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One-component plasma  
(homogeneous system, 3D)

Coupling parameter:

Wigner-Seitz radius

Strong correlations:

Crystallization (transition to spatial order):

D. Dubin and T. O’Neil, RMP 1999.



One-component plasmas   
in atomic physics





Coulomb gas in atomic physics

1) Gas of ionized atoms:  
usually singly-ionized alkali-earth metals  
(e.g. Berillium, Calcium, Magnesium). 
Radiation is absorbed and emitted in the visible.



Coulomb gas in atomic physics

1) Gas of ionized atoms:  
usually singly-ionized alkali-earth metals. 
Radiation is absorbed and emitted in the visible. 

2) Confinement by external potentials: 
Paul (radiofrequency) or Penning traps. 

Possibility to control the number of ions and the shape of the cloud 

Linear Paul trap:

Effective harmonic force 

Innsbruck Ion trap



Coulomb gas in atomic physics

1) Gas of ionized atoms:  
usually singly-ionized alkali-earth metals. 
Radiation is absorbed and emitted in the visible. 

2) Confinement by external potentials: 
Paul (radiofrequency) or Penning traps.  

3) Crystallization:  
Low thermal energies are achieved by laser cooling. 
           Cooling down to few microKelvin.  



High-precision measurements  

Simulation of astrophysical systems 

Ultracold chemistry 

Quantum-based technologies

Crystals of ions in traps: Applications

Quantum simulators, quantum metrology, 
Quantum computing. 

Aarhus, Berkeley, Boulder, Freiburg, Erlangen, Innsbruck, London, Mainz, 
Marseille, Michigan, München, Oxford, Paris, PTB, Saarbrücken, Siegen, 
Sussex, .... 

Cirac, Zoller, Retzker, Plenio, Altman, Porras, Solano, Duan, ...     



Trapped ions and Nobel Foundation

And also: Ramsey (1989), Chu, Cohen-Tannoudji, Phillips (1997), Haroche (2012) 

Dehmelt (1989) Paul (1989) Wineland (2012)



Low dimensional structures
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Linear-zigzag transition in an ion chain

For �t � �a, the ions form a
linear chain.

Relaxing the transverse
trapping a transition to a
zigzag takes place. [Birkl et al., Nature 357, 310 (1992)]

The transition is driven by
the instability
of the soft mode:



Phase diagram

Nature 357, 310 (1992)



Outline

1.Thermodynamics of ion chains 
– the linear-zigzag instability, classical PT 
– the linear-zigzag instability, quantum PT 

2. Dynamics of ion chains across the instability 
– Classical quenches  
– Quantum quenches  

3. Outlook. Topological Structural Transitions 



Thermodynamics 
of ion chains



The ion chain

In textbooks (Ashcroft and Mermin):

Periodic distribution: Bloch theorem 
Long-range interaction (Coulomb): no sound velocity



The ion chain in a linear trap

(M. Drewsen and coworkers, Aarhus)

  1D structure (ion chain)

Inhomogeneous distribution: NO Bloch theorem 

Long-range interaction:  
pertubation theory with Bloch waves does not converge



Charge density at equilibrium 

Continuum limit: mean field description for 1D

Linear density:

Length of the chain:

D. Dubin, PRE 1997.

at leading order in 1/log N



Spectra of excitations

G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Transverse spectrum

Axial spectrum

Transverse trap frequency



Spectra of excitations

G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Long wavelength modes:  
Jacobi polynomials 

Transverse spectrum

Axial spectrum

Long wavelength modes:  
Jacobi polynomials



Spectra of excitations

G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Long wavelength modes:  
Jacobi polynomials 

Transverse spectrum

Axial spectrum

Long wavelength modes:  
Jacobi polynomials

Short wavelength modes:  
Phononic waves 

Short wavelength modes:  
Phononic waves 



Statistical Mechanics
Quantization of the vibrations

Canonical ensemble

One-dimensional behaviour:

Density in the center fixed

Thermodynamic limit:

G. M. and Sh. Fishman, PRL 2004; PRE 2004.



Specific Heat

Non extensive behaviour at low temperatures in the  
thermodynamic limit:  

•Due to long-range Coulomb interaction 

•It is a quantum effect (at high-T Dulong-Petit holds) 

low temperature estimate

G. M. and Sh. Fishman, PRL 2004; PRE 2004.



Ion chains are thermal reservoirs?

• In the harmonic chain the dynamics is integrable 

• The rest of the chain acts as a bath for a single ion 
(when thermalization rate is faster than recurrence) 



Ion chain as quantum 
reservoir

Langevin equation:

damping kernel

Spectral density (Fourier transform of the damping kernel)

z

x

y

... ...

B. Taketani, T. Fogarty, E. Kajari, A. Wolf, T. Busch, G.M. PRA (2014)



Entangle two distant ions 
after a quench

z

x

y

... ...

0 3 6 9
0

0.5

1

1.5

distance d=5a, chain of 50 ions in a thermal state 
(ions: Calcium, impurity defects: Indium). 

T. Fogarty, E. Kajari, B. Taketani, A. Wolf, T. Busch, G.M. PRA (2013)



Scaling with the distance

linear decay with the distance

T. Fogarty, E. Kajari, B. Taketani, A. Wolf, T. Busch, G.M. PRA (2013)



Linear-zigzag instability
C. Cormick, G. Morigi - Linear-zigzag transition in an optical cavity - Aarhus, December 2011 7/28

Linear-zigzag transition in an ion chain

For �t � �a, the ions form a
linear chain.

