

"PT-symmetry breaking & exceptional points in OM"

Peter Rabl

Collaborations:

- K. Kepesidis, T. Milburn, S. Portolan (-> Industry)
- S. Bennett, M. Lukin (Harvard)
- K. Makris, S. Rotter (TU Wien)
- K. Holms (Queensland)

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology KITP Santa Barbara, 13.10.2015

Outline

(I) Ground state cooling & phonon lasing in diamond.

(II) PT-symmetric breaking in coupled phonon systems.

(III) Quasi-adiabatic encircling of exceptional points.

Diamond nano-resonators

diamond nano-resonator:

- -) high frequencies
- -) low intrinsic dissipation, high-Q

Diamond nano-resonators

(A.C. Bleszynski-Jayich, Santa Barbara, 2012)

(C. Degen, ETH, 2012)

(M. Loncar, Harvard, 2013)

"Mechanical cavities"

Q ~ 10^6, ~ GHz frequencies

Strain coupling of NV defects in diamond

Strain coupling to defect states

[1] Quantum Dots: I. Wilson-Rae, P. Zoller, A. Imamoglu, PRL (2004)

Strain coupling to defect states

- -) "strong" coupling / per phonon $\lambda \sim 10 \, {
 m MHz} \gg \gamma_m$
- -) radiative decay $\Gamma_{\rm rad} \sim \lambda$

[1] Quantum Dots: I. Wilson-Rae, P. Zoller, A. Imamoglu, PRL (2004)

Strain coupling to defect states

- -) "strong" coupling / per phonon $\lambda \sim 10 \, {
 m MHz} \gg \gamma_m$
- -) radiative decay $\Gamma_{
 m rad} \sim \lambda$

► Significant backaction on the mechanical state !
⇒ ground state cooling [1], phonon lasing, ...

[1] Quantum Dots: I. Wilson-Rae, P. Zoller, A. Imamoglu, PRL (2004)

NV-phonon interactions

NV level-structure (without spin) [1]:

[1] see, e.g., J. Maze et al., New J. Phys. **13**, 025025 (2011).

NV-phonon interactions

NV level-structure (without spin) [1]:

[1] see, e.g., J. Maze et al., New J. Phys. **13**, 025025 (2011).

NV-phonon interactions

NV level-structure (without spin) [1]:

[1] see, e.g., J. Maze et al., New J. Phys. **13**, 025025 (2011).

NV center: strain coupling

diamond resonator

static / oscillating strain:

NV center: strain coupling

K.-M. Fu et al. PRL 103, 256404 (2009); T. Abtew et al., PRL 107, 146403 (2011).

NV center: strain coupling

diamond resonator

static / oscillating strain:

• NV-phonon interaction:

$$H_{\rm int} = \lambda (a + a^{\dagger}) (|x\rangle \langle y| + |y\rangle \langle x|)$$

single phonon coupling:

$$\lambda \sim 1 - 10 \text{ MHz} \lesssim \Gamma_{\text{rad}}$$

Laser cooling: general idea

Laser cooling: general idea

 \boxtimes effective cooling rate:

$$\Gamma \approx \frac{\lambda^2}{\Gamma_{\rm rad}}$$

Laser cooling: general idea

 \boxtimes effective cooling rate:

$$\approx \frac{\lambda^2}{\Gamma_{\rm rad}}$$

Γ

Solution Representation of the set of the s

Solution Set in the set of the s

 $\Gamma = 0$

 $\Gamma < \gamma_m$

Summary: Phonon lasing/cooling

Effective resonator dynamics (rotating frame):

$$\dot{\alpha} = \left(\pm\Gamma(\alpha) - \gamma\right)\alpha + \sqrt{2\gamma N_{\rm th}}\xi(t)$$

Summary: Phonon lasing/cooling

Gain = Loss ???

Non-Hermitian "Two-Level-System"

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Non-Hermitian "Two-Level-System"

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

non-Hermitian "Hamiltonian" !!

