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Motivations

Posed in the context of normal to superfluid phase transition 

What is the nature of a phase transition between ordered and 
disorder phases in 2D non-equilibrium, driven, dissipative system?

Spins in high-Tc superconductors
Dean et al, Nature Mat (2012)

2D quantum fluids - atoms
Hadzibabic et al., Nature (2006)

2D quantum fluids - polaritons
Sanvitto et al., Nature Phys. (2010)  

Polaritons
Amo et al. Nature Phys. (2009)

Atoms
Dalibard et al. Nature Phys. (2012)

Helium



Bosons in 2D – Equilibrium System

In 2D BEC possible only in trapped and non-interacting systems 
Otherwise… 

BKT transition 

Confirmed in atomic gases – in harmonic trap and with interactions weaker 
then between other bosons i.e. polaritons

Z. Hadzibabic et al., Nature 441, 1118 (2006)

Normal to superfluid – BEC, BKT or ?



Equilibrium 2D Interacting System

2D equilibrium superfluid below the BKT transition

 Power Law decay of  correlations

 Upper bound on the exponent



Hamiltonian

Environment

System

Environment

Non-equilibrium Systems

Method: Non-equilibrium path integrals and Greens functions

Steady state

Fluctuations

[Szymaoska et al., PRL 2006; PRB 2007]



[Szymanska et al., chapter ICP (2012)]

Non-equilibrium Condensation



Photon causal Green’s function (luminescence) with phase fluctuations to 
all orders but gradients of phase and amplitude to second order 

mean-field 
density

In the normal state it is enough to expand to second order

Now we must treat phase fluctuations better

Phase-phase 
correlation 
function

Fluctuations

[Szymaoska et al., PRL 2006; PRB 2007]



M. H. Szymanska, et al Phys. Rev. Lett. 96, 230602 (2006)

Luminescence – Ordered State



Spatial and Temporal Coherence 

Environment

System

Environment
photon

eh
eh eh

[Szymaoska et al., PRL 2006; PRB 2007]

 Dimensionality: 2D

 Modes: diffusive

 Occupation: non-thermal



Experimental observation of power law decay  

[Roumpos et al,  PNAS 2012] 



Exponent in a non-equilibrium 2D gas

 Equilibrium closed system

 Non-equilibrium driven system (diffusive modes)

 Experiment 

 thermalised 

 non-thermalised

 g1(r)  and N(k) as in equilibrium with effective T

Experiment: faster decay possible then equilibrium upper limit

Theory: don’t know, need to account for vortices and large fluctuations 

[Roumpos et al,  PNAS 2012]
[Chiocchetta et al, EPL 2013] 
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Microcavity Polaritons: OPO

 Spontaneous U(1) symmetry breaking
gapless and diffusive Goldstone mode

 Non-thermal occupation

 Signal phase is completely free and 
idler phase locked to signal via pump

signal

[Wouters & Carusotto PRA (2007)]



Truncated Wigner for Polaritons

Truncation controlled by  [Carusotto at al PRB (2005)]

 Stochastic description 

 Derivation: 

dW - Wienner noise delta correlated in space and time    

Observables: MC averages over noise

• Master equation

• Wigner representation of Bose field 
Ignore 3rd order derivative

• Map Fokker Planck to stochastic 
differential equation

• From Keldysh action by ignoring the RG 
irrelevant terms 

[Sieberer at al PRL (2013)]

 Advantages

• No few-mode approximation used

• Large fluctuations fully accounted

• Better for driven dissipative system then 
closed systems i.e. atomic gases 



Single Stochastic Path

 “Condensate” at two momenta 
and energies: signal and idler

 Vortices in signal and idler 
but ….

not in pump state

 No perfect locking: more 
vortices in idler as it is weaker



V-AV Pairs Proliferation and Binding

Low density:

Vortex/antivortex 
proliferation 

Medium density:

V/AV pairing

High density:

V/AV annihilation, no 
vortices

Phase of the field

V

AV



Initial Conditions

Vacuum noise Mean-field “condensate” Mean-field “condensate”
with reservoir

Vacuum noise 
with reservoir 

Very different initial conditions lead to the same steady-state

unique steady state solution



Reaching the Steady State – Stochastic Averages

Density of signal 
polaritons and 

number of vortices 
very well converged 

in time 



Stochastic Averages

Averages over realisations = averages over different time snapshots



Phase Diagram

Note: the transition region VERY narrow in pump powers



Phase Diagram

Not so narrow in particle density



First Order Spatial Coherence

Power-law (solid)

exponential (dashed)

Exponent can 
exceed 1/4



First Order Spatial Coherence

Power-law (solid)

exponential (dashed)

Exponent can 
exceed ¼

=

External drive 
excites collective 

fluctuations 
preferentially over 
topological defects 



First Order Spatial Coherence

R. Spano et al. (2011)



First Order Spatial Coherence

To observe:

Larger systems and 
closer to the phase 

transition



Increasing the System Size

α converges clearly to a value larger then 1/4



Conclusions
 Phase transition in driven 2D systems of the BKT type

 The exponent of the decay of correlations can exceed equilibrium upper limit –
ordered phase more robust or more disordered

 Phase transition between normal and coherent phases in polariton system is of BKT 
and not BEC type

arXiv:1412.7361, PRX (to appear)