Relaxing the transverse
trapping a transition to a
zigzag takes place. [Birkl et al., Nature 357, 310 (1992)]

The transition is driven by
the instability
of the soft mode:



Preamble: Ring
No axial confinement: periodic distribution 

Modes are phononic waves with quasimomentum k in BZ

Instability: 

Critical value: 



Transition chain-zigzag

Linear chain

decrease transverse confinement



Transition chain-zigzag

Linear chain Transition point

Zigzag mode

decrease transverse confinement



Transition chain-zigzag

Linear chain ZigzagTransition point

Zigzag mode

decrease transverse confinement

Sh. Fishman, G. De Chiara, T. Calarco, GM, PRB 2008 



Chain to Zig-Zag:  
second-order phase transition?

Symmetry breaking: line to plane 

Order parameter: Distance from the axis 

Control field: Transverse frequency 

Soft mode: Zigzag mode 

J. Eschner and coworkers, Barcelona & Saarbrücken



Potential at the instability

Expand the potential at 4th order in plane waves 
Study new minima as a function of transverse freq.

other modes

Check for > 0

zigzag mode

Ansatz: the zigzag mode is the soft mode. 



Potential of the zigzag mode

Sh. Fishman, G. De Chiara, T. Calarco, G.M., PRB 2008

The other modes are stably trapped by a harmonic potential 
(microscopic derivation of Landau model)

Derivation of the effective potential for the zigzag mode: 



Summary:  
classical phase transition

• Microscopic derivation of the Landau 
model. 

• Second-order phase transition.  

• Critical exponents of Landau model. 

• Soft mode: zigzag mode. 

Sh. Fishman, G. De Chiara, T. Calarco, G.M., PRB 2008



Classical phase transition

linear zigzag



Quantum phase transition

linear zigzagTunneling: disorder



Quantum fluctuations at the 
mechanical instability (2D)

Soft mode:

Modes close to the instability:

Effective potential:

E. Shimshoni, G.M., S. Fishman PRL 2011



Mapping to an Ising model in the 
transverse field

action of an Ising model

Effective Hamiltonian

transverse field (tunneling)

exchange coupling  (Coulomb interaction)

E. Shimshoni, G.M., S. Fishman PRL 2011



DMRG results

P. Silvi, G. De Chiara,T. Calarco, G.M., S. Montangero, Ann. Phys. (2013)

Theory: critical exponents of Ising model with transverse field 



Quantum effects

D. Podolsky, E. Shimshoni, P. Silvi, S. Montangero, T. Calarco, GM, S. Fishman, PRB 2014

rescaled quantum fluctuations

shift from the critical point

DMRG and RG flow analysis are in excellent agreement



Quantum effects

D. Podolsky et al, PRB 2014

rescaled quantum fluctuations

shift from the critical point

ions: 
quantum effects are negligible

dipoles



Dynamics: 

classical and quantum 
quenches



Classical quenches 

at the linear-zigzag instability



Preamble: scaling at the  
classical phase transition



Correlation length (Landau)

Preamble: scaling at the  
classical phase transition



Correlation length (Landau)

Relaxation time (Landau)

it diverges at the critical point

Preamble: scaling at the  
classical phase transition



Dynamical properties  
at criticality

Dynamics of the order parameter: 
Landau Ginzburg equation in presence of damping 
(laser cooling)

A. Del Campo, G. De Chiara, G.M., M. Plenio, A. Retzker, PRL 2010



Kibble-Zurek mechanism

Kibble-Zurek hypothesis:   

System follows the quench adiabatically till  
the relaxation time becomes slower than the quench. 

Freeze-out time: , Density of defects:

A. Del Campo, G. De Chiara, G.M., M. Plenio, A. Retzker, PRL 2010



Density of defects 
after the quench

Scaling of the density of defects as a function of the quench rate:

A. Del Campo, G. De Chiara, G.M., M. Plenio, A. Retzker, PRL 2010

overdamped case:

underdamped case:

[Laguna and Zurek, PRL 1999]



Experimental quenches

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

T. Mehlstäubler and coworkers (PTB)



Experimental quenches

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

T. Mehlstäubler and coworkers (PTB)

What’s next: spectroscopy and control of the kinks



Sudden quenches 

in a linear chain



Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Ramsey interferometry



Initial state: 

Probability to be in the ground state:

Ramsey interferometry



Cat-states in spin-dependent 
potentials

Quantum superposition of two internal states  
in a spin-dependent potential 

Cat-state of ion structures

J. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, GM, PRA (2011)
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FIG. 1: (color online) Protocol for the creation of coherent superpositions of different motional states. (a) The ions
are prepared in the electronic ground state and with the collective motion cooled to the ground state in a zigzag
structure. (b) A single ion is prepared in the internal superposition state 1√

2
(|g⟩+ |e⟩) by a resonant laser pulse.

