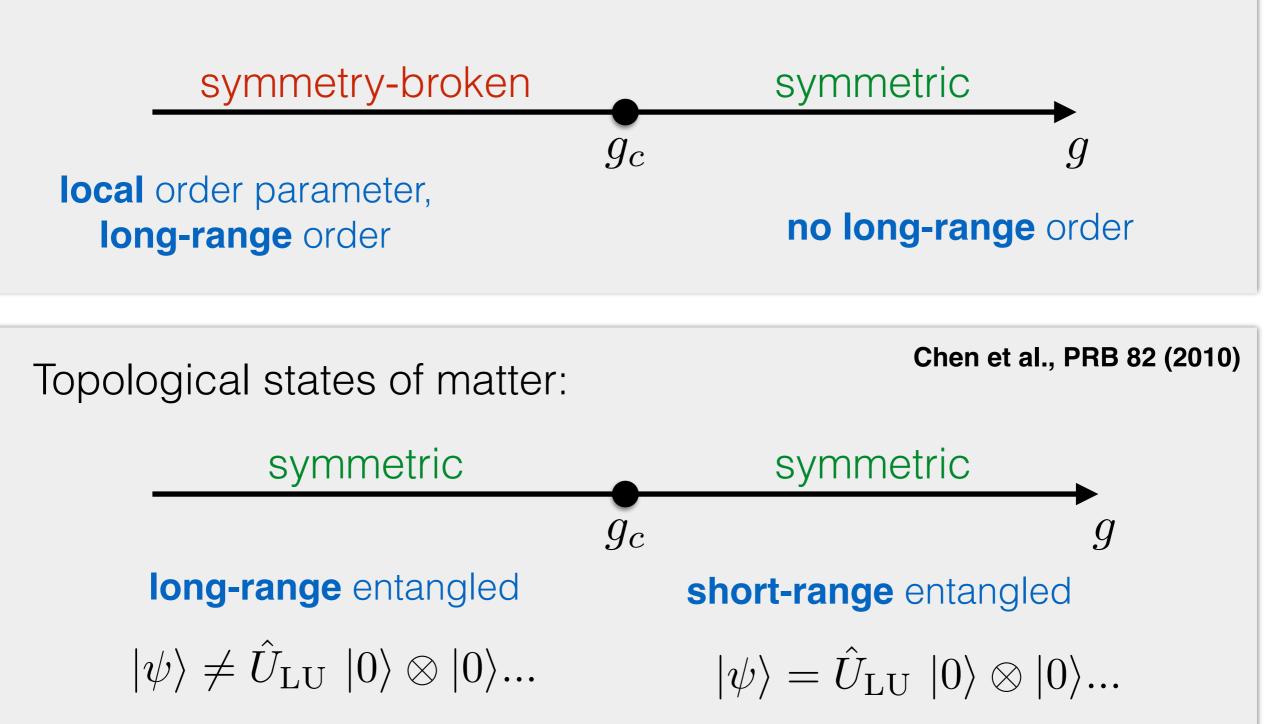
* Topological polarons, FQHE Grusdt et al., arXiv:1512.03407

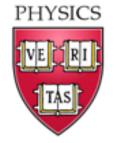


Ginzburg-Landau paradigm:



Ginzburg-Landau paradigm:





long-range entangled

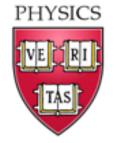
 $|\psi\rangle \neq \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$

short-range entangled

$$\psi\rangle = \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$

Topological invariants:

- need be invariant under (almost) arbitrary unitaries!



long-range entangled

$$|\psi\rangle \neq \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$

short-range entangled

$$\psi\rangle = \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$

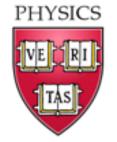
Topological invariants:

- need be invariant under (almost) arbitrary unitaries!

- consider continuous symmetry

$$\Phi \equiv \Phi + \Phi_0$$

$$\nu = \prod_{j=1}^{N} \langle \psi(\Phi^{(j)}) | \psi(\Phi^{(j+1)}) \rangle$$



long-range entangled

$$|\psi\rangle \neq \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$

short-range entangled

$$\psi\rangle = \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$

Topological invariants:

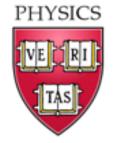
- need be invariant under (almost) arbitrary unitaries!

- consider continuous symmetry

$$\Phi \equiv \Phi + \Phi_0$$

$$\nu = \prod_{j=1}^{N} \langle \psi(\Phi^{(j)}) | \psi(\Phi^{(j+1)}) \rangle = \exp\left[-i \oint d\Phi \langle \psi(\Phi) | i \partial_{\Phi} | \psi(\Phi^{(j+1)}) \rangle\right]$$

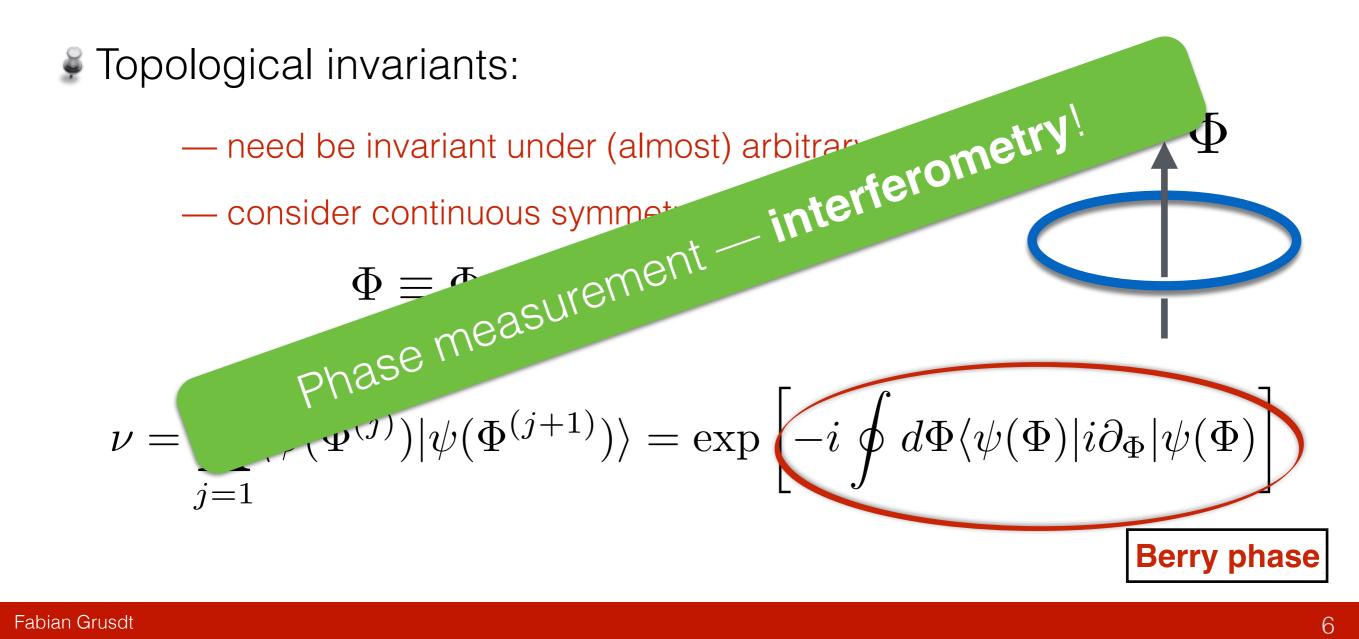
Berry phase



long-range entangled $|\psi\rangle \neq \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$

short-range entangled

$$|\psi\rangle = \hat{U}_{\rm LU} |0\rangle \otimes |0\rangle...$$



Su-Schrieffer-Heeger model:

U(1) Zak/ Berry phase:

$$\varphi_{\rm Zak} = \int_{\rm BZ} dk \, \langle u_k | i \partial_k | u_k \rangle$$

$$\sum_{t_1} \int_{t_2} \int_{t_1} \int_{t_1} \int_{t_2} \int_{t_1} \int_{t$$

 t_2

 t_1

 t_2^-

 \overline{t}_1

Su-Schrieffer-Heeger model:

U(1) Zak/ Berry phase:

$$\varphi_{\rm Zak} = \int_{\rm BZ} dk \, \langle u_k | i \partial_k | u_k \rangle = 0, \pi$$

quantized by inversion symmetry

 t_1

 t_2

 t_1

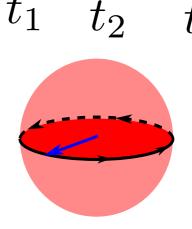
Su-Schrieffer-Heeger model:

U(1) Zak/ Berry phase:

$$\varphi_{\rm Zak} = \int_{\rm BZ} dk \, \langle u_k | i \partial_k | u_k \rangle = 0, \pi$$

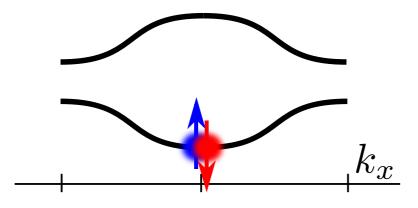
quantized by inversion symmetry

 t_1



Measurement by two-component BEC:

Atala et al., Nat. Phys. 9 (2013)



 t_2

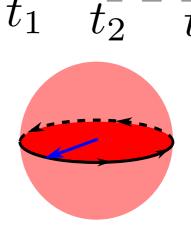
Su-Schrieffer-Heeger model:

U(1) Zak/ Berry phase:

$$\varphi_{\rm Zak} = \int_{\rm BZ} dk \, \langle u_k | i \partial_k | u_k \rangle = 0, \pi$$

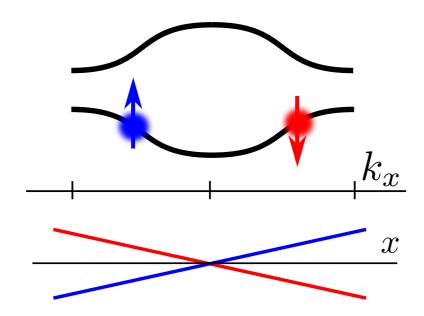
quantized by inversion symmetry

 t_1



Measurement by two-component BEC:

Atala et al., Nat. Phys. 9 (2013)



 t_2

 t_1

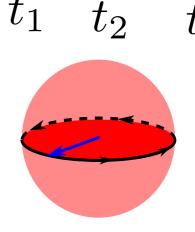
Su-Schrieffer-Heeger model:

U(1) Zak/ Berry phase:

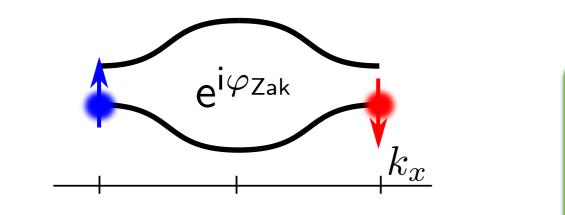
$$\varphi_{\rm Zak} = \int_{\rm BZ} dk \, \langle u_k | i \partial_k | u_k \rangle = 0, \pi$$

quantized by inversion symmetry

 t_1



Measurement by two-component BEC: Atala et al., Nat. Phys. 9 (2013)

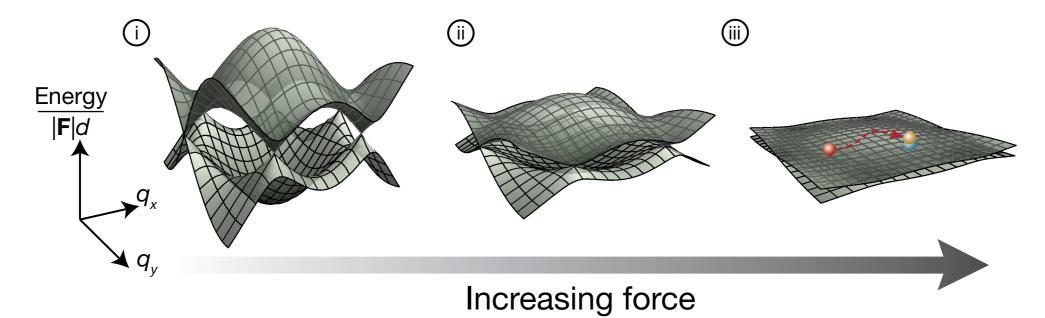


Ramsey interferometry Bloch oscillations

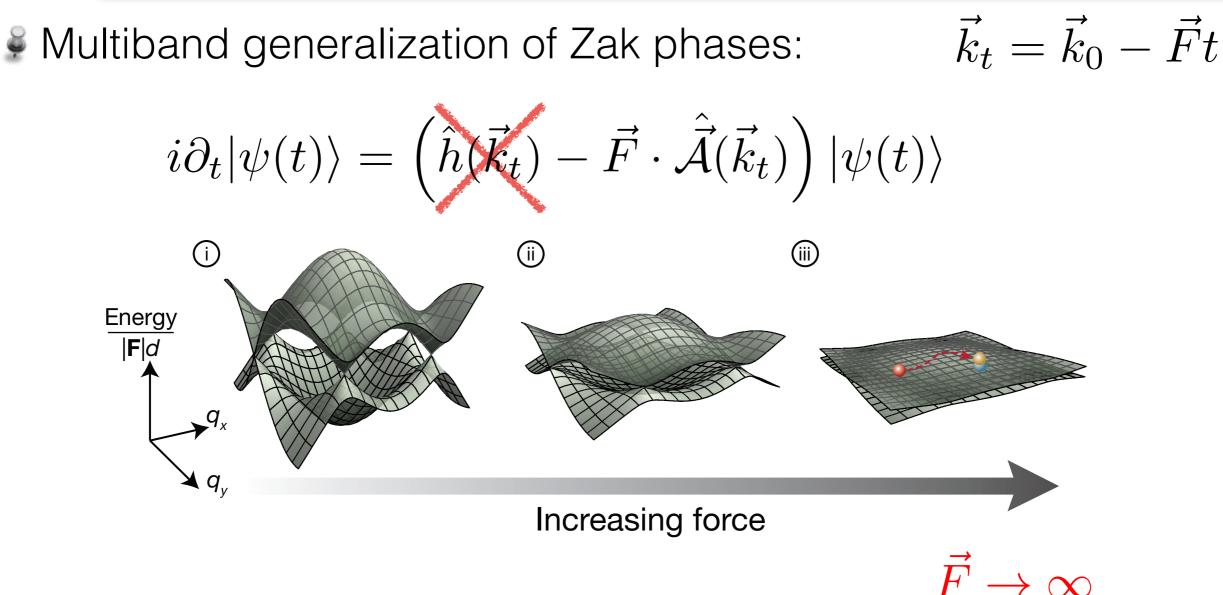
Multiband generalization of Zak phases:

$$\vec{k}_t = \vec{k}_0 - \vec{F}t$$

$$i\partial_t |\psi(t)\rangle = \left(\hat{h}(\vec{k}_t) - \vec{F} \cdot \hat{\vec{\mathcal{A}}}(\vec{k}_t)\right) |\psi(t)\rangle$$



PHYSICS



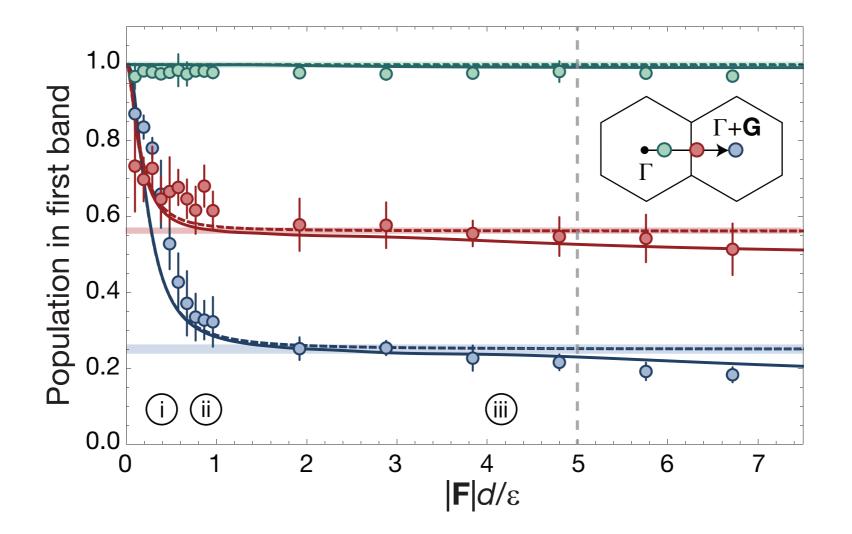
Propagator becomes Wilson line:

$$\hat{W} = \mathcal{P} \exp\left[-i \int d\vec{k} \cdot \hat{\vec{\mathcal{A}}}(\vec{k})\right]$$

