Ion Coulomb crystals: Thermodynamics, Quantum dynamics and Simulators

Giovanna Morigi
Universität des Saarlandes
Theoretische Physik

One-component plasma (homogeneous system, 3D)

Coupling parameter: $\Gamma=e^{2} / a k T$ $a=(3 / 4 \pi n)^{1 / 3}$ Wigner-Seitz radius

Strong correlations: $\quad \Gamma \gg 1$

Crystallization (transition to spatial order): $\quad \Gamma=174$
D. Dubin and T. O'Neil, RMP 1999.

One-component plasmas in atomic physics

Bragg Diffraction from Crystallized Ion Plasmas

W. M. Itano,* J. J. Bollinger, J. N. Tan,† B. Jelenković, \ddagger
X.-P. Huang, D. J. Wineland

Fig. 3. Histogram representing the numbers of peaks (not intensities) observed as a function of $q a_{\text {ws }}$, where $\mathbf{q}=\mathbf{k}_{3}-\mathbf{k}_{1}$ is the difference between the incident (\mathbf{k}_{l}) and scattered (\mathbf{k}_{s}) photon wave vectors. We analyzed 30 Bragg diffraction patterns from two approximately spherical plasmas having 270,000 and 470,000 ions. The dotted lines show the expected peak positions, normalized to the center of gravity of the peak at A (\{110\} Bragg reflections).

Fig. 4. Time-resolved Bragg diffraction pattern of the same plasma as in Fig. 2. Here and in Figs. 5 and 6 the small open circle marks the position of the undeflected laser beam. A bcc lattice, aligned along a $\langle 100\rangle$ axis, would generate a spot at each intersection of the grid lines overlaid on the image. The grid spacing corresponds to an angular deviation of $2.54 \times 10^{-2} \mathrm{rad}$. Here, $\omega_{\mathrm{r}}=2 \pi \times 125.6$ $\mathrm{kHz}, n_{0}=3.83 \times 10^{8} \mathrm{~cm}^{-3}, N=5 \times 10^{5}, \alpha=$ 0.98 , and $2 r_{0}=1.36 \mathrm{~mm}$.

Coulomb gas in atomic physics

1) Gas of ionized atoms: usually singly-ionized alkali-earth metals
(e.g. Berillium, Calcium, Magnesium).

Radiation is absorbed and emitted in the visible.

Fig. 4. Time-resolved Bragg diffraction pattern of

Coulomb gas in atomic physics

1) Gas of ionized atoms:
usually singly-ionized alkali-earth metals.
Radiation is absorbed and emitted in the visible.
2) Confinement by external potentials:

Paul (radiofrequency) or Penning traps.

Linear Paul trap:

$$
\Phi_{0}=U_{\mathrm{dc}}+V_{\mathrm{ac}} \cos \left(\Omega_{\mathrm{rf}} t\right)
$$

Effective harmonic force $\mathbf{F} \propto-\mathbf{r}$
Innsbruck Ion trap
Possibility to control the number of ions and the shape of the cloud

Coulomb gas in atomic physics

1) Gas of ionized atoms:
usually singly-ionized alkali-earth metals.
Radiation is absorbed and emitted in the visible.
2) Confinement by external potentials:

Paul (radiofrequency) or Penning traps.
3) Crystallization:

Low thermal energies are achieved by laser cooling.
Cooling down to few microKelvin.

Crystals of ions in traps: Applications

High-precision measurements
Simulation of astrophysical systems
Ultracold chemistry
Quantum-based technologies
Quantum simulators, quantum metrology, Quantum computing.

Aarhus, Berkeley, Boulder, Freiburg, Erlangen, Innsbruck, London, Mainz, Marseille, Michigan, München, Oxford, Paris, PTB, Saarbrücken, Siegen, Sussex,

Cirac, Zoller, Retzker, Plenio, Altman, Porras, Solano, Duan, ...

Trapped ions and Nobel Foundation

Dehmelt (1989)

Paul (1989)

Wineland (2012)

The Nobel Prize in Physics 1989 was divided, one half awarded to Norman F. Ramsey "for the invention of the separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks", the other half jointly to Hans G. Dehmelt and Wolfgang Paul "for the development of the ion trap technique".