(c) Because of the state-dependent optical potential, the internal and external degrees of freedom get entangled:
The motional state corresponding to the electronic ground state remains in the zigzag structure, while the compo-
nent that experiences the action of the optical potential follows a different time evolution. (d) If the change of the
potential for a single ion is enough to make the zigzag structure unstable, the two motional states in the superposi-
tion split up, with the excited component oscillating around the equilibrium positions of the linear chain.

cluding the laser pulses) can be decomposed into the sum

H = Hat +Hkin + VCoul + Vpot , (1)

where Hat =
∑N

j=1 !ω0|e⟩j⟨e| describes the internal en-

ergy of the ions, Hkin =
∑N

j=1 p
2
j/(2m) is the kinetic

energy,

VCoul =
1

2

N∑

j=1

N∑

k=1
k ̸=j

q2

4πϵ0

1

|rj − rk|
(2)

is the unscreened Coulomb repulsion, with ϵ0 the vacuum
permittivity, and Vpot is an external, harmonic potential.
This potential is assumed to be anisotropic, and in the
rest of this work we take that the confinement along the z
direction is so tight, that the motion along this direction
can be considered to be frozen out. In the x–y plane, the
potential depends on the internal state of the ions and
takes the form

Vpot =
N∑

j=1

|g⟩j⟨g| Vg(rj) + |e⟩j⟨e| Ve(rj) , (3)

where

Vg(rj) =
1

2
mν2x

(
x2
j + α2y2j

)
, (4)

Ve(rj) =
1

2
mν2x

[
x2
j + (α+ δα)2y2j

]
. (5)

Here νx is the trap frequency along the x-axis, α = νy/νx
is the aspect ratio between transverse and axial trap fre-
quency when the ion is in the internal state |g⟩, and α+δα
is the aspect rario when the ion internal state is |e⟩.

The potential (3) can be obtained by superimposing
an optical potential [? ] to the ion trap. The optical
potential can be due to a laser which is far detuned from
a dipole transition between the state |e⟩ and an addi-
tional auxiliary electronic level, while it does not affect
the dynamics when the ion is in state |g⟩. A possible real-
ization can make use of a laser beam, propagating along
the trap axis and with a Gaussian intensity profile, which
can be radially approximated by a harmonic potential in
a neighbourhood of the beam axis [? ]. In this article we
consider that the ions are sufficiently cold, such that they
are localized about the equilibrium positions of the total
potential, composed of VCoul + Vpot. The ordered struc-
tures they form depend on the the potential, and thus
also on the ions internal state.The potentials we will dis-
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cuss support the linear and zigzag structures, which are
illustrated in Fig. ??.

FIG. 2: (color online) Sketch of (a) Linear and (b)
zigzag structure of ions in a trap.

For later convenience, we introduce dimensionless vari-
ables. We scale all lengths by a characteristic length scale

l = q2/3/(4πϵ0mν2x)
1/3 ,

which is the typical interparticle distance along the chain
axis. We will also scale all energies by the energy scale
E = mν2xl

2. The dimensionless potentials are then:

VCoul =
1

2

N∑

j=1

N∑

k=1
k ̸=j

1

|rj − rk|
, (6)

Vg(rj) =
1

2

(
x2
j + α2y2j

)
, (7)

Ve(rj) =
1

2

[
x2
j + (α+ δα)2y2j

]
, (8)

where we have kept the same notation as before the scal-
ing. We denote the total potential by

V = VCoul + Vpot (9)

III. CAT STATES OF ION CHAINS

In this section we describe a possible scheme for
preparing a coherent superpositions of different motional
states by manipulating the ions with lasers. We are in-
terested in the case in which the chain is composed by
few ions, say, three. We assume that the superimposed
optical potential is sufficiently strong such that, when an
ion in the zigzag chain is excited, the structure becomes
linear. In this regime the cat state is achieved by prepar-
ing a single ion in a superposition state. A measurement
procedure is discussed. The parameters required in order
to access this regime will be analysed in the next section.

A. Creation of cat states

The initial state of the crystal is assumed to be, un-
less otherwise stated, given by all ions in the ground

state and the chain in the ground state of the zigzag
structure, which we denote by |0⟩zz. A laser pulse ad-
dresses one of the ions in the chain and drives the
two-level transition |g⟩ → |e⟩, performing the rotation
|g⟩ → |g⟩ cosΘ + |e⟩ sinΘ. Assuming that the duration
of the pulse is much shorter than the typical scales of the
vibrational motion, the state of crystal after the pulse is
Ψ⟩ = |ψI⟩ |0⟩zz, with (for Θ = π/4)

|ψI⟩ =
1√
2

(
|ggg⟩+ |geg⟩

)
. (10)

After the pulse, the motional and internal degrees of free-
dom get entangled by the unitary evolution governed by
Hamiltonian H, Eq. (1), creating states of the form

|Ψ(t)⟩ = 1√
2

(
|ggg⟩ |0⟩zz + |geg⟩ |φ(t)⟩

)
, (11)

with

|φ(t)⟩ = e−iHet/! |0⟩zz (12)

and He = ⟨e|H|e⟩ the Hamiltonian projected over the
excited state. Here, the energy of state |g⟩ |0⟩zz is set
equal to zero, and the state is reported in the reference
frame of Hat. Entanglement between internal and exter-
nal degrees of freedom is achieved for times over which
the overlap

I(t) = ⟨φ(0)|φ(t)⟩ (13)

has absolute value substantially smaller than unity, and
will be maximal when I = 0. A discussion about the con-
nection between this quantity and the amount of which-
way information imprinted in the reservoir, due to the
entanglement between inetrnal and external degrees of
freedom, can be found in [? ].