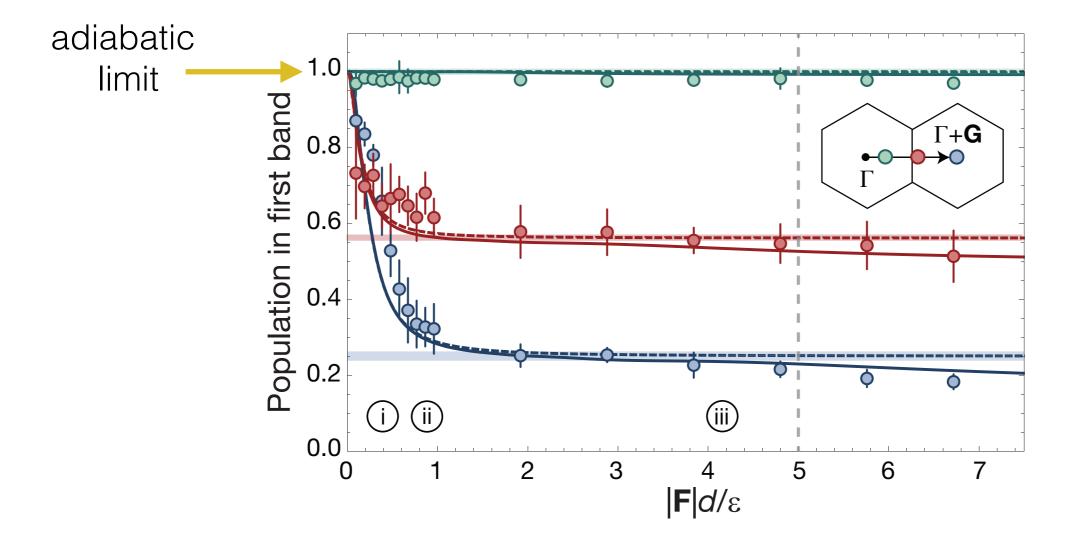
PHYSICS

VE 🞽 RI

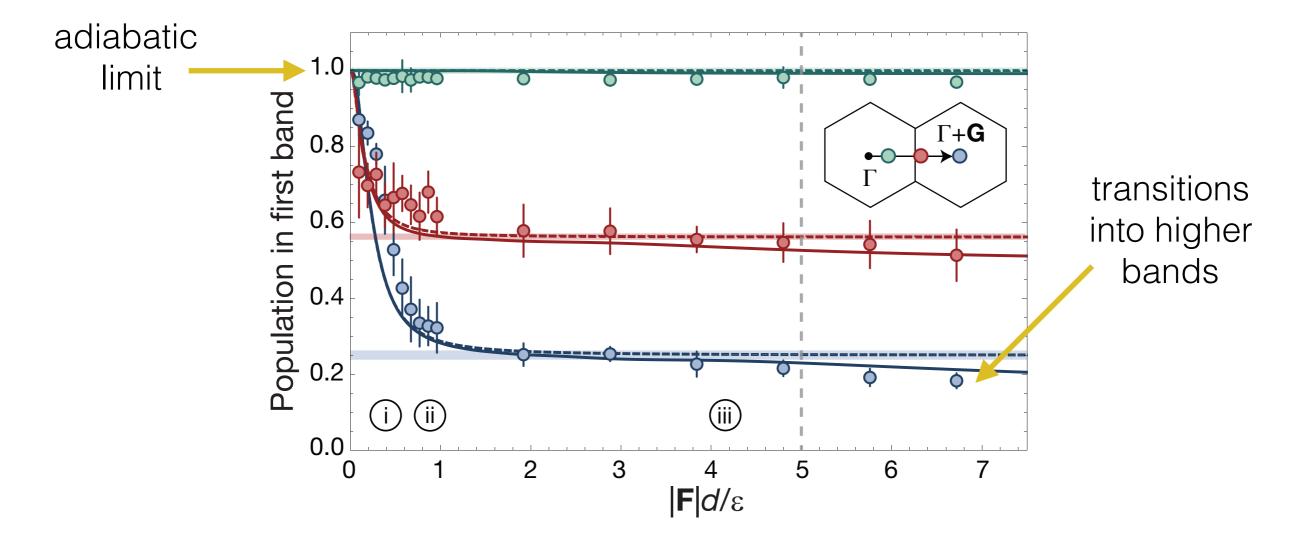
Measurement in honeycomb lattice (ultracold atoms):



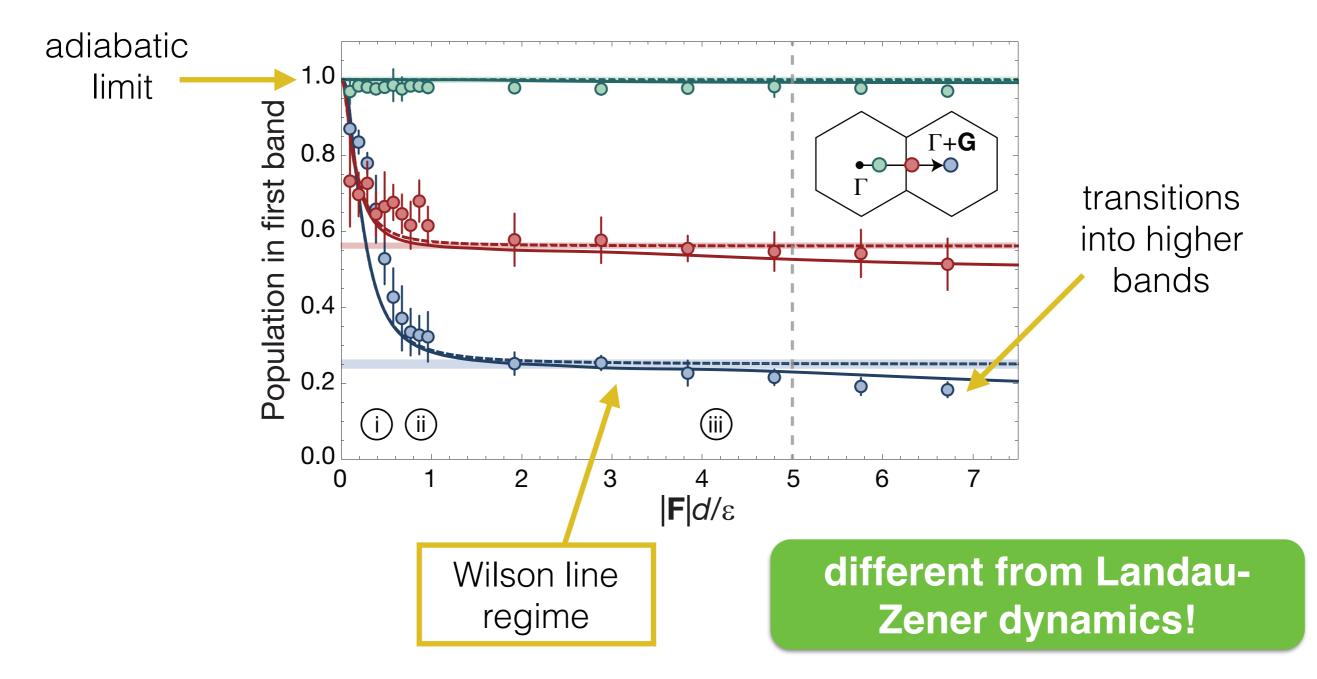
Measurement in honeycomb lattice (ultracold atoms):



Measurement in honeycomb lattice (ultracold atoms):



Measurement in honeycomb lattice (ultracold atoms):



Physical relevance of Wilson loops:

transport by one reciprocal lattice vector: $TF = 2\pi/a$

Single-band: U(1) Zak phase

$$\varphi_{\rm Zak} = \int_0^T dt \ \vec{F} \cdot \langle \psi(t) | \ \hat{\vec{r}} \ |\psi(t) \rangle$$

Physical relevance of Wilson loops:

transport by one reciprocal lattice vector: $TF = 2\pi/a$

Single-band: U(1) Zak phase

Physical relevance of Wilson loops:

transport by one reciprocal lattice vector: $TF = 2\pi/a$

Single-band: U(1) Zak phase

Multi-band: U(N) Wilson-Zak loops

$$\hat{W} = e^{i\frac{2\pi}{a}\hat{P}} \qquad P_{\alpha\beta} = \langle w_{\alpha}|\hat{r}|w_{\beta}\rangle$$