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for groundbreaking experimental methods that enable measuring and manipulation of individual quantum systems"

And also: Ramsey (1989), Chu, Cohen-Tannoudji, Phillips (1997), Haroche (2012)

Low dimensional structures

Observation of Ordered Structures of Laser-Cooled Ions in a Quadrupole Storage Ring
I. Waki, ${ }^{\text {(a) }}$ S. Kassner, G. Birkl, and H. Walther

Max-Planck-Institut für Quantenoptik, D-8046 Garching bei München, Federal Republic of Germany (Received 11 September 1991; revised manuscript received 16 December 1991)

[Birkl et al., Nature 357, 310 (1992)]

Phase diagram

Multiple-shell structures of laser-cooled ${ }^{24} \mathrm{Mg}^{+}$ions in a quadrupole storage ring
G. Birkl, S. Kassner \& H. Walther

Max-Planck-Institut für Quantenoptik, Garching bei München. Germany
Nature 357, 310 (1992)

Outline

1.Thermodynamics of ion chains

- the linear-zigzag instability, classical PT
- the linear-zigzag instability, quantum PT

2. Dynamics of ion chains across the instability

- Classical quenches
- Quantum quenches

3. Outlook. Topological Structural Transitions

Thermodynamics of ion chains

The ion chain

In textbooks (Ashcroft and Mermin):

Periodic distribution: Bloch theorem
Long-range interaction (Coulomb): no sound velocity

The ion chain in a linear trap

(M. Drewsen and coworkers, Aarhus)

$$
\begin{gathered}
H=\sum_{j=1}^{N} \frac{\mathbf{p}_{j}{ }^{2}}{2 m}+\frac{1}{2} m\left(v^{2} x_{j}^{2}+v_{t}{ }^{2}\left(y_{j}^{2}+z_{j}^{2}\right)\right)+\frac{1}{2} \sum_{j=1}^{N} \sum_{i \neq j} \frac{Q^{2}}{r_{i, j}} \\
\nu \ll \nu_{t} \quad \text { 1D structure (ion chain) }
\end{gathered}
$$

Inhomogeneous distribution: NO Bloch theorem
Long-range interaction:
pertubation theory with Bloch waves does not converge

Charge density at equilibrium

$$
m \nu^{2} x_{i}^{(0)}=-\sum_{j>i} \frac{Q^{2}}{\left(x_{j}^{(0)}-x_{i}^{(0)}\right)^{2}}+\sum_{j<i} \frac{Q^{2}}{\left(x_{i}^{(0)}-x_{j}^{(0)}\right)^{2}}
$$

Continuum limit: mean field description for 1D

Linear density:

$$
n_{L}(x)=\frac{3}{4} \frac{N}{L}\left(1-\frac{x^{2}}{L^{2}}\right)
$$

Length of the chain:

$$
\begin{aligned}
L(N)^{3}= & 3\left(\frac{Q^{2}}{m \nu^{2}}\right) N \log N \\
& \text { at leading order in } 1 / \log \mathrm{N}
\end{aligned}
$$

D. Dubin, PRE 1997.

Spectra of excitations

ν_{t} Transverse trap frequency

$$
\ddot{q}_{i}=-\nu^{2} q_{i}-\sum_{j \neq i} \frac{K_{i, j}}{m}\left(q_{i}-q_{j}\right)
$$

$$
\ddot{y}_{i}=-\nu_{t}^{2} y_{i}+\frac{1}{2} \sum_{j \neq i} \frac{K_{i, j}}{m}\left(y_{i}-y_{j}\right)
$$

$$
\ddot{z}_{i}=-\nu_{t}^{2} z_{i}+\frac{1}{2} \sum_{j \neq i} \frac{K_{i, j}}{m}\left(z_{i}-z_{j}\right)
$$

$$
K_{i, j}=\frac{2 Q^{2}}{\left|x_{i}^{(0)}-x_{j}^{(0)}\right|^{3}} .
$$

G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Spectra of excitations

Spectra of excitations

Statistical Mechanics

Quantization of the vibrations

$$
\hat{H}_{n}=\sum_{n=1}^{N} \hbar \omega_{n}^{\|} \hat{N}_{n}^{\|}+\sum_{n=1}^{N} \hbar \omega_{n}^{\perp}\left(\hat{N}_{n, y}^{\perp}+\hat{N}_{n, z}^{\perp}\right)
$$