B. Measurement

The overlap I(t) can be measured by means of Ramsey
interferometry, according to the scheme proposed in Ref.
[? ]. Let us assume that, after obtaining state (??) for
a given evolution time t, we apply a −π/2 pulse, i. e.
the inverse operation of a π/2 pulse. The resulting state
reads

|ψII(t)⟩ =
1

2

[
|ggg⟩ (|φ(0)⟩+|φ(t)⟩)−|geg⟩ (|φ(0)⟩−|φ(t)⟩)

]
.

(14)
and the corresponding probability to find the addressed
ion in state |g⟩ is given by

P1(g) =
1 + Re{I(t)}

2
. (15)

Alternatively, after obtaining the state (??), we can first
apply a phase gate on the addressed ion, namely an op-
eration that maps the internal states according to the



Cat-states in spin-dependent 
potentials



Ramsey contrast gives the overlap between  
the two motional states across the transition

J. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, G.M, PRA (2011)

zigzag-zigzag zigzag-linear linear-linear

Ramsey contrast



Visibility signal
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FIG. 3: (Color online) Visibility signal for three 9Be+ ions with an axial trapping frequency of �x = 2⇥ ⇥ MHz for di⇥erent
values of g and a constant impurity of � = 0.025, corresponding to an dipole potential frequency of 2⇥ ⇥ 244.95kHz for the
central ion. Three di⇥erent kinds of signals are observed. (a) The signal, here for g = 0.02, shows a periodic oscillation staying
always close to one. (b) The signal, here for g = �0.1, decays quickly to zero and shows a periodic appearence of revivals with
di⇥erent peak heights. (c) The signal, here for g = �0.005, shows again decay and revivals, however with a beating on top.

reasons we will only consider crystals with an odd ion
number manipulating always only the central one. We
find it convenient to introduce reduced quantities, as this
is advantageous for comparing crystals with di⇥erent ion
numbers, defined by

g =
�� �c

�c
=

⇥y � ⇥y,c
⇥y,c

, (6.1)

� =
�dip

�c
=

⇥dip
⇥y,c

. (6.2)

To restrict our discussion, we keep for the initial state
� = 0, and change for the interfered state � to some
finite value. We keep for both states the same value of
g. Thus, the visibility signal will be characterized by two
parameters, the value of g and the value of � for the in-
terfered state. We then want to investigate the properties
of the visibility signal as a function of these two param-
eters. First, we consider the behavior for a fixed value
of � and change g continously. The situation is sketched
in Fig. 1. For a positive � and values of g smaller than
a critical value gc, we will interfere two zigzag structures
with di⇥erent equilibrium positions during the Ramsey
experiment. For values g > 0, we will remain in the
linear structure with the same equilibrium positions but
with di⇥erent confinement. And for values in between,
gc < g < 0, we will have a transient regime, where the
inital state is in the zigzag, which is interfered with a
dynamical state of the linear structure.

For the simplest case with three ions with the central
ion excited, we can evaluate the transition from zigzag to
linear analytically [9]; transfering to the present notation,
one could give a critical value for g as a function of �,
or vice versa,

�c(g) = (g + 1)

⇤
2

3g + 2
� 1

⌅
, (6.3)

gc(�) =
1

2

�
�(1 +�)±

⇧
(1 +�)2 � 8�/3

⇥
. (6.4)

Keeping � fixed and changing g, we observe three dif-
ferent kind of signals, plotted in Fig. 3. We display

g

t 
in
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FIG. 4: (Color online) Density plot of the visibility signal as
function of t and g. For g > 0 approaching 0, the oscillations
of the signal increase in period and amplitude, whereas for
larger values it stays almost constant to 1 all the time. For
g < 0 approaching g ⇤ �0.0165, the revivals appear less
frequent, and more frequent again as g increases. The inset
highlights the appearance of multiple peaks by splitting of the
main peaks as well a new appearances for shorter times.

the behavior as a function of t and g in Fig. 4. For
g > 0, i.e. in the linear regime, the signal shows an os-
cillatory behavior, but it oscillates with a slowly varying
amplitude between almost one and some value just be-
low one (Fig. 3a). In Fig. 4, we see that it is for almost
all values of g very close to one; as g goes to zero, the
amplitude and the period of the oscillations increase.

For g < 0 we see two di⇥ernt kinds of behavior. Deep in
the zigzag regime, we see a fast decay of the signal to zero
and a periodic appearance of revivals, but with di⇥erent
peak heights (Fig. 3b). For g approaching gc ⇤ �0.0165
from both sides, the signal still shows a fast decay to zero;
the revivals, however, do not occur in the same simple
periodic way as for smaller values of g, but rather in a

Visibility gives the overlap of the states across the quench
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V. RAMSEY INTERFEROMETRY WITH
HARMONIC OSCILLATORS

So far, the discussion from section II holds quite gen-
eral for any quantum system. In this section we will
focus on the specific case where the probed system is a
set of 3N coupled harmonic oscillators. We will discuss
the overlap as a function of the Ramsey time tR for pure
states, starting with initial ground state preparation be-
fore moving to arbitrary inital coherent states.