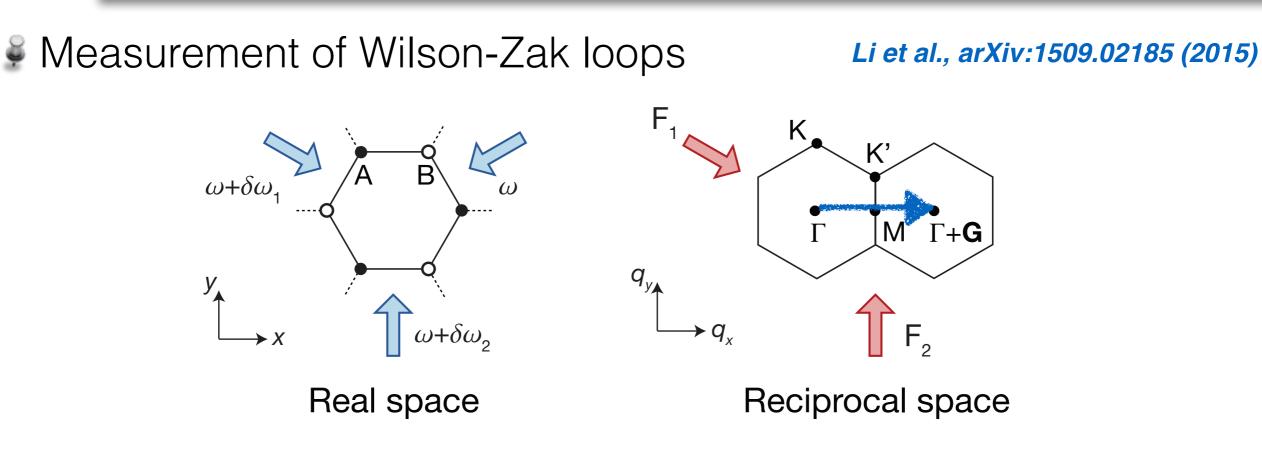
Wannier

functions

Measurement of Wilson-Zak loops
Li et al., arXiv:1509.02185 (2015) Li et al., arXiv:1509.02185 (2015)
Li et al., arXiv:1509.02185 (2015)
<math>I = I = I = I = I = I I = I = I = I = IReal space
Real space
Reciprocal space

PHYSICS

VE 🎽 R I

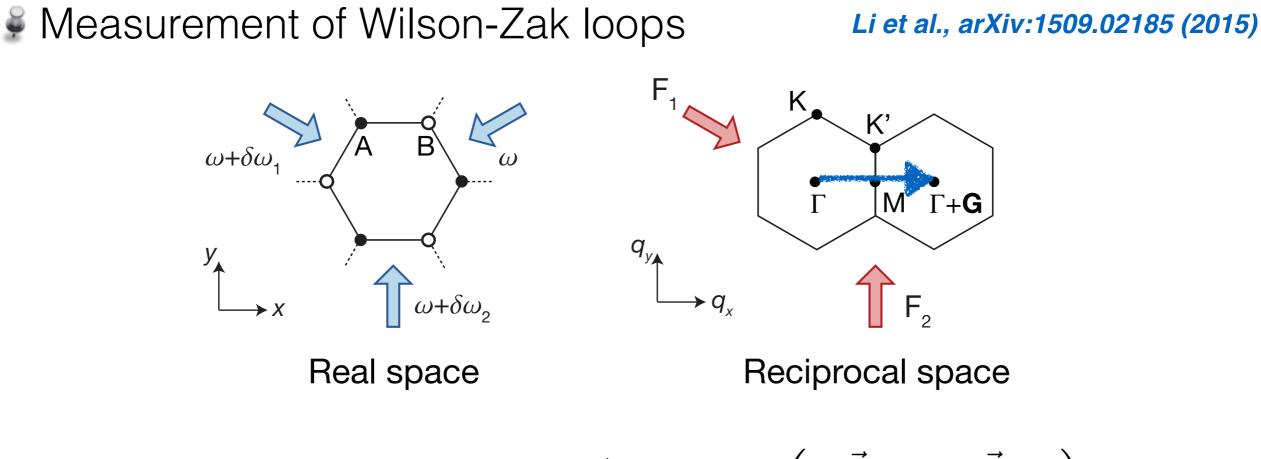


Two-band tight-binding:

$$\hat{W} = \operatorname{diag}\left(e^{i\vec{G}\cdot\vec{r}_A}, e^{i\vec{G}\cdot\vec{r}_B}\right)$$

PHYSICS

VE 🎽 R I



Two-band tight-binding:

$$\hat{W} = \operatorname{diag}\left(e^{i\vec{G}\cdot\vec{r}_A}, e^{i\vec{G}\cdot\vec{r}_B}\right)$$

Theory:

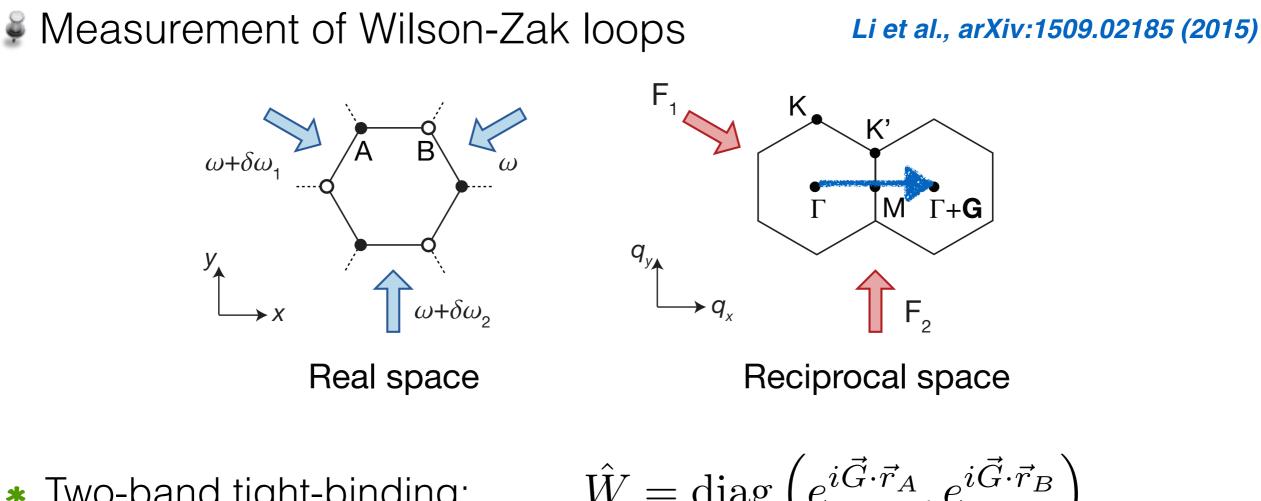
$$\xi = \vec{G} \cdot (\vec{r}_A - \vec{r}_B) = \pi/3$$

Experiment:

$$\xi = 1.03(2)\pi/3$$

PHYSICS

VE 🎽 R I



Two-band tight-binding:

$$\hat{W} = \operatorname{diag}\left(e^{i\vec{G}\cdot\vec{r}_A}, e^{i\vec{G}\cdot\vec{r}_B}\right)$$

Theory:

$$\xi = \vec{G} \cdot (\vec{r}_A - \vec{r}_B) = \pi/3$$

Experiment:

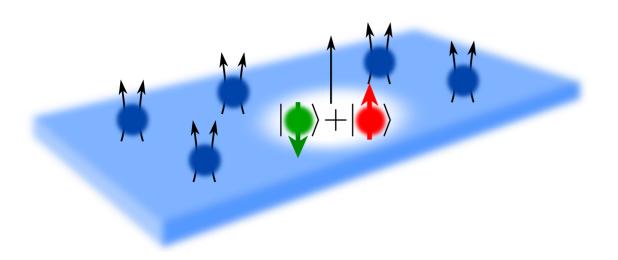
$$\xi = 1.03(2)\pi/3$$

 $\xi = 1.04(4)\pi/3$

PHYSICS

VE 🎽 R I

Geometric phases in correlated systems



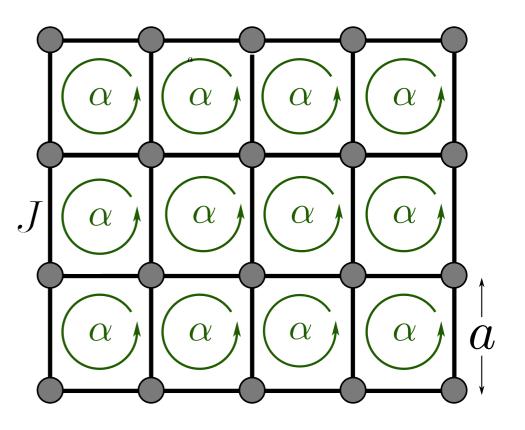
- mostly: fractional quantum Hall, fractional Chern insulators
- can be any other gapped, topological system!