Canonical ensemble $\quad \rho=\frac{1}{Z} \exp (-\beta H)$

$$
F=-k_{B} T \log Z
$$

One-dimensional behaviour: $\quad k_{B} T \ll \hbar \omega_{\text {min }}^{\perp}$
Thermodynamic limit: $\nu \sim \sqrt{\log N} / N$ as $N \rightarrow \infty$
Density in the center $n(0)=\frac{3}{4} \frac{N}{L}$ fixed
G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Specific Heat

Non extensive behaviour at low temperatures in the thermodynamic limit:

$$
c_{a} \propto 1 / \sqrt{\ln N}
$$

-Due to long-range Coulomb interaction

- It is a quantum effect (at high-T Dulong-Petit holds)
G. M. and Sh. Fishman, PRL 2004; PRE 2004.

Ion chains are thermal reservoirs?

- In the harmonic chain the dynamics is integrable

Statistical Mechanics of Assemblies of Coupled Oscillators*

G. W. Ford \dagger
Department of Physics, University of Michigan, Ann Arbor, Michigan
M. KAc
The Rockefeller Institute, New York, New York
and
P. Mazur
Lorentz Institute for Theoretical Physics, Leiden, The Netherlands
(Received 25 September 1964)

Abstract

It is shown that a system of coupled harmonic oscillators can be made a model of a heat bath. Thus a particle coupled harmonically to the bath and by an arbitrary force to a fixed center will (in an appropriate limit) exhibit Brownian motion. Both classical and quantum mechanical treatments are given.

- The rest of the chain acts as a bath for a single ion (when thermalization rate is faster than recurrence)

Ion chain as quantum reservoir

Langevin equation:
$\frac{d^{2} X_{ \pm}}{d t^{2}}+\int_{0}^{t} \Gamma_{ \pm}\left(t-t^{\prime}\right) \frac{d X_{ \pm}}{d t^{\prime}} d t^{\prime}+\left(1-\Gamma_{ \pm}(0)\right) X_{ \pm}(t)=F_{ \pm}(t)-\Gamma_{ \pm}(t) X_{ \pm}(0)$
damping kernel
Spectral density (Fourier transform of the damping kernel)

$$
J_{ \pm}(\omega)=\omega \int_{0}^{\infty} \Gamma_{ \pm}(t) \cos (\omega t) d t
$$

B. Taketani, T. Fogarty, E. Kajari, A. Wolf, T. Busch, G.M. PRA (2014)

Entangle two distant ions after a quench

distance $d=5 a$, chain of 50 ions in a thermal state (ions: Calcium, impurity defects: Indium).
T. Fogarty, E. Kajari, B. Taketani, A. Wolf, T. Busch, G.M. PRA (2013)

Scaling with the distance

T. Fogarty, E. Kajari, B. Taketani, A. Wolf, T. Busch, G.M. PRA (2013)

Linear-zigzag instability

[Birkl et al., Nature 357, 310 (1992)]

Preamble: Ring

No axial confinement: periodic distribution Modes are phononic waves with quasimomentum k in BZ

$\nu_{t} \omega_{\perp}(k)^{2}=\nu_{t}^{2}-2\left(\frac{2 Q^{2}}{m a^{3}}\right) \sum_{j=1}^{N} \frac{1}{j^{3}} \sin ^{\frac{j}{2}} \frac{j a}{2}$
Instability: $\omega_{\perp}^{2}<0$
Critical value: $\quad \nu_{t}^{(c) 2}=2\left(\frac{2 Q^{2}}{m a^{3}}\right) \sum_{j=1}^{N} \frac{1}{j^{3}} \sin ^{2} \frac{j \pi}{2} \rightarrow \frac{Q^{2}}{m a^{3}} \frac{7}{2} \zeta(3)$

Transition chain-zigzag decrease transverse confinement $\quad \nu_{t}$

Linear chain

Transition chain-zigzag

 decrease transverse confinement

Transition chain-zigzag decrease transverse confinement

Sh. Fishman, G. De Chiara, T. Calarco, GM, PRB 2008

Chain to Zig-Zag: second-order phase transition?

