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Interaction properties

• Interactions due to excitonic component

• Short range

• Polarization dependent (bi-exciton Feshbach resonance)

• Weak interactions:

⇒  mean field theory mostly OK

g̃ = 0.01 g̃ = �0.001

g̃ = mg/~2 ⌧ 1

N. Takemura et al., Nat. Phys./PRB 2014, 
M. Vladimirova et al. PRB 2010.
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Outline

• generalized Gross-Pitaevskii equation 

• coherence properties (including fluctuations) 

• superfluid properties (including gauge field)

I. Carusotto and C. Ciuti, RMP 2013



Gross-Pitaevskii equation
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This equation describes almost all features seen in resonant pumping experiments
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Phenomenological extension for incoherent 
excitation

Exciton Reservoir

incoherent 
relaxation

pumping laser
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Phenomenological extension for incoherent 
excitation

Exciton Reservoir

incoherent 
relaxation

pumping laser

when RnR < � :  = 0

RnR > � :  ! 1

below threshold

above threshold:
gain saturation needed
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Phenomenological extension for incoherent 
excitation

Exciton Reservoir

incoherent 
relaxation

pumping laser

when RnR < � :  = 0

RnR > � :  ! 1

below threshold

above threshold:
gain saturation needed

Rate equation for the reservoir

dnR

dt
= P � �RnR �RnR| |2

threshold from RnR = � Pth = ��R/Ris

above threshold: | |2 = (P � Pth)/�

| |2

Pth P

discontinuous derivative 
because of mean field approximation
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Adiabatic elimination of reservoir → cGLE 

when the reservoir can follow instantaneously the polariton density

dnR

dt
= P � �RnR �RnR| |2 = 0

N. Bobrovska, M. Matuszewski, PRB 2015

we have a single equation for the polariton field

= laser model with saturable gain 
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Adiabatic elimination of reservoir → cGLE 

when the reservoir can follow instantaneously the polariton density

dnR

dt
= P � �RnR �RnR| |2 = 0

N. Bobrovska, M. Matuszewski, PRB 2015

we have a single equation for the polariton field

= laser model with saturable gain 

expand the gain nonlinearity: 

which is of the form of the complex Ginzburg Landau equation

for polaritons: Keeling and Berlof PRL 2008
general review: Aranson and Kramer RMP 2002
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Flows in inhomogeneous polariton 
condensates

Volcano effect
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E. Wertz et al. Nature Physics 2010

is reproduced numerically with any of the 
generalised GPEs

Liew, Wouters & Savona, PRB 2010
Wouters, Carusotto, Ciuti, PRB 2008

as a simple consequence of ‘energy conservation’
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is reproduced numerically with any of the 
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as a simple consequence of ‘energy conservation’
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flows in the steady state are due to broken time-reversal invariance (driving+dissipation) 
no free energy minimisation



or in 2D with disorder: vortices

Fig. 3.
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Figure 1 Interferogram and extracted phase. a, Interferogram with vortex: in 

the red circle one can see the forklike dislocation. b, Interferogram carrying the 

same information but this time the vortex is overlapped with a different region of 

the condensate and for different fringe orientation. The vortex appears at the 

same real space coordinates as before. c, Real space phase profile calculated 

from interferogram of (a). The red circle encloses the vortex (same real space 

area as on (a),(b)). d, Phase as a function of the azimuthal angle for a range of 

different radii as shown in the indent of figure (d) (zoom of (c)). Note that the 

data are repeated before and after the azimuthal angles 0 and 2π to better 

illustrate the 2π shift.    
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Goldstone mode above threshold

A similar amplitude mode is encountered in many contexts
of condensed-matter physics when a continuous symmetry is
spontaneously broken at a thermal or quantum phase transi-
tion. The simplest case is the superfluid to Mott-insulator
transition for bosons in a lattice. Close to the critical point on
the superfluid side, a second branch of excitations appears in
addition to the Bogoliubov sound. Physically, this new Higgs-
like mode can be understood in terms of an oscillating
amplitude of the superfluid order parameter, that is a local
interconversion of the condensed and noncondensed fractions
(Altman and Auerbach, 2002; Huber et al., 2007; Menotti and
Trivedi, 2008). A summary of physical systems where
this physics may be observed (atomic gases, antiferromag-
nets, charge-density-wave systems, and superconductors) is
reported by Podolsky, Auerbach, and Arovas (2011):
Recently, experimental evidence of the amplitude mode was
reported for ultracold atoms in an optical lattice (Bissbort
et al., 2011; Endres et al., 2012). A related physics problem
was investigated for a Dicke model of polariton condensation
by Brierley, Littlewood, and Eastham (2011).

The other mode which tends to 0 in both real and imaginary
parts as k ! 0 is theGoldstonemode corresponding to theUð1Þ
spontaneous symmetry breaking associated with the BEC tran-
sition: Given the underlying Uð1Þ phase rotation symmetry of
the problem, the phase of the condensate is randomly chosen at
the phase transition and a global rotation of the phase cannot
experience any restoring force. This interpretation is confirmed
by a calculation of the corresponding k ¼ 0 eigenmode of
Eq. (75) that describes a pure global phase rotation. Most
remarkably, the so-called Schawlow-Townes linewidth of a
standard laser (Schawlow and Townes, 1958; Walls and
Milburn, 2006) can be seen as arising from the excitation of
this soft mode by spontaneous emission events.