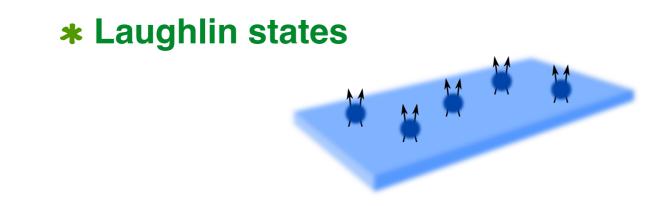
Hofstadter Hamiltonian

$$\mathcal{H}_0 = -J \sum_{\langle i,j \rangle} e^{i\varphi_{i,j}} \hat{a}_i^{\dagger} \hat{a}_j$$

Hubbard term

$$\mathcal{H}_{\text{int}} = \frac{U}{2} \sum_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j} \left(\hat{a}_{j}^{\dagger} \hat{a}_{j} - 1 \right)$$



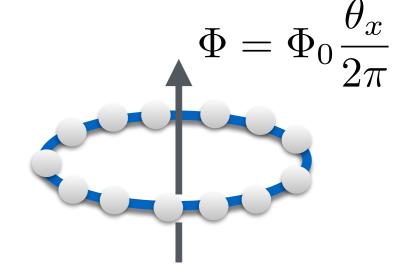


Sorensen et al., PRL 94 (2005) Hafezi et al., PRA 76 (2015)

Twisted periodic boundary conditions:

$$\psi(x_1, ..., x_i + L, ..., x_N) = e^{i\theta_x}\psi(x_1, ..., x_i, ..., x_N)$$

$$\varphi_{\text{Zak}} = \int_0^{2\pi} d\theta_x \, \left\langle \psi(\theta_x) | i \partial_{\theta_x} | \psi(\theta_x) \right\rangle$$

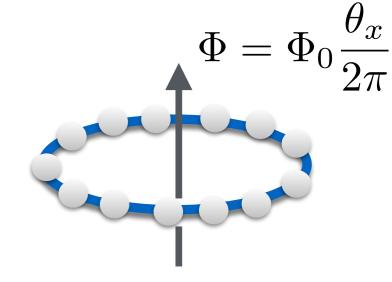


periodic BCs
 phase of macroscopic wavefunction

Twisted periodic boundary conditions:

$$\psi(x_1, ..., x_i + L, ..., x_N) = e^{i\theta_x}\psi(x_1, ..., x_i, ..., x_N)$$

$$\varphi_{\text{Zak}} = \int_0^{2\pi} d\theta_x \, \left\langle \psi(\theta_x) | i \partial_{\theta_x} | \psi(\theta_x) \right\rangle$$

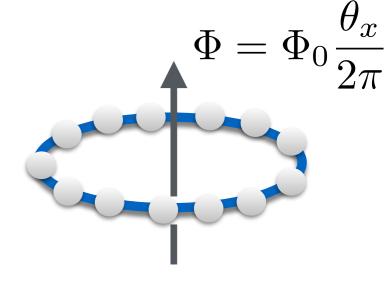


phase of macroscopic wavefunction

Twisted periodic boundary conditions:

$$\psi(x_1, ..., x_i + L, ..., x_N) = e^{i\theta_x}\psi(x_1, ..., x_i, ..., x_N)$$

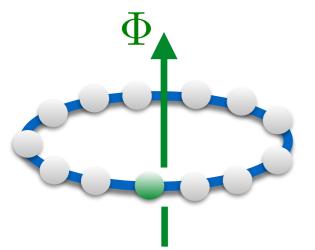
$$\varphi_{\rm Zak} = \int_0^{2\pi} d\theta_x \, \left\langle \psi(\theta_x) | i \partial_{\theta_x} | \psi(\theta_x) \right\rangle$$



periodic BCs

phase of macroscopic wavefunction

* Controlled force on the many-body system:



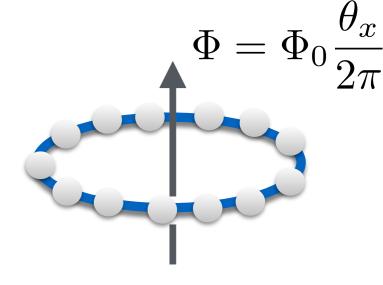
embed a **mobile impurity** in the system

Twisted periodic boundary conditions:

0-

$$\psi(x_1, ..., x_i + L, ..., x_N) = e^{i\theta_x}\psi(x_1, ..., x_i, ..., x_N)$$

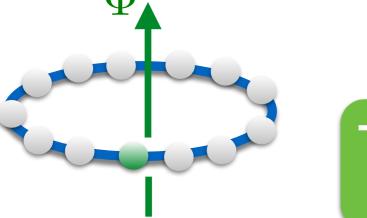
$$\varphi_{\text{Zak}} = \int_0^{2\pi} d\theta_x \, \left\langle \psi(\theta_x) | i \partial_{\theta_x} | \psi(\theta_x) \right\rangle$$



* periodic BCs

phase of macroscopic wavefunction

Controlled force on the many-body system:



embed a **mobile impurity** in the system

Topological qp excitation + mobile impurity = topological polaron (TP)

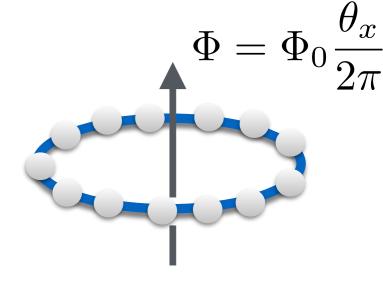
Many-body topological invariants

Twisted periodic boundary conditions:

0-

$$\psi(x_1, ..., x_i + L, ..., x_N) = e^{i\theta_x}\psi(x_1, ..., x_i, ..., x_N)$$

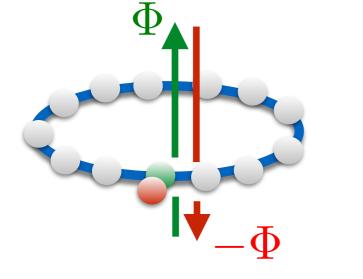
$$\varphi_{\text{Zak}} = \int_0^{2\pi} d\theta_x \, \left\langle \psi(\theta_x) | i \partial_{\theta_x} | \psi(\theta_x) \right\rangle$$



* periodic BCs

phase of macroscopic wavefunction

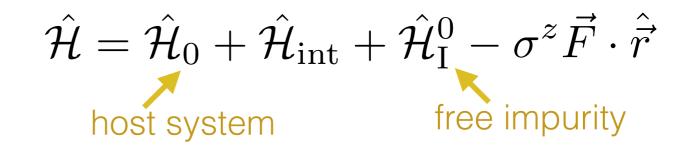
Controlled force on the many-body system:



embed a mobile impurity in the system

Topological qp excitation + mobile impurity = topological polaron (TP)

Microscopic model:



Microscopic model:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{int} + \hat{\mathcal{H}}_I^0 - \sigma^z \vec{F} \cdot \hat{\vec{r}}$$
host system free impurity

Strong-coupling wavefunction:

$$|\psi_{\mathrm{TP}}(\boldsymbol{q})
angle = |\psi_{\mathrm{qp}}(\boldsymbol{q})
angle \otimes |\phi_{\mathrm{I}}
angle$$

Topological invariant (Zak phase):

$$\nu_{\mathrm{TP}} = \nu_{\mathrm{qp}} + \nu_{\mathrm{I}}$$

Microscopic model:

$$\hat{\mathcal{H}} = \hat{\mathcal{H}}_0 + \hat{\mathcal{H}}_{int} + \hat{\mathcal{H}}_I^0 - \sigma^z \vec{F} \cdot \hat{\vec{r}}$$
host system free impurity

Strong-coupling wavefunction:

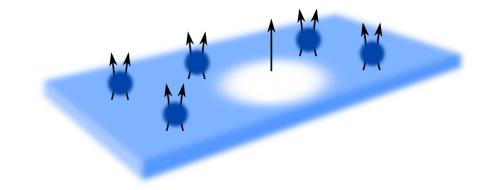
$$|\psi_{\mathrm{TP}}(\boldsymbol{q})
angle = |\psi_{\mathrm{qp}}(\boldsymbol{q})
angle \otimes |\phi_{\mathrm{I}}
angle$$

Topological invariant (Zak phase):

$$u_{\rm TP} = \nu_{\rm qp} + \nu_{\rm I}$$
represents topological order of bulk groundstate