For pure states, the overlap and the visibility are given
by Eqs. (2.9) and (2.10) respectively. Let the initial
state be the tensor product coherent state for 3N modes,
|⌃g(t0)� = |⌅g

1 · · ·⌅
g
3N �g ⇤ |⌅g�, the overlap as a function

of the Ramsey time tR ⇤ t between the pulses is given
by

O(t) = g⌥⌅g|Ug(t)
†Rk⇥

†Ue(t)Rk |⌅g�g . (5.1)

The operators Rk, Rk⇥ are given by the recoil operators,
Rk = exp(ik.rn), Rk⇥ = exp(ik⇤.rn).

Decomposing the position operator as rn = r(e)n + qe
n,

where qe
n takes now the role of the position operator, we

basically replace ik.rn by ik.qe
n in the exponent of the

recoil operator, as the additional occuring term k.r(e)n is
only a phase which could have been added or subtracted
from the recoil operator in the first place.

Handling each of the spatial coordinates separately, we
have, e.g for the x coordinate ,

kxq
e
n = kx

⌃
⌦

l

�
~

2m⌥e
l

Me
nl

⌥
�
bel

† + bel
⇥
,

which motivates us to define

⇤l = i

�
~

2m⌥e
l

Kl ⌅l = 1, . . . , 3N ,

with

Kl = kxM
e
nl + kyM

e
(n+N)l + kzM

e
(n+2N)l

being the e�ective photon wave vector for the mode la-
beled by l each. Therefore, ik.rn =

�
l ⇤l

�
bel

† + bel
⇥
, and

the recoil operators are written as

Rk = De(⇤1, . . . ,⇤3N ) . (5.2)

Note that the |⇤j | will represent the e�ective Lamb-Dicke
parameters for each mode of the ion crystal; as they are
dependent on the inverse of the eigenfrequencies, these
need not to be negligibly small and we might not be
deep in the Lamb-Dicke regime. To make reference to
the various gate proposals for the use of trapped ions
as a quantum computer, there the center-of-mass mode
is employed, which necessarily (in the case of all ions
having the same mass) has the same frequency as the
external trapping potential. Here, on the contrary, we

are close to a structural transition, where one specific
mode frequency becomes quite small compared to the
others, thereby being potentially sensitive to the momen-
tum transfer even of a single photon. This might be used
to extend recent proposals to use Schrödinger cat states
of trapped ions for the detection of an absorption event
of a single photon [17] .

A. Initial ground state preparation and neglect of
the photon recoil of the pulses

If we choose the wave vector of the photon such that
all the |⇤j | are su⇤ciently small, we can neglect the re-
coil operators. Furthermore, we will for now assume the
ion crystal being initially in its motional ground state,
|⌅g�g = |0�g. The overlap (5.1) then reduces to

O0(t) = g⌥0|Ue(t) |0�g .

Inserting relations (4.14) and (4.15) to transform be-
tween the ground states, the overlap is written as

O0(t) = Z2
e⌥0| eA

†
D†

e(⇥
e)Ue(t)De(⇥

e)eA |0�e .

We commute the displacement and the eA operators, by
employing the identity

De(⇥
e)eA = eÃ(⇥e)De(⇥

e) , (5.3)

where

Ã(⇥) =
1

2

⌦

jk

Ajk(b
e
j
† � ⇥⇥

j )(b
e
k
† � ⇥⇥

k) , (5.4)

to obtain the following expression for the overlap:

O0(t) = Z2
e⌥0| D†

e(⇥
e)eÃ

†(⇥e)Ue(t)e
Ã(⇥e)De(⇥

e) |0�e
= Z2

e

⇤
⇥e

⇧⇧ eÃ
†(⇥e)Ue(t)e

Ã(⇥e)
⇧⇧⇥e⌅

e .

Inserting an identity in the coherent state bases of the
structure belonging to |e�, we have

O0(t) =
Z2

⇧3N

↵
d2�

⇤
⇥e

⇧⇧ eÃ
†(⇥e)U(t)

⇧⇧�
⌅⇤
�
⇧⇧ eÃ(⇥e)

⇧⇧⇥e⌅ ,

where we also dropped the indices identifying the basis
for states and operators, since they are all now in the
basis related to |e� and will remain therein to the end
of the calculation.

 
d2� is the short-hand notation for 

d2�1· · ·
 
d2�N , where each integral is understood as 

d2�j =
 
d(Re�) d(Im�) [18]. We proceed by evaluat-

ing the matrix elements,

⇤
⇥e

⇧⇧ eÃ
†(⇥e)

⇧⇧�(t)
⌅
= ea

�(�(t)�⇥e)
⇤
⇥e

⇧⇧ �(t)
⌅
, (5.5)

where �j(t) = �je�i⇤jt is the time-evolved coherent
state, and a(�) = 1

2

�
jk Ajk�⇥

j�
⇥
k a 3N -dimensional

complex-valued function. Analogous we have

⇤
�
⇧⇧ eÃ(⇥e)

⇧⇧⇥e⌅ = ea(��⇥e)
⇤
�
⇧⇧ ⇥e⌅ . (5.6)

J. Baltrusch, C. Cormick, and GM, PRA (2012)

zigzag-zigzag linear-linear



Visibility signal

11

0 5 10 15 20
0.975

0.98

0.985

0.99

0.995

1

t in µs

V
is

ib
ili

ty

(a)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t in µs

V
is

ib
ili

ty

(b)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t in µs

V
is

ib
ili

ty

(c)

