

Bose-Einstein Condensation of Photons and Periodic Potentials for Light

Martin Weitz

Institut für Angewandte Physik der Universität Bonn

BEC of rubidium atoms @ 180nK

Ground State of Bosonic Ensembles (3D-Regime)

Bose-Einstein condensate

Earlier Work related towards a Photon BEC

- Proposal for a photon BEC in Compton scattering off a thermal electron gas

Zel'dovich and Levich, 1969

... Earlier Work

- Exciton-polariton condensates

strong coupling (,half matter, half light'); in equilibrium for condensed part

Yamamoto, Deveaud-Pledran, Littlewood, Snoke, ...

- Proposal for photon fluid in nonlinear resonator

photon-photon scattering (four-wave mixing)

R. Chiao

- thermodynamics of a two-dimensional photon gas in a dye-filled optical microcavity
- Bose-Einstein condensation of photons
- condensate intensity correlations, grand canonical BEC
- periodic potentials for light

Bonn 2D-Photon Gas Experimental Scheme

- use curved-mirror microresonator to modify photon dispersion

- thermal equilibrium of photon gas by absorption re-emission processes on dye molecules...

Spectrum of Perylene-Dimide Molecule (PDI)

Photon Gas Thermalization: Background

Collisionally induced thermalization in dye medium

$$\frac{f(\omega)}{\alpha(\omega)} \propto \exp\left(-\frac{\hbar\omega}{k_B T}\right)$$

T: (internal rovibrational) temperature of dye solution

Kennard 1912, Stepanov 1956

Model for Photon Thermalization

multiple absorption and emission processes by dye molecules in resonator

(many times)

Photon Number Variation during Thermalization?

 \rightarrow photon average number conserved

,white-wall box' for photons

Photon Trapping versus Atom Trapping

- quadratic photon dispersion

In paraxial approximation $(k_z >> k_r)$: $E = \hbar c \sqrt{k_z^2 + k_r^2} \cong \hbar c \left(k_z + \frac{k_r^2}{2k_z} \right)$ $= m_{eff} c^2 + \frac{(\hbar k_r)^2}{2m_{eff}}$ with $m_{eff} = \hbar k_z / c \equiv \hbar \omega_{cutoff} / c^2$

.. Photon versus Atom trapping

- trapping potential from mirror curvature

System formally equivalent to 2D-gas of massive bosons with $m_{eff} = \hbar \omega_{cutoff} / c^2$ $E = m_{eff} c^2 + \frac{(\hbar k_r)^2}{2m_{eff}} + \frac{1}{2} m_{eff} \Omega^2 r^2$ \rightarrow BEC expected for $N > N_c = \frac{\pi^2}{3} \left(\frac{k_B T}{\hbar \Omega}\right)^2 \cong 77000$ (T=300K, $\Omega = 2\pi \cdot 4 \cdot 10^{10}$ Hz, $m_{eff} \cong 6.7 \cdot 10^{-36}$ kg $\cong 10^{-10} \cdot m_{Rb}$)

Two-Dimensional Photon Gas in Dye-Filled Optical Resonator

Experimental Setup: 2D Photon Gas

Spectrum of Thermal Photon Gas in Cavity

 \rightarrow evidence for thermalized two-dimensional photon gas with $\mu \neq 0!$

J. Klaers, F. Vewinger, M. Weitz, Nature Phys. 6, 512 (2010)

Spectra for Different Cavity Cutoff Frequencies

... Reabsorption: Required for Photon Thermalization

Snapshot: Thermalization of Photon Gas in Dye Microcavity

Thermalization – Photon Diffusion towards Center

Photon Gas at Criticality

Rh6G, duty cycle 1:16000, 0.5µs pulses

Bose-Einstein condensate of Light

below threshold

Bose-Einstein condensate

Cooling (or increase of $n\lambda_{db}^2$)

Light Bulb

ground state: filament off

Spectra for Densities around Photonic BEC Threshold

J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature **468**, 545 (2010) see also recent Imperial College experiment: J. Marelic and R. Nyman, PRA **91**, 033813 (2015)