- Solution Laughlin states $\nu = \frac{1}{m}$
 - many-body Chern number (winding of Zak phase)

- Solution Laughlin states $\nu = \frac{1}{m}$
 - many-body Chern number (winding of Zak phase)



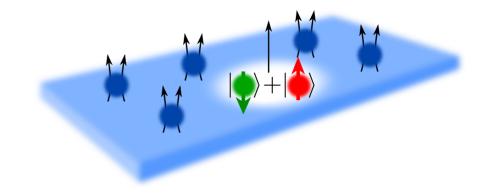
- 🖗 Laughlin states
 - many-body Chern number (winding of Zak phase)

m

$$\mathcal{C} = \frac{1}{m} = \frac{e^*}{e}$$

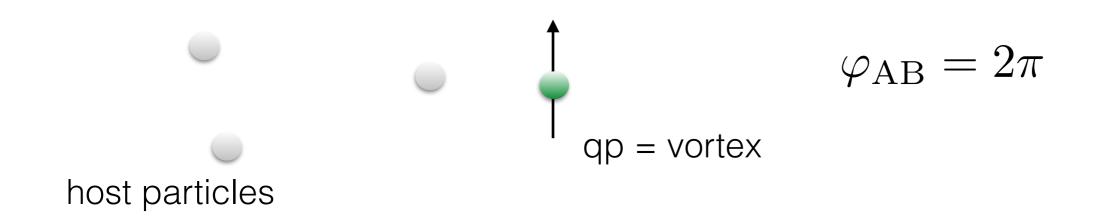
(*m*-fold degenerate gs)

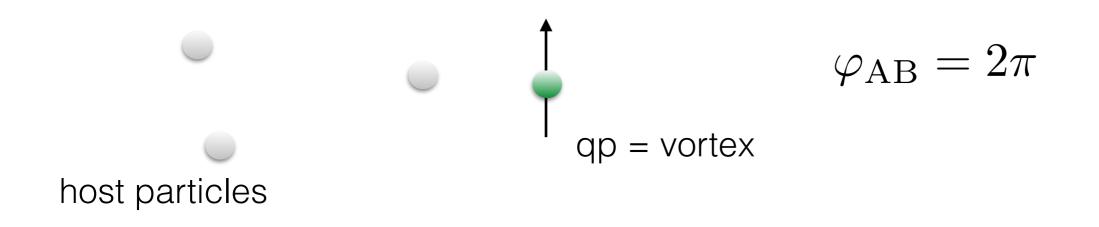
Topological polarons:



$$\mathcal{C}_{\rm TP} = \frac{e}{e^*} = m$$

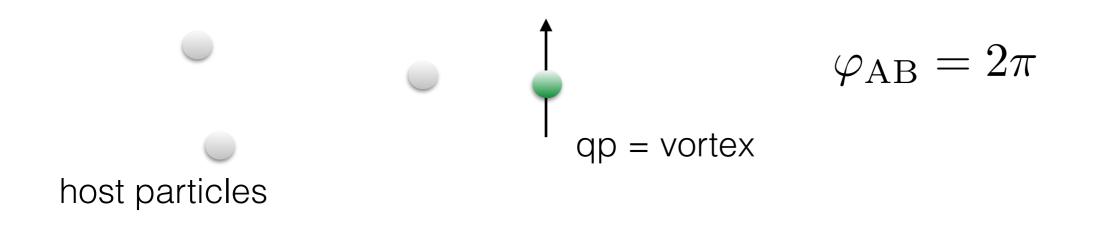
(non-degenerate)





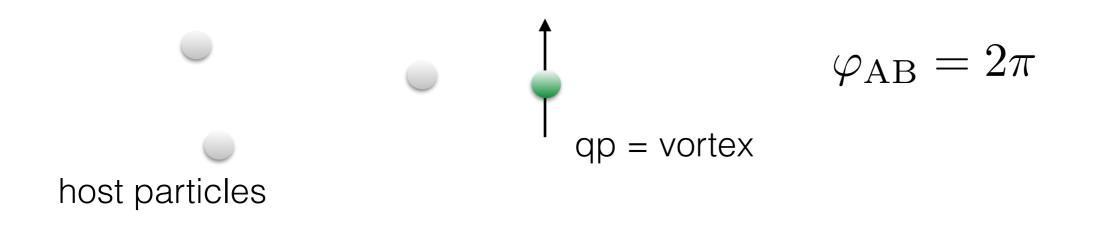
* Host particle density: **1/m x flux density**

reduced effective magnetic field: $b_z^* = b_z/m$



* Host particle density: 1/m x flux density

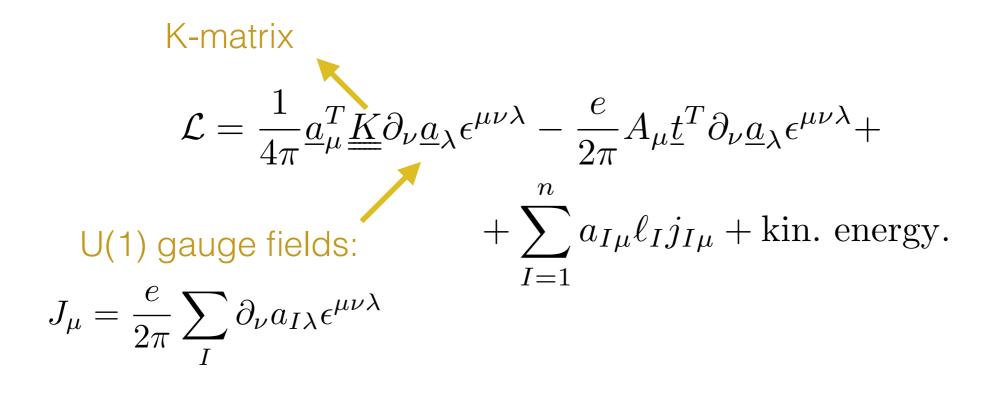
reduced effective magnetic field: $b_z^* = b_z/m$ enhanced Berry curvature: $\mathcal{F}^* = \mathcal{F} \times m$

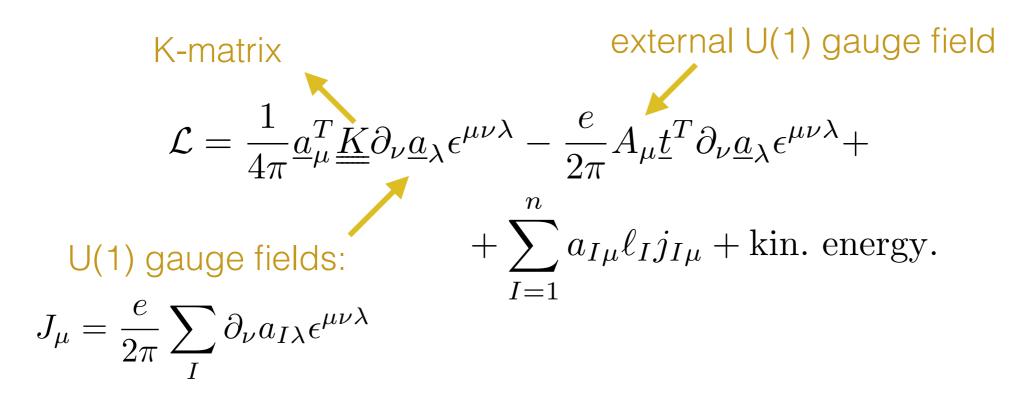


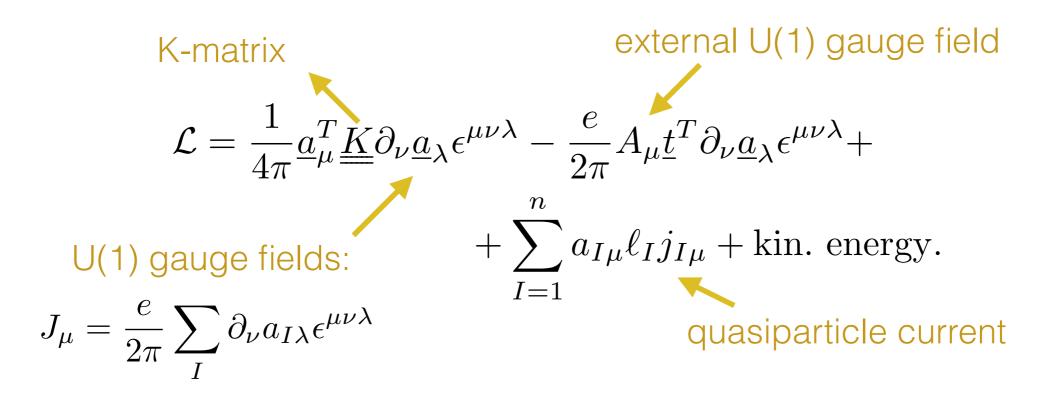
* Host particle density: **1/m x flux density**

reduced effective magnetic field: $b_z^* = b_z/m$ enhanced Berry curvature: $\mathcal{F}^* = \mathcal{F} \times m$ enhanced TP Chern number: $\mathcal{C}_{TP} = \frac{1}{2\pi} \int_{BZ} d^2k \ \mathcal{F}^* = m$