FIG. 3: (Color online) Visibility signal for three 9Be+ ions with an axial trapping frequency of �x = 2⇥ ⇥ MHz for di⇥erent
values of g and a constant impurity of � = 0.025, corresponding to an dipole potential frequency of 2⇥ ⇥ 244.95kHz for the
central ion. Three di⇥erent kinds of signals are observed. (a) The signal, here for g = 0.02, shows a periodic oscillation staying
always close to one. (b) The signal, here for g = �0.1, decays quickly to zero and shows a periodic appearence of revivals with
di⇥erent peak heights. (c) The signal, here for g = �0.005, shows again decay and revivals, however with a beating on top.

reasons we will only consider crystals with an odd ion
number manipulating always only the central one. We
find it convenient to introduce reduced quantities, as this
is advantageous for comparing crystals with di⇥erent ion
numbers, defined by

g =
�� �c

�c
=

⇥y � ⇥y,c
⇥y,c

, (6.1)

� =
�dip

�c
=

⇥dip
⇥y,c

. (6.2)

To restrict our discussion, we keep for the initial state
� = 0, and change for the interfered state � to some
finite value. We keep for both states the same value of
g. Thus, the visibility signal will be characterized by two
parameters, the value of g and the value of � for the in-
terfered state. We then want to investigate the properties
of the visibility signal as a function of these two param-
eters. First, we consider the behavior for a fixed value
of � and change g continously. The situation is sketched
in Fig. 1. For a positive � and values of g smaller than
a critical value gc, we will interfere two zigzag structures
with di⇥erent equilibrium positions during the Ramsey
experiment. For values g > 0, we will remain in the
linear structure with the same equilibrium positions but
with di⇥erent confinement. And for values in between,
gc < g < 0, we will have a transient regime, where the
inital state is in the zigzag, which is interfered with a
dynamical state of the linear structure.

For the simplest case with three ions with the central
ion excited, we can evaluate the transition from zigzag to
linear analytically [9]; transfering to the present notation,
one could give a critical value for g as a function of �,
or vice versa,

�c(g) = (g + 1)

⇤
2

3g + 2
� 1

⌅
, (6.3)

gc(�) =
1

2

�
�(1 +�)±

⇧
(1 +�)2 � 8�/3

⇥
. (6.4)

Keeping � fixed and changing g, we observe three dif-
ferent kind of signals, plotted in Fig. 3. We display
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FIG. 4: (Color online) Density plot of the visibility signal as
function of t and g. For g > 0 approaching 0, the oscillations
of the signal increase in period and amplitude, whereas for
larger values it stays almost constant to 1 all the time. For
g < 0 approaching g ⇤ �0.0165, the revivals appear less
frequent, and more frequent again as g increases. The inset
highlights the appearance of multiple peaks by splitting of the
main peaks as well a new appearances for shorter times.

the behavior as a function of t and g in Fig. 4. For
g > 0, i.e. in the linear regime, the signal shows an os-
cillatory behavior, but it oscillates with a slowly varying
amplitude between almost one and some value just be-
low one (Fig. 3a). In Fig. 4, we see that it is for almost
all values of g very close to one; as g goes to zero, the
amplitude and the period of the oscillations increase.

For g < 0 we see two di⇥ernt kinds of behavior. Deep in
the zigzag regime, we see a fast decay of the signal to zero
and a periodic appearance of revivals, but with di⇥erent
peak heights (Fig. 3b). For g approaching gc ⇤ �0.0165
from both sides, the signal still shows a fast decay to zero;
the revivals, however, do not occur in the same simple
periodic way as for smaller values of g, but rather in a

Visibility gives the overlap of the states across the quench

8

V. RAMSEY INTERFEROMETRY WITH
HARMONIC OSCILLATORS

So far, the discussion from section II holds quite gen-
eral for any quantum system. In this section we will
focus on the specific case where the probed system is a
set of 3N coupled harmonic oscillators. We will discuss
the overlap as a function of the Ramsey time tR for pure
states, starting with initial ground state preparation be-
fore moving to arbitrary inital coherent states.

For pure states, the overlap and the visibility are given
by Eqs. (2.9) and (2.10) respectively. Let the initial
state be the tensor product coherent state for 3N modes,
|⌃g(t0)� = |⌅g

1 · · ·⌅
g
3N �g ⇤ |⌅g�, the overlap as a function

of the Ramsey time tR ⇤ t between the pulses is given
by

O(t) = g⌥⌅g|Ug(t)
†Rk⇥

†Ue(t)Rk |⌅g�g . (5.1)

The operators Rk, Rk⇥ are given by the recoil operators,
Rk = exp(ik.rn), Rk⇥ = exp(ik⇤.rn).

Decomposing the position operator as rn = r(e)n + qe
n,

where qe
n takes now the role of the position operator, we

basically replace ik.rn by ik.qe
n in the exponent of the

recoil operator, as the additional occuring term k.r(e)n is
only a phase which could have been added or subtracted
from the recoil operator in the first place.