Non-Hermitian "Two-Level-System"

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

non-Hermitian "Hamiltonian" !!

$$\mathcal{PT}$$
 - symmetric for $\Gamma_a = -\Gamma_b$

• Parity: $\mathcal{P}: (\alpha, \beta) \to (\beta, \alpha)$ • Time-reversal: $\mathcal{T}: i \to -i$ $\left\{ \begin{array}{c} (\mathcal{PT})H(\mathcal{PT}) = H \end{array} \right\}$

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

non-Hermitian "Hamiltonian" !!

Eigenvalues: $\Gamma_a = -\Gamma_b = \Gamma$

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

non-Hermitian "Hamiltonian" !!

Eigenvalues:
$$\Gamma_a = -\Gamma_b = \Gamma$$

(I) purely oscillatory:

• Coupled modes (linear, rotating frame):

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} -i\Gamma_a & g \\ g & -i\Gamma_b \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

non-Hermitian "Hamiltonian" !!

Eigenvalues:
$$\Gamma_a = -\Gamma_b = \Gamma$$

(I) purely oscillatory:

(II) gain/loss modes:

Hamiltonian:

$$H = \begin{pmatrix} i\Gamma & g \\ g & -i\Gamma \end{pmatrix} \quad \Rightarrow \quad (\mathcal{PT})H(\mathcal{PT}) = H \quad \forall \Gamma, g$$
Hamiltonian:

$$H = \begin{pmatrix} i\Gamma & g \\ g & -i\Gamma \end{pmatrix} \quad \Rightarrow \quad (\mathcal{PT})H(\mathcal{PT}) = H \quad \forall \Gamma, g$$

Eigenvectors:

$$\psi_1 = \begin{pmatrix} e^{i\theta} \\ e^{-i\theta} \end{pmatrix}$$
 $\psi_2 = \begin{pmatrix} ie^{-i\theta} \\ -ie^{i\theta} \end{pmatrix}$ $\sin(2\theta) = \frac{\Gamma}{g}$

Hamiltonian:

$$H = \begin{pmatrix} i\Gamma & g \\ g & -i\Gamma \end{pmatrix} \quad \Rightarrow \quad (\mathcal{PT})H(\mathcal{PT}) = H \quad \forall \Gamma, g$$

Eigenvectors:

$$\psi_1 = \begin{pmatrix} e^{i\theta} \\ e^{-i\theta} \end{pmatrix}$$
 $\psi_2 = \begin{pmatrix} ie^{-i\theta} \\ -ie^{i\theta} \end{pmatrix}$ $\sin(2\theta) = \frac{\Gamma}{g}$

(I) $\Gamma < g$: $(\mathcal{PT})\psi_{1,2} = \psi_{1,2}$

Hamiltonian:

$$H = \begin{pmatrix} i\Gamma & g \\ g & -i\Gamma \end{pmatrix} \quad \Rightarrow \quad (\mathcal{PT})H(\mathcal{PT}) = H \quad \forall \Gamma, g$$

Eigenvectors:

$$\psi_{1} = \begin{pmatrix} e^{i\theta} \\ e^{-i\theta} \end{pmatrix} \qquad \psi_{2} = \begin{pmatrix} ie^{-i\theta} \\ -ie^{i\theta} \end{pmatrix} \qquad \sin(2\theta) = \frac{\Gamma}{g}$$
(I) $\Gamma < g$: $(\mathcal{PT})\psi_{1,2} = \psi_{1,2}$

$$\langle g: \qquad (\mathcal{PT})\psi_{1,2} = \psi_{1,2}$$

(II)
$$\Gamma > g$$
:

 $(\mathcal{PT})\psi_{1,2} \not\sim \psi_{1,2}$

Hamiltonian:

$$H = \begin{pmatrix} i\Gamma & g \\ g & -i\Gamma \end{pmatrix} \quad \Rightarrow \quad (\mathcal{PT})H(\mathcal{PT}) = H \quad \forall \Gamma, g$$