Symmetry breaking: line to plane
Order parameter: Distance from the axis
Control field: Transverse frequency
Soft mode: Zigzag mode
J. Eschner and coworkers, Barcelona \& Saarbrücken

Potential at the instability

Ansatz: the zigzag mode is the soft mode.
Expand the potential at 4th order in plane waves Study new minima as a function of transverse freq.

$$
\begin{aligned}
& V_{\mathrm{eff}}=\frac{m}{2} \beta_{0}\left[\Psi_{0}^{y^{2}}+\Psi_{0}^{z 2}\right] \\
& +\frac{m}{2} \sum_{\delta k>0} \beta_{\delta k} \sum_{\sigma=y, z}^{\text {zigzag mode }}\left[\Psi_{\delta k}^{\sigma(+)^{2}}+\Psi_{\delta k}^{\sigma(-)^{2}}\right]+V_{0}^{(4)} \\
& \beta(k)=\nu_{t}^{2}-2\left(\frac{2 Q^{2}}{m a^{3}}\right) \sum_{j=1}^{N} \frac{1}{j^{3}} \sin ^{2} \frac{j k a}{2} \\
& \text { Check for modes } \frac{\partial^{2} V_{\text {eff }}}{}>0
\end{aligned}
$$

Potential of the zigzag mode

Derivation of the effective potential for the zigzag mode:

$$
V^{\text {soft }}=\mathcal{V}\left[\left(\Psi_{0}^{y}\right)^{2}+\left(\Psi_{0}^{z}\right)^{2}\right]+A\left[\left(\Psi_{0}^{y}\right)^{2}+\left(\Psi_{0}^{z}\right)^{2}\right]^{2}
$$

$$
\begin{aligned}
& \mathcal{V}=\frac{m}{2} \beta_{0}=\frac{1}{2} m\left(\nu_{t}^{2}-\nu_{t}^{(c) 2}\right) \\
& A=\frac{3}{2} \frac{31}{32} \zeta(5) \frac{Q^{2}}{a^{5}}
\end{aligned}
$$

The other modes are stably trapped by a harmonic potential (microscopic derivation of Landau model)

Summary: classical phase transition

- Microscopic derivation of the Landau model.
- Second-order phase transition.
- Critical exponents of Landau model.
- Soft mode: zigzag mode.

Sh. Fishman, G. De Chiara, T. Calarco, G.M., PRB 2008

Classical phase transition

$$
\nu_{t}^{(c) 2}=2\left(\frac{2 Q^{2}}{m a^{3}}\right) \sum_{j=1}^{N} \frac{1}{j^{3}} \sin ^{2} \frac{j \pi}{2}
$$

linear
zigzag

Quantum phase transition

$$
\nu_{t}^{(c) 2}=2\left(\frac{2 Q^{2}}{m a^{3}}\right) \sum_{i=1}^{N} \frac{1}{j^{3}} \sin ^{2} \frac{j \pi}{2}
$$

Quantum fluctuations at the mechanical instability (2D)

Soft mode: $y_{j}^{\text {sott }}=(-1)^{j} y_{0}$
Modes close to the instability:

$$
y_{j}=(-1)^{j} a \phi_{j}
$$

Effective potential:

$$
\begin{aligned}
& V\left[\left\{\phi_{j}\right\}\right] \approx \sum_{j=1}^{N} V_{0}\left(\phi_{j}\right)+\frac{1}{2} K \sum_{j=1}^{N}\left(\phi_{j}-\phi_{j+1}\right)^{2} \\
& V_{0}(\phi)=-\frac{1}{2} m\left(\nu_{c}^{2}-\nu_{t}^{2}\right) a^{2} \phi^{2}+\frac{1}{4} g a^{4} \phi^{4}
\end{aligned}
$$