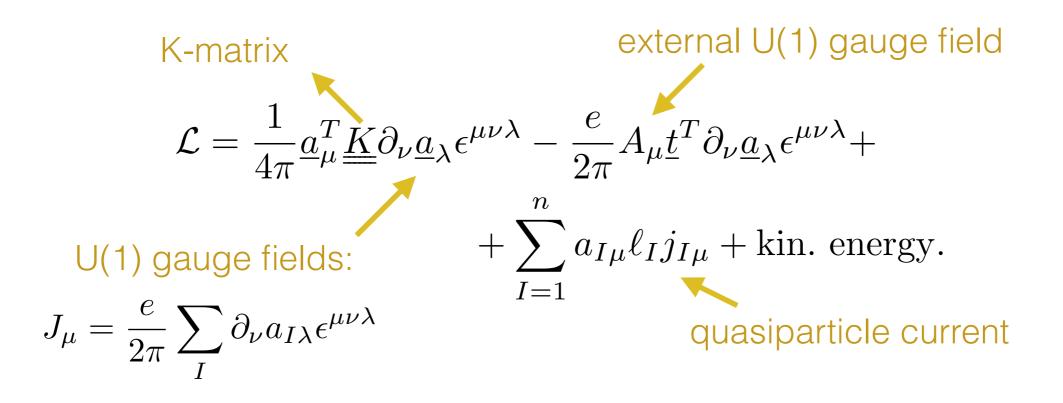
$$\mathcal{L} = \frac{1}{4\pi} \underline{a}_{\mu}^{T} \underline{\underline{K}} \partial_{\nu} \underline{a}_{\lambda} \epsilon^{\mu\nu\lambda} - \frac{e}{2\pi} A_{\mu} \underline{t}^{T} \partial_{\nu} \underline{a}_{\lambda} \epsilon^{\mu\nu\lambda} + \sum_{I=1}^{n} a_{I\mu} \ell_{I} j_{I\mu} + \text{kin. energy}$$





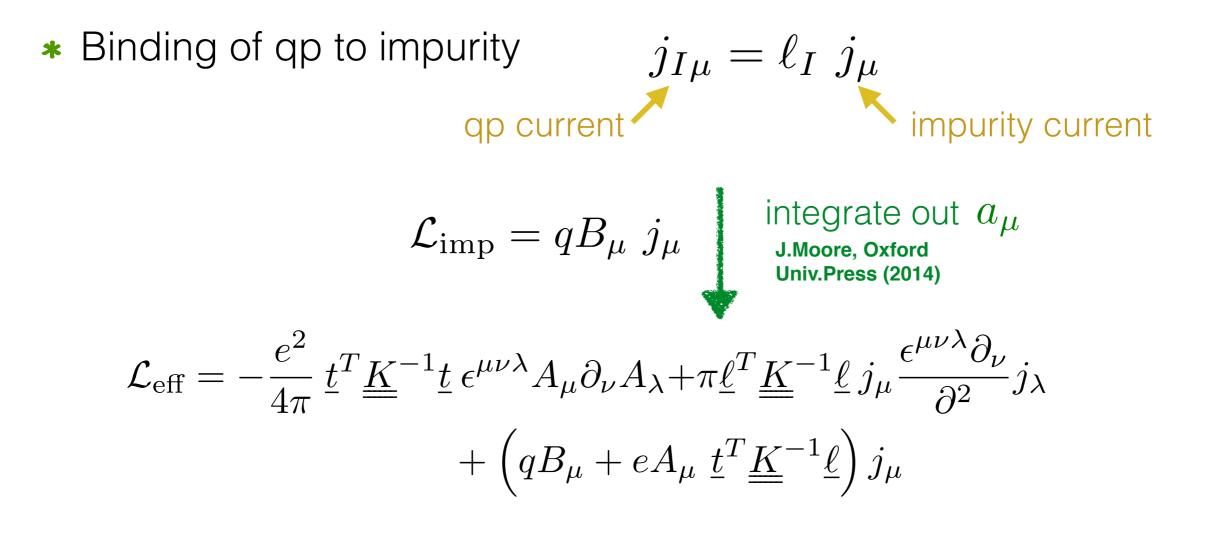


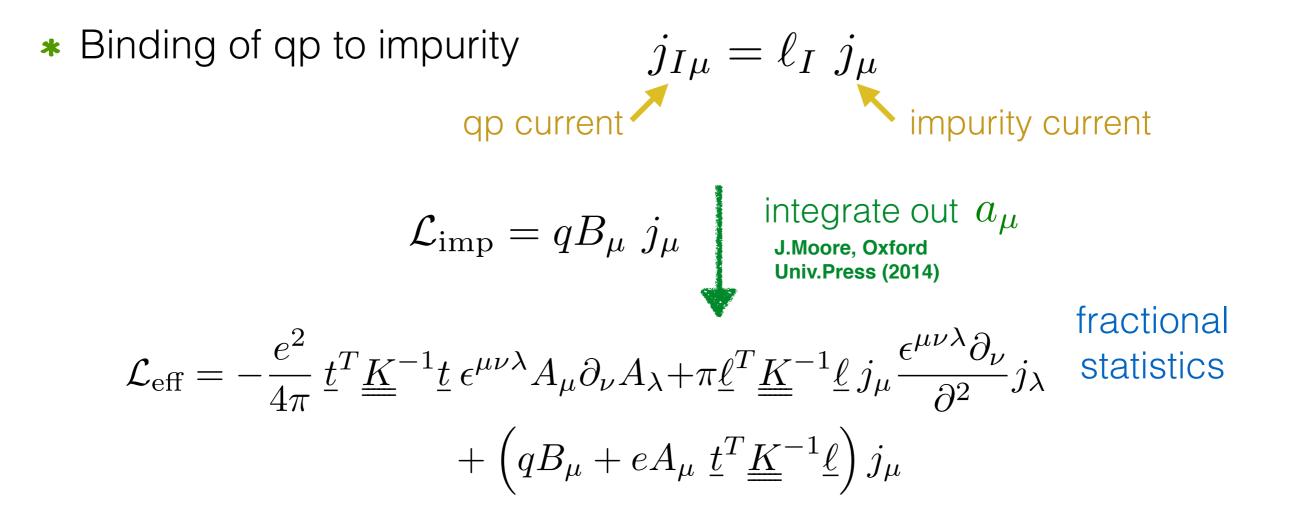
Wen, Adv.Phys. 44 (1995)