Eigenvectors:

$$\psi_1 = \begin{pmatrix} e^{i\theta} \\ e^{-i\theta} \end{pmatrix}$$
 $\psi_2 = \begin{pmatrix} ie^{-i\theta} \\ -ie^{i\theta} \end{pmatrix}$ $\sin(2\theta) = \frac{\Gamma}{g}$

(I)
$$\Gamma < g$$
: $(\mathcal{PT})\psi_{1,2} = \psi_{1,2}$

(II) $\Gamma > g$: $(\mathcal{PT})\psi_{1,2} \not\sim \psi_{1,2}$

Eigenstates break symmetry of the Hamiltonian !

see e.g. C. M. Bender, Rep. Prog. Phys. 70, 947 (2007) and references therein.

Wednesday 14 October 15

Steady state of real physical systems with PT-symmetry ?

(II) gain/loss modes:

(II) gain/loss modes:

(II) gain/loss modes:

role of nonlinearities ?

(I) purely oscillatory:

Wednesday 14 October 15

(II) gain/loss modes:

steady state ???

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} i\Gamma(\alpha) - i\gamma & g \\ g & -i\Gamma(\beta) - i\gamma \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \sqrt{2\gamma N_{\rm th}}\eta(t) \\ \sqrt{2\gamma N_{\rm th}}\xi(t) \end{pmatrix}$$

steady state ???

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} i\Gamma(\alpha) - i\gamma & g \\ g & -i\Gamma(\beta) - i\gamma \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \sqrt{2\gamma N_{\rm th}}\eta(t) \\ \sqrt{2\gamma N_{\rm th}}\xi(t) \end{pmatrix}$$
non-linear gain/loss:
$$\Gamma(\alpha) = \frac{\Gamma}{(1 + |\alpha|^2/n_0)^{\nu}} \qquad \begin{array}{c} \text{cutoff parameter} \\ 1 \le \nu \le 2 \\ & & \\ \end{array}$$
cutoff phonon number

steady state ???

$$\begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \end{pmatrix} = -i \begin{pmatrix} i\Gamma(\alpha) - i\gamma & g \\ g & -i\Gamma(\beta) - i\gamma \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} \sqrt{2\gamma N_{\rm th}}\eta(t) \\ \sqrt{2\gamma N_{\rm th}}\xi(t) \end{pmatrix}$$

intrinsic damping: $\gamma \to 0^+$

steady state ???

steady state amplitudes:

 Γ

1

linear fluctuation analysis

Wednesday 14 October 15

$$\begin{pmatrix} \dot{\alpha}_n \\ \dot{\beta}_n \end{pmatrix} = \begin{pmatrix} \Gamma_+(\alpha_n) & -ig \\ -ig & \Gamma_-(\beta_n) \end{pmatrix} \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} - ig' \begin{pmatrix} \beta_{n-1} \\ \alpha_{n+1} \end{pmatrix} + \begin{pmatrix} F_{n,+}(t) \\ F_{n,-}(t) \end{pmatrix}$$

Equations of motion:

$$\begin{pmatrix} \dot{\alpha}_n \\ \dot{\beta}_n \end{pmatrix} = \begin{pmatrix} \Gamma_+(\alpha_n) & -ig \\ -ig & \Gamma_-(\beta_n) \end{pmatrix} \begin{pmatrix} \alpha_n \\ \beta_n \end{pmatrix} - ig' \begin{pmatrix} \beta_{n-1} \\ \alpha_{n+1} \end{pmatrix} + \begin{pmatrix} F_{n,+}(t) \\ F_{n,-}(t) \end{pmatrix}$$

Plane-wave ansatz:

$$\alpha_n = A_k e^{ikn}$$
$$\beta_n = B_k e^{ikn}$$

two-mode problem:

$$g \mapsto g_k = g + g' e^{ik}$$

Unstable mode: $k = \pi$

 $g_{k=\pi} = |g - g'|$

Unstable mode: $k = \pi$

 $g_{k=\pi} = |g - g'|$

Summary & conclusions

PT-symmetry breaking in steady state:

Summary & conclusions

PT-symmetry breaking in steady state:

"equilibrium to non-equilibrium transition" (??)