Handling each of the spatial coordinates separately, we
have, e.g for the x coordinate ,

kxq
e
n = kx

⌃
⌦

l

�
~

2m⌥e
l

Me
nl

⌥
�
bel

† + bel
⇥
,

which motivates us to define

⇤l = i

�
~

2m⌥e
l

Kl ⌅l = 1, . . . , 3N ,

with

Kl = kxM
e
nl + kyM

e
(n+N)l + kzM

e
(n+2N)l

being the e�ective photon wave vector for the mode la-
beled by l each. Therefore, ik.rn =

�
l ⇤l

�
bel

† + bel
⇥
, and

the recoil operators are written as

Rk = De(⇤1, . . . ,⇤3N ) . (5.2)

Note that the |⇤j | will represent the e�ective Lamb-Dicke
parameters for each mode of the ion crystal; as they are
dependent on the inverse of the eigenfrequencies, these
need not to be negligibly small and we might not be
deep in the Lamb-Dicke regime. To make reference to
the various gate proposals for the use of trapped ions
as a quantum computer, there the center-of-mass mode
is employed, which necessarily (in the case of all ions
having the same mass) has the same frequency as the
external trapping potential. Here, on the contrary, we

are close to a structural transition, where one specific
mode frequency becomes quite small compared to the
others, thereby being potentially sensitive to the momen-
tum transfer even of a single photon. This might be used
to extend recent proposals to use Schrödinger cat states
of trapped ions for the detection of an absorption event
of a single photon [17] .

A. Initial ground state preparation and neglect of
the photon recoil of the pulses

If we choose the wave vector of the photon such that
all the |⇤j | are su⇤ciently small, we can neglect the re-
coil operators. Furthermore, we will for now assume the
ion crystal being initially in its motional ground state,
|⌅g�g = |0�g. The overlap (5.1) then reduces to

O0(t) = g⌥0|Ue(t) |0�g .

Inserting relations (4.14) and (4.15) to transform be-
tween the ground states, the overlap is written as

O0(t) = Z2
e⌥0| eA

†
D†

e(⇥
e)Ue(t)De(⇥

e)eA |0�e .

We commute the displacement and the eA operators, by
employing the identity

De(⇥
e)eA = eÃ(⇥e)De(⇥

e) , (5.3)

where

Ã(⇥) =
1

2

⌦

jk

Ajk(b
e
j
† � ⇥⇥

j )(b
e
k
† � ⇥⇥

k) , (5.4)

to obtain the following expression for the overlap:

O0(t) = Z2
e⌥0| D†

e(⇥
e)eÃ

†(⇥e)Ue(t)e
Ã(⇥e)De(⇥

e) |0�e
= Z2

e

⇤
⇥e

⇧⇧ eÃ
†(⇥e)Ue(t)e

Ã(⇥e)
⇧⇧⇥e⌅

e .

Inserting an identity in the coherent state bases of the
structure belonging to |e�, we have

O0(t) =
Z2

⇧3N

↵
d2�

⇤
⇥e

⇧⇧ eÃ
†(⇥e)U(t)

⇧⇧�
⌅⇤
�
⇧⇧ eÃ(⇥e)

⇧⇧⇥e⌅ ,

where we also dropped the indices identifying the basis
for states and operators, since they are all now in the
basis related to |e� and will remain therein to the end
of the calculation.

 
d2� is the short-hand notation for 

d2�1· · ·
 
d2�N , where each integral is understood as 

d2�j =
 
d(Re�) d(Im�) [18]. We proceed by evaluat-

ing the matrix elements,

⇤
⇥e

⇧⇧ eÃ
†(⇥e)

⇧⇧�(t)
⌅
= ea

�(�(t)�⇥e)
⇤
⇥e

⇧⇧ �(t)
⌅
, (5.5)

where �j(t) = �je�i⇤jt is the time-evolved coherent
state, and a(�) = 1

2

�
jk Ajk�⇥

j�
⇥
k a 3N -dimensional

complex-valued function. Analogous we have

⇤
�
⇧⇧ eÃ(⇥e)

⇧⇧⇥e⌅ = ea(��⇥e)
⇤
�
⇧⇧ ⇥e⌅ . (5.6)
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FIG. 3: (Color online) Visibility signal for three 9Be+ ions with an axial trapping frequency of �x = 2⇥ ⇥ MHz for di⇥erent
values of g and a constant impurity of � = 0.025, corresponding to an dipole potential frequency of 2⇥ ⇥ 244.95kHz for the
central ion. Three di⇥erent kinds of signals are observed. (a) The signal, here for g = 0.02, shows a periodic oscillation staying
always close to one. (b) The signal, here for g = �0.1, decays quickly to zero and shows a periodic appearence of revivals with
di⇥erent peak heights. (c) The signal, here for g = �0.005, shows again decay and revivals, however with a beating on top.

reasons we will only consider crystals with an odd ion
number manipulating always only the central one. We
find it convenient to introduce reduced quantities, as this
is advantageous for comparing crystals with di⇥erent ion
numbers, defined by

g =
�� �c

�c
=

⇥y � ⇥y,c
⇥y,c

, (6.1)

� =
�dip

�c
=

⇥dip
⇥y,c

. (6.2)

To restrict our discussion, we keep for the initial state
� = 0, and change for the interfered state � to some
finite value. We keep for both states the same value of
g. Thus, the visibility signal will be characterized by two
parameters, the value of g and the value of � for the in-
terfered state. We then want to investigate the properties
of the visibility signal as a function of these two param-
eters. First, we consider the behavior for a fixed value
of � and change g continously. The situation is sketched
in Fig. 1. For a positive � and values of g smaller than
a critical value gc, we will interfere two zigzag structures
with di⇥erent equilibrium positions during the Ramsey
experiment. For values g > 0, we will remain in the
linear structure with the same equilibrium positions but
with di⇥erent confinement. And for values in between,
gc < g < 0, we will have a transient regime, where the
inital state is in the zigzag, which is interfered with a
dynamical state of the linear structure.