Mapping to an Ising model in the transverse field

$$
\begin{aligned}
& \phi_{j}=\phi_{0} \sigma_{j}^{z}+\delta \phi_{j} \\
Z \approx & Z_{0} \int \mathcal{D} \sigma \exp \left(-S_{I}[\sigma] / \hbar\right) \text { action of an Ising model }
\end{aligned}
$$

Effective Hamiltonian

$$
H_{I}=-\sum_{j=1}^{N}\left(J \sigma_{j}^{z} \sigma_{j+1}^{z}+h \sigma_{j}^{x}\right)
$$

$h \approx C_{h}\left(U_{P} U_{K}^{2}\right)^{1 / 3}$ transverse field (tunneling)
$J=K \phi_{0}^{2}=C_{J} U_{P \varepsilon}$ exchange coupling (Coulomb interaction)
E. Shimshoni, G.M., S. Fishman PRL 2011

DMRG results

$$
\begin{aligned}
\tilde{H}=\frac{1}{2} \sum_{i=1}^{L}\left[\tilde{p}_{i}^{2}+\right. & \left(\tilde{\omega}^{2}-\mathcal{M}_{1}\right) \tilde{y}_{i}^{2} \\
& \left.+\mathcal{M}_{2}\left(\tilde{y}_{i}+\tilde{y}_{i+1}\right)^{2}+\mathcal{M}_{3} \tilde{y}_{i}^{4}\right]
\end{aligned}
$$

	Quantity	Computed	Theory [11]
η	Anomalous dimension	0.258 ± 0.012	0.25
β	Spont. magnetization	0.126 ± 0.011	0.125
ν	Correlation length	1.03 ± 0.05	1
c	Central charge	0.487 ± 0.015	0.5

Theory: critical exponents of Ising model with transverse field
P. Silvi, G. De Chiara,T. Calarco, G.M., S. Montangero, Ann. Phys. (2013)

Quantum effects

shift from the critical point

$$
\varepsilon_{c} \sim \frac{3 g \hbar}{\pi}\left(|\ln \tilde{\hbar}|-\left|\ln \tilde{\hbar}^{*}\right|\right)
$$

rescaled quantum fluctuations
DMRG and RG flow analysis are in excellent agreement

D. Podolsky, E. Shimshoni, P. Silvi, S. Montangero, T. Calarco, GM, S. Fishman, PRB 2014

Quantum effects

shift from the critical point

$$
\varepsilon_{c} \sim \frac{3 g \hbar}{\pi}\left(|\ln \tilde{\hbar}|-\left|\ln \tilde{\hbar}^{*}\right|\right)
$$

dipoles
ions:
quantum effects are negligible
D. Podolsky et al, PRB 2014

Dynamics:

classical and quantum quenches

Classical quenches

at the linear-zigzag instability

Preamble: scaling at the classical phase transition

Preamble: scaling at the classical phase transition

Correlation length (Landau)

$$
\xi \sim\left(\nu_{t}-\nu_{t}^{(c)}\right)^{-1 / 2}
$$

Preamble: scaling at the classical phase transition

Correlation length (Landau)

$$
\xi \sim\left(\nu_{t}-\nu_{t}^{(c)}\right)^{-1 / 2}
$$

Relaxation time (Landau)

$$
\tau \sim\left(\nu_{t}-\nu_{t}^{(c)}\right)^{-1}
$$

it diverges at the critical point

Dynamical properties at criticality

$$
\begin{aligned}
& \nu_{t}=\sqrt{\nu_{t}^{(c) 2}+\delta(t)} \\
& \delta(t)=-\delta_{0} \frac{t}{\tau_{Q}}
\end{aligned}
$$

Dynamics of the order parameter:
Landau Ginzburg equation in presence of damping (laser cooling)

$$
\partial_{t}^{2} \psi-h(x)^{2} \partial_{x}^{2} \psi+\eta \partial_{t} \psi+\delta(x, t) \psi+2 \mathcal{A}(x) \psi^{3}=\varepsilon(t)
$$