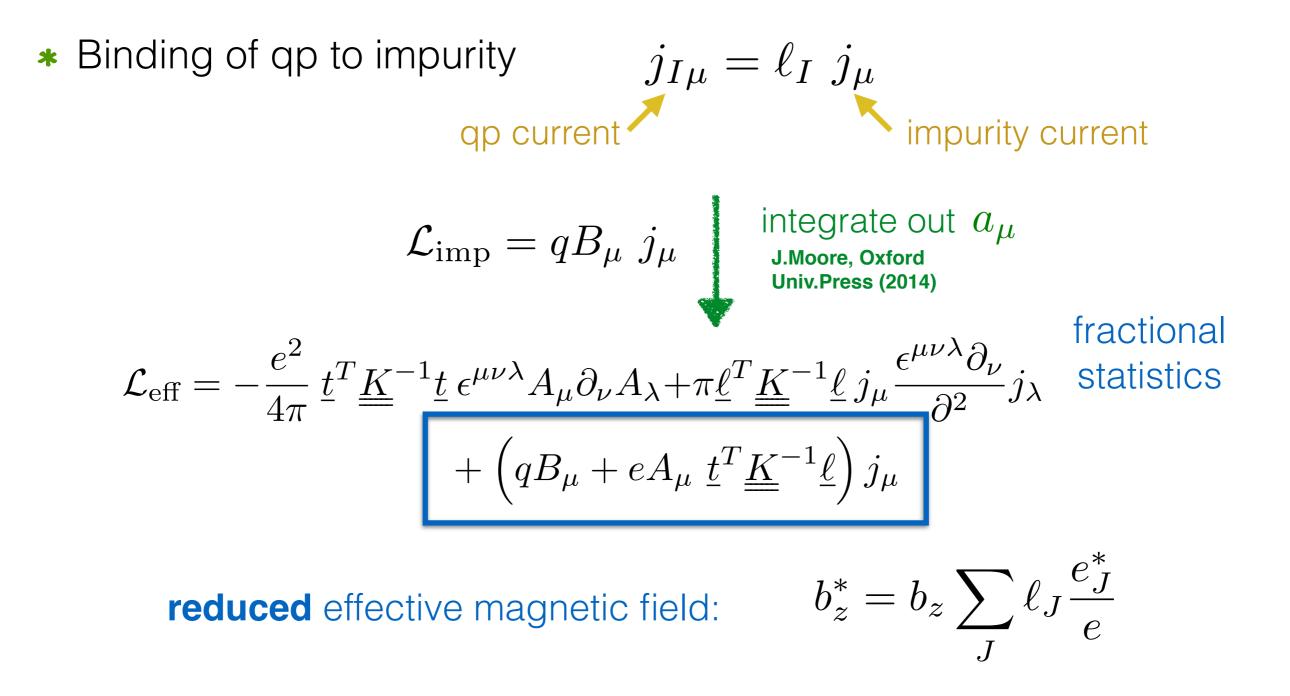


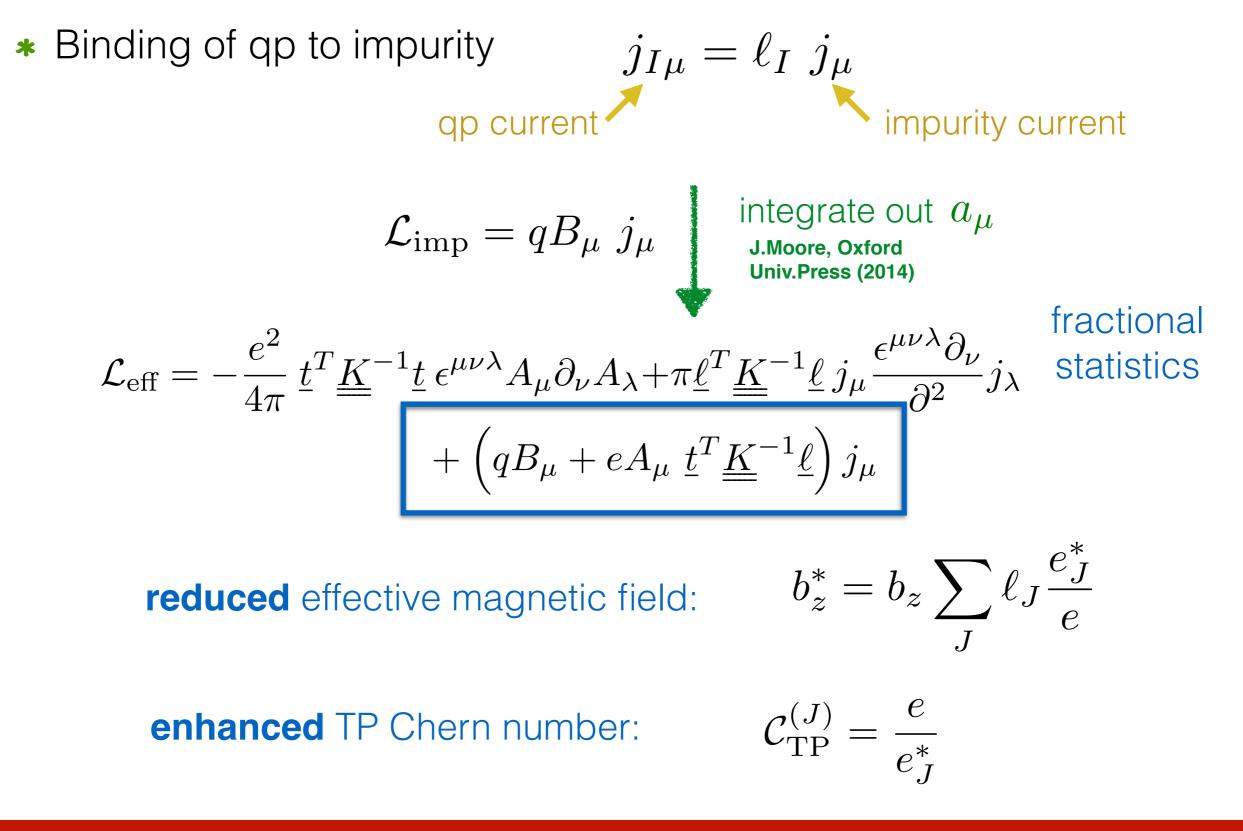
* Euler-Lagrange equations w.r.t a_{μ} :

$$J_{\mu} = \mathcal{C} \frac{e^2}{2\pi} \epsilon^{\mu\nu\lambda} \partial_{\nu} A_{\lambda} \qquad \qquad \mathcal{C} = \sum_{I,J=1}^n t_I (K^{-1})_{IJ} = \sum_J \frac{e_J^*}{e}$$



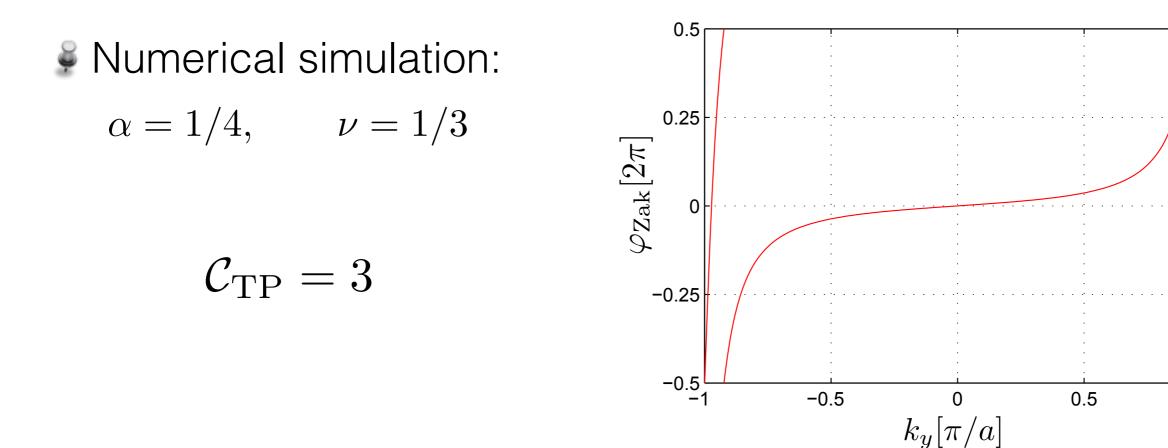






Hofstadter Fermi-Hubbard model:

$$\hat{\mathcal{H}}_{0} = -t \sum_{m,n} \left[e^{-i2\pi\alpha n} \hat{c}_{m+1,n}^{\dagger} \hat{c}_{m,n} + \hat{c}_{m,n+1}^{\dagger} \hat{c}_{m,n} + \text{h.c.} \right] + U \sum_{\langle (m,n), (m',n') \rangle} \hat{c}_{m,n}^{\dagger} \hat{c}_{m,n} \hat{c}_{m',n'}^{\dagger} \hat{c}_{m',n'}.$$

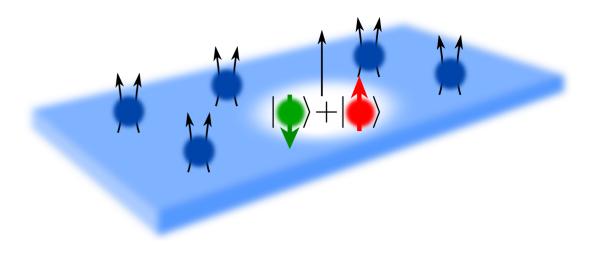


Summary

Measure geometrical phases:
Bloch-oscillations + Ramsey interferometry

Many-body:

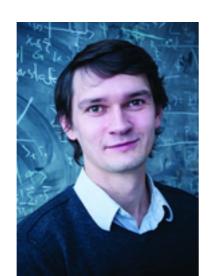
Measure topology of elementary qp excitations



Outlook

- Quantum Spin liquids?
- Investigation of other correlated phases?

Eugene Demler (Harvard)



Dima Abanin (Geneve)

Michael Fleischhauer (Kaiserslautern)

Norman Yao (Berkeley)

... and thanks for your attention!