For the simplest case with three ions with the central
ion excited, we can evaluate the transition from zigzag to
linear analytically [9]; transfering to the present notation,
one could give a critical value for g as a function of �,
or vice versa,

�c(g) = (g + 1)

⇤
2

3g + 2
� 1

⌅
, (6.3)

gc(�) =
1

2

�
�(1 +�)±

⇧
(1 +�)2 � 8�/3

⇥
. (6.4)

Keeping � fixed and changing g, we observe three dif-
ferent kind of signals, plotted in Fig. 3. We display
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FIG. 4: (Color online) Density plot of the visibility signal as
function of t and g. For g > 0 approaching 0, the oscillations
of the signal increase in period and amplitude, whereas for
larger values it stays almost constant to 1 all the time. For
g < 0 approaching g ⇤ �0.0165, the revivals appear less
frequent, and more frequent again as g increases. The inset
highlights the appearance of multiple peaks by splitting of the
main peaks as well a new appearances for shorter times.

the behavior as a function of t and g in Fig. 4. For
g > 0, i.e. in the linear regime, the signal shows an os-
cillatory behavior, but it oscillates with a slowly varying
amplitude between almost one and some value just be-
low one (Fig. 3a). In Fig. 4, we see that it is for almost
all values of g very close to one; as g goes to zero, the
amplitude and the period of the oscillations increase.

For g < 0 we see two di⇥ernt kinds of behavior. Deep in
the zigzag regime, we see a fast decay of the signal to zero
and a periodic appearance of revivals, but with di⇥erent
peak heights (Fig. 3b). For g approaching gc ⇤ �0.0165
from both sides, the signal still shows a fast decay to zero;
the revivals, however, do not occur in the same simple
periodic way as for smaller values of g, but rather in a
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FIG. 7: Spectrum of the logarithmic visibility signals of Fig. 3. The insets show the plain spectrum of the signals, partly
showing a mutlidude of peaks hard to interpret. (a) For g = �0.1 and � = 0.025, the main peak is located at twice the zigzag
eigenfrequency ⇥e

1. (b) For g = 0.02 and � = 0.025, the strongest peak is located at the plain zigzag eigenfrequency ⇥e
1.

Minor peaks show up at the plain eigenfrequencies of the modes which couple to the zigzag mode, and at twice the zigzag
eigenfrequency. (c) For g = �0.005 and � = 0.025, the strongest peak still lies at the zigzag eigenfrequency. Minor peaks show
now up also at sums of eigenfrequencies.
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FIG. 8: (Color online) Spectrum of the logarithmic visibil-
ity signal as a function of g, here for g < 0 only. The main
revival peak always lies axactl at the plain zigzag eigenfre-
quency (red dashed line). Close to gc, single-mode squeezing
(green dashed line) at twice the zigzag eigenfrequency and
multi-mode squeezing (magenta dashed line) at the sum of
the zigzag mode frequency with the axial breathing mode fre-
quency become more visible.

For the coe⌅cient o2 we need to evaluate

o2(0) =
1

4
⌅2
t

�
RT��1R� S�T⇥�1S�)

⇥

� 1

2
Tr

⇤
��1 ⌅

2�

⌅t2
���1 ⌅�

⌅t
��1 ⌅�

⌅t

+ ⇥�1 ⌅
2⇥

⌅t2
� ⇥�1 ⌅⇥

⌅t
⇥�1 ⌅⇥

⌅t

⌅
.

The result (as well as the evaluation of o1 to check that
it is purely imaginary) will be given in App. ??, showing
that this term is strictly negative. The first part will be a
quadratic form in the Sj ’s and thus also in the �e

j ’s, with
a complicated form of the A matrix in between. This
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FIG. 9: (Color online) (top) Single-mode squeezing of the
zigzag mode �11 and the axial breathing mode �55 as a func-
tion of g. Other single-mode squeezings are almost or identi-
cal zero. (bottom) Multi-mode squeezing between the zigzag
mode and the transverse center-of-mass mode �14 (solid blue
line), and the axial breathing mode �15 (dashed red line).
Also, a multi-mode squeezing between the transverse rocking
and the axial egyptian mode �36 appears close to gc.

will be zero for g > 0, just being left with the second
part. This trace will be independent of the �e

j ’s, and
only depend on A.

Instead of evaluating the full expression (??), we can
numerically evaluate the curvature of the signal at t = 0.
In Fig. 10 we have plotted the curvature for the same
parameters as in the previous subsection. We see that
the position of g = gc and g = 0 finds its signature in the
curvature.

J. Baltrusch, C. Cormick, GM, PRA (2012)

Revivals at the frequency of the soft mode:  
independent of the size 

signature of macroscopic quantum coherence 



Quantum Quenches
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Topological Phase Transitions 
in Ion Crystals
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Planar instability
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Continuous transition from a single to three planes
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Conclusions

Structural transitions in ion crystals: “natural” 
quantum simulators of solid-state models 

Ion crystals: laboratory for studying  
far-off equilibrium statistical mechanics 

Interfacing phonons and photons:  
novel quantum phases of matter
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