A. Del Campo, G. De Chiara, G.M., M. Plenio, A. Retzker, PRL 2010

Kibble-Zurek mechanism

$$
\begin{aligned}
& \partial_{t}^{2} \psi-h(x)^{2} \partial_{x}^{2} \psi+\eta \partial_{t} \psi+\delta(x, t) \psi+2 \mathcal{A}(x) \psi^{3}=\varepsilon(t) \\
& \nu_{t}=\sqrt{\nu_{t}^{(c) 2}+\delta(t)} \\
& \delta(t)=-\delta_{0} \frac{t}{\tau_{Q}}
\end{aligned}
$$

Kibble-Zurek hypothesis: $\quad \tau \sim\left(\nu_{t}-\nu_{t}^{(c)}\right)^{-1}$
System follows the quench adiabatically till the relaxation time becomes slower than the quench.
Freeze-out time: $\tau(\hat{t})=\hat{t}$ Density of defects: $d_{\mathrm{o}} \sim \frac{1}{\hat{\xi}_{o}}$

Density of defects after the quench

Scaling of the density of defects as a function of the quench rate:

overdamped case:
$d_{o} \sim \frac{2 \hat{X}_{*}}{\hat{\xi}} \sim \frac{L}{3 \nu_{t}^{(c)}(0)^{2} a^{2} \omega_{0}^{2}} \frac{\eta \delta_{0}}{\tau_{Q}}$
underdamped case:
$d_{u} \sim \frac{2 \hat{X}_{*}}{\hat{\xi}}=\frac{L}{3 \nu_{t}^{(c)}(0)^{2} a^{2} \omega_{0}^{2}}\left(\frac{\delta_{0}}{\tau_{Q}}\right)^{4 / 3}$
[Laguna and Zurek, PRL 1999]
A. Del Campo, G. De Chiara, G.M., M. Plenio, A. Retzker, PRL 2010

Experimental quenches

T. Mehlstäubler and coworkers (PTB)

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

Experimental quenches

T. Mehlstäubler and coworkers (PTB)

What's next: spectroscopy and control of the kinks

See also: Schätz (Freiburg) and Schmidt-Kaler (Mainz)

Sudden quenches

in a linear chain

Ramsey interferometry

I

II
ôo

III

Ramsey interferometry

II

III

Ramsey interferometry

III

Ramsey interferometry

I

II
ôo

III

$$
\begin{aligned}
& 000000000000 \\
& |g\rangle \\
& \bigcup_{e^{i k_{L} y_{1}}|e\rangle\langle e|}\left|\Psi\left(t_{\text {pulse }}\right)\right\rangle=\frac{1}{\sqrt{2}}(|g, 0\rangle+|e, \alpha\rangle)
\end{aligned}
$$

Ramsey interferometry

III

Probability to be in the ground state:

$$
\mathcal{P}_{g}(t)=\frac{1}{2}\left[1+\operatorname{Re}\left\{\mathrm{e}^{\mathrm{i} \phi} \mathcal{S}(t)\right\}\right]
$$

Cat-states in spin-dependent potentials

Quantum superposition of two internal states in a spin-dependent potential

$$
V_{\mathrm{pot}}=\sum_{j=1}^{N}|g\rangle_{j}\langle g| V_{g}\left(\mathbf{r}_{j}\right)+|e\rangle_{j}\langle e| V_{e}\left(\mathbf{r}_{j}\right)
$$

Cat-state of ion structures

$$
|\Psi(t)\rangle=\frac{1}{\sqrt{2}}\left(|g g g\rangle|0\rangle_{\mathrm{zz}}+|g e g\rangle|\phi(t)\rangle\right)
$$

J. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, GM, PRA (2011)

Cat-states in spin-dependent potentials

Ramsey contrast

Ramsey contrast gives the overlap between the two motional states across the transition

J. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, G.M, PRA (2011)

Visibility signal

Visibility gives the overlap of the states across the quench

$$
\mathcal{O}_{0}(t)={ }_{g}\langle\underline{0}| U_{e}(t)|\underline{0}\rangle_{g}
$$

J. Baltrusch, C. Cormick, and GM, PRA (2012)

Visibility signal

Visibility gives the overlap of the states across the quench

$$
\mathcal{O}_{0}(t)={ }_{g}\langle\underline{0}| U_{e}(t)|\underline{0}\rangle_{g}
$$