Quasi-adiabatic encircling of exceptional points

T. Milburn, J. Doppler, C. Holmes, S. Portolan, S. Rotter, PR, arXiv:1410.1882

Wednesday 14 October 15
Adiabatic Theorem

$g, \omega, \gamma \longrightarrow g(t), \omega(t), \gamma(t)$

Adiabaticity in non-Hermitian systems ?

 $\operatorname{Im}(\lambda)$

 \boldsymbol{Q}

 $\operatorname{Re}(\lambda)$

 \boldsymbol{g}

Can we observe an adiabatic state flip in a non-Hermitian system ?

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = c_-(t)\vec{v}_-(t) + c_+(t)\vec{v}_+(t)$$

instantaneous eigenvectors
$$c_-|_{t=0} = 1 \quad c_+|_{t=0} = 0$$
$$\varepsilon := \frac{1}{|\lambda_+ - \lambda_-|T} \ll 1$$
"adiabatic"

break down of the adiabatic theorem

and

"chiral behavior"

Uzdin, Mailybaev, Moiseyev, J. Phys. A: Math. Theor. **44**, 435302 (2011)

Phenomenology:

i) State flips due to 4π periodicity around exceptional points !

ii) Break-down of adiabaticity due to gain/loss !

iii) "Piece-wise adiabatic" dynamics, beyond instability points !

Quasi-adiabatic dynamics

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = c_-(t)\vec{v}_-(t) + c_+(t)\vec{v}_+(t)$$
instantaneous eigenvectors

$$\Rightarrow \qquad \left(\begin{array}{c} \dot{c}_{-} \\ \dot{c}_{+} \end{array}\right) = -i \left(\begin{array}{c} -\lambda(t) & -f(t) \\ f(t) & \lambda(t) \end{array}\right) \left(\begin{array}{c} c_{-} \\ c_{+} \end{array}\right)$$

Quasi-adiabatic dynamics

adiabaticity parameter

$$c_{-}(0) = 1$$
$$c_{+}(0) = 0$$

$$R(t) := \frac{c_+(t)}{c_-(t)}$$

Dynamics [1]:

$$\frac{dR}{dt} = -2i\lambda(t)R - if(t)(1+R^2)$$

[1] see also M. V. Berry, R. Uzdin, J. Phys. A: Math. Theor. 44,435303 (2011)
 M. V. Berry, J. Opt. 13, 115701 (2011).

Stability loss delay

Stability loss delay

Stability loss delay

switching dynamics: $R(t) \simeq -\varepsilon e^{i\pi t/T} - 2i\varepsilon^2 e^{2i\pi t/T} + \dots$ $-\frac{\pi}{2} \operatorname{sgn} (t - t_*) e^{\frac{i}{2\varepsilon}} e^{-i\pi t/T}$ non-converging series

Applications

i) Find ad. and non-ad. fixed points.ii) Find stability crossings points.iii) Calculate switching delay times.

Summary & conclusions

Strain coupling in diamond: Summary

Strain coupling in diamond:

$$\lambda \sim \Gamma_{\rm rad} \gg \gamma_m$$

 \mathcal{X}

|g|

 Ω

- Resonantly enhanced NV-phonon interactions.
- Ground state cooling & lasing schemes.
- Probing NV-phonon interactions !

K. Kepesidis, S. Bennett, S. Portolan, M. Lukin, PR, PRB 88, 064105 (2013)

PT-symmetry breaking in the steady-state

- Non-Hermitian / PT-symmetric phonon systems.
- Unconventional PT-symmetry breaking & lasing transitions.

Kepesidis, T. Milburn, K. Makris, S. Rotter, PR, arXiv:1508.00594

Exceptional Points and Quasi-Adiabaticity

T. Milburn, J. Doppler, C. Holmes, S. Portolan, S. Rotter, PR, arXiv:1410.1882

Thank you !