Spatial Intensity Distribution around BEC Threshold

mode diameter increase could be explained by photon mean field interaction with $g_{eff,2D} \cong 7 \cdot 10^{-4}$ (too small for Kosterlitz-Thouless physics) \rightarrow BEC expected for atoms: $g_{eff,2D} \cong 10^{-1} - 10^{-2}$ (Dalibard,Phillips)

Michelson Interference Pattern above Photon BEC Threshold

optical path length difference: 15 mm

Bose-Einstein Condensation versus Lasing

equilibrium

out of equilibrium

ideal photon box (with numberconserving thermalization & low-frequency cutoff) \rightarrow BEC

pumping and losses dominate \rightarrow laser, requires inverted active medium

see also: lasing a nonequilibrium phase transition (Haken,..), polariton BEC \leftrightarrow polariton lasing. Theory photon BEC vs. lasing: Klaers et al., Appl. Phys. B 2011, Kirton + Keeling, PRL 2013

Experimental Data: Laser to BEC Crossover

J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, and M. Weitz, PRA 92, 011602 (2015)

Grand Canonical BEC and Condensate Fluctuations

J. Klaers et al., PRL **108**, 160403 (2012), see also: D. Sobyanin, PRE **85**, 061120 (2012) general theory grandcanonical BEC fluctuations: Fujiwara et al. (1970), Ziff et al. (1977), Holthaus (1998)

Photon Intensity Correlation in BEC Mode vs. Delay Time

J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, M. Weitz, Phys. Rev. Lett. 112, 030401 (2014)

Photon Intensity Correlation vs. Condensate Fraction

Periodic Potentials for Light: Motivation

Possible experiments:

- strongly correlated quantum gases: Mott-insulator transition for photons
- artifical magnetic fields, quantum Hall states, ...

Proposals: Plenio, Greentree, Angelakis, Türeci, Carusotto, Hafezi, Hartmann, Stoof ..

See also experimental lattice work in polaritons: Yamamoto, Bloch

One Approach: Use Mirror Stucturing to Create Variable Potentials for Light

Thermo-Optic Imprinting: Variable Potentials for Trapped Photon Gas

optical length

Thermo-Sensitive Polymer (PolyNIPAM): Controlled Variation of Refractive Index

n_{eff}≈1.46

Setup for Generation of Lattice Potentials

Dye Microcavity Emission for Photonic Lattice Potentials

225 µm

D. Dung et al, to be published

.. A Nonperiodic Potential Pattern in Microcavity

Spectral Analysis of the Emission of One Site: Investigating Effective Photon Interactions

thermo-optic interactions occur temporally delayed \rightarrow frequency chirp of the emission

Coupling Two Sites in a Double-Well System

Extracting the Tunnel Coupling

we observe tunneling when the sites are tuned into resonance. From the resonace width, the tunnel coupling can be extracted

Tunnel Coupling Versus Distance Between Sites

D. Dung et al, to be published

Conclusions

- thermalization of 2D-photon gas with nonvanishing chemical potential and Bose-Einstein condensation of photons

 observation of a grandcanonical BEC regime with enhanced intensity fluctuations

- variable potentials for photonic quantum gas. We see tunneling and effective photon interactions in double well system

Outlook

 photon thermalization: concentration of diffuse sunlight

- photon BEC: new states of light

(some) future directions:

- grand canonical BEC regime: $g^{(1)}(\tau)$, superfluidity (?), ...
- Josephson physics for photons
- study of quantum manybody states in periodic potentials

photon gas

Quantum optics group, IAP Bonn:

- J. Schmitt
- T. Damm
- H. Brammer
- C. Grossert
- J. Ulitzsch
- M. Leder
- D. Dung
- C. Wahl
- D. Babik
- F. Öztürk
- S. Christopoulos
- H. Alaeian
- J. Klaers (\rightarrow ETH Zürich)
- P. Moroshkin (\rightarrow RIKEN)
- F. Vewinger
- M. Weitz