J. Baltrusch, C. Cormick, and GM, PRA (2012)

Fourier transform of the Visibility signal

Revivals at the frequency of the soft mode: independent of the size
signature of macroscopic quantum coherence
J. Baltrusch, C. Cormick, GM, PRA (2012)

Quantum Quenches

Picture: Chris Monroe's group

Based on engineering the coupling between phonons and spins
(Wunderlich, Porras, Cirac)
Experiments: Blatt, Bollinger, Monroe, Schätz,

Topological Phase Transitions in Ion Crystals

Planar instability

(M. Drewsen \& coworkers, Aahrus)

D.H.E. Dubin, PRL 1993

Continuous transition from a single to three planes

Order parameter

order parameter

$$
z_{i}=\operatorname{Re}\left[\psi e^{i \mathbf{K} \cdot \mathbf{r}_{i}}\right]
$$

Symmetries and Model

$$
\begin{aligned}
R_{z}: \psi & \rightarrow-\psi \\
T_{\mathbf{a}_{1}}: \psi & \rightarrow \psi e^{2 \pi i / 3} \\
R_{x}: \psi & \rightarrow \psi^{*}
\end{aligned}
$$

Symmetries and Model

$$
\begin{aligned}
R_{z}: \psi & \rightarrow-\psi \\
T_{\mathrm{a}_{1}}: \psi & \rightarrow \psi e^{2 \pi i / 3} \\
R_{x}: \psi & \rightarrow \psi^{*}
\end{aligned}
$$

Ginzburg-Landau free energy

$$
\frac{f_{\mathrm{GL}}}{\mathcal{K}}=\frac{\gamma}{2}|\nabla \psi|^{2}+r|\psi|^{2}+u|\psi|^{4}+v|\psi|^{6}+\frac{w}{2}\left[\psi^{6}+\left(\psi^{*}\right)^{6}\right]
$$

6-state clock model
D. Podolsky, E. Shimshoni, GM, S. Fishman, 2015

Phase diagram

$$
\begin{gathered}
\text { 6-state clock model } \\
\frac{f_{\mathrm{GL}}}{\mathcal{K}}=\frac{\gamma}{2}|\nabla \psi|^{2}+r|\psi|^{2}+u|\psi|^{4}+v|\psi|^{6}+\frac{w}{2}\left[\psi^{6}+\left(\psi^{*}\right)^{6}\right]
\end{gathered}
$$

D. Podolsky, E. Shimshoni, GM, S. Fishman, 2015

Phase diagram

$$
\frac{f_{\mathrm{GL}}}{\mathcal{K}}=\frac{\gamma}{2}|\nabla \psi|^{2}+r|\psi|^{2}+u|\psi|^{4}+v|\psi|^{6}+\frac{w}{2}\left[\psi^{6}+\left(\psi^{*}\right)^{6}\right]
$$

$$
T
$$

D. Podolsky, E. Shimshoni, GM, S. Fishman, $2015 r_{C}$
visible in the
Bragg pattern

Conclusions

Structural transitions in ion crystals: "natural" quantum simulators of solid-state models

Ion crystals: laboratory for studying far-off equilibrium statistical mechanics

Interfacing phonons and photons: novel quantum phases of matter

Exotic phases of photons and ions

Ion crystal in a cavity

Typical length of crystallization is incommensurate with cavity wave length
(figure from Cetina et al, NJP 2013)

Exotic phases of photons and ions

Collaborations

Shmuel Fishman and Daniel Podolsky, Technion, Haifa Efrat Shimshoni, Bar-Ilan, Tel Aviv

Pietro Silvi, Simone Montangero, Tommaso Calarco, Ulm
Alex Retzker, Adolfo del Campo, Martin Plenio, Ulm
Grigory Astrakharchik and Jordi Boronat, UPC Barcelona
Thomas Fogarty and Thomas Busch, Cork

Theoretical
 Theoretical

DFG

Deutsche
Forschungsgemeinschaft
agove
PICC

Theoretical uantum