For finite 0< k < ko, the amplitude and phase modes are
mixed by the kinetic energy term in Eq. (75) but maintain a
diffusive nature with a decay rate tending to zero in the long
wavelength limit, !BogðkÞ ’ $ic2sk

2=!. A perturbation im-

printed at the initial time t ¼ 0 on the condensate phase ’ðrÞ
will not propagate through the system; rather it will diffu-
sively expand in space according to a heat equation

@’ðr; tÞ
@t

¼ c2s
!
r2’ðr; tÞ; (78)

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏgLPnLP=mLP

p
being defined as the usual sound veloc-

ity at equilibrium.
For k * ko, the imaginary parts collapse to a single value

$!=2, while the real part starts from zero proportionally toffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k$ ko

p
. At large values of k, the dispersion recovers the

standard Bogoliubov dispersion of equilibrium systems
(black dashed line in Fig. 15). As usual in Bogoliubov theory,
the off-diagonal terms in the matrix in Eq. (75) are respon-
sible for a mixing of the !"LPðrÞ and !"%

LPðrÞ fields, i.e.,
particle and hole operators in a quantum framework. As a
result, both the positive and negative branches should be
observable in a luminescence experiment (Keeling et al.,
2005; Marchetti et al., 2007; Byrnes et al., 2012). A related
prediction was put forward for atom laser beams extracted
from atomic condensates by Japha et al. (1999).

Even though such negative Bogoliubov branches (also
called ghost branches) have been observed with polariton

systems in several other pumping regimes (Savvidis et al.,
2001; Kohnle et al., 2011), no trace of them was visible in the
recent experimental study of the Bogoliubov dispersion in
an incoherently pumped condensate in a planar geometry
(Utsunomiya et al., 2008): Most likely, this is due to the
fact that the emission from this negative branch is easily
masked by the much stronger background of the condensate
emission. On the other hand, a spectral feature that may be
attributed to the negative branch was observed in a pillar
geometry by Lagoudakis (2009).

Extension of this theory to the supercurrent states inmultiply
connected geometries described in Sec. VI.A.7 requires more
attention. A naive generalization of Eq. (75) to the case of a
moving condensate with velocity v0 ¼ ℏk0=m would predict
(within the parabolic approximation for the lower polariton
branch) a mere Doppler shift of the real part of the Bogoliubov
dispersion,

!ðv0Þ
BogðkÞ ¼ !BogðkÞ þ ðk!k0Þ"v0; (79)

while the imaginary part of the dispersion remains completely
unaffected. This prediction that moving condensates in ring
geometries are dynamically stable up to arbitrarily high values
of the flow speed v0 is at odds with intuitive expectations that
condensation into fast moving states should be unfavored.
A more refined treatment including an energy-dependent am-
plification mechanism was developed by Wouters and
Carusotto (2010): As expected, it turns out that the region of
stability extends up to amaximum speed value vstab. For higher
speeds v0 > vstab, the instability of the condensate is due to the
creation of another condensate aroundk ¼ 0which eventually
replaces the one at k0.

FIG. 15 (color online). Dispersion of the Bogoliubov modes of an
incoherently pumped condensate. The ' branches show the pre-
diction (77) for the nonequilibrium Bogoliubov modes. The R
branch indicates the fast relaxation of the reservoir at rate "R

according to Eq. (48). The diffusive behavior of !BogðkÞ is clearly
visible at low k. Dashed lines show the Bogoliubov dispersion
(55) of an equilibrium condensate. Adapted from Wouters and
Carusotto, 2007a.
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• there is always a zero frequency (real and 
imaginary part) mode due to the 
spontaneous U(1) symmetry breaking.

• the low energy part becomes diffusive due 
to dissipation



Drag force under incoherent excitation

in microcavities under a cw pump in a OPO-like configuration
recently appeared in Sich et al. (2012). We expect that these
studies of soliton propagation may provide useful insight into
the mechanism underlying the polariton bullets in the TOPO
configuration of Amo et al. (2009).

Another, even more challenging feature of this experiment
is the robust shape of the polariton bullet after hitting the
defect; see the right panel of Fig. 22. The spatial modulation
of the density profile that is visible in the two middle panels is
attributed to the Cherenkov wake that is imprinted by the
defect onto the pump beam. A naive reasoning based on the
Landau criterion applied to the elementary excitations spec-
trum of an OPO condensate shown in Fig. 10 does not provide
an explanation of this experimental observation: Because of
the diffusive nature of the Goldstone mode, several k modes
are in fact available into which polaritons can be scattered by
the defect. On this basis, one would rather expect the signal
polariton bullet to be immediately destroyed after hitting the
defect.

The unexpected outcome of numerical simulations of the
Gross-Pitaevskii equation (49) for polariton condensate under
incoherent pumping in Wouters and Carusotto (2008, 2010)
suggested a possible path to reconcile the picture. A naive
application of the Landau criterion (80) to the real part of the
diffusive spectrum of elementary excitations (77) shown in
Fig. 15 would predict that the critical speed vanishes and an
impurity is able to emit phonons in the fluid independently of
the value of the flow speed. The numerical results shown in
the upper panels of Fig. 23 strongly disagree with this expec-
tation and indicate that at low speeds the incoherently
pumped condensate indeed behaves as a superfluid and is
almost unaffected by the defect. The critical speed for the
onset of the usual wake is of the order of the (equilibrium)

speed of sound cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏgLPnLP=mLP

p
. These numerical obser-

vations are confirmed by the clear threshold that is visible

close to cs in the velocity dependence of the friction force
shown in the lower-left panel: The weaker the effective loss
rate !, the sharper the threshold.

Taking inspiration from classical work in electrodynamics
of absorbing media (Tait, 1972), an analytical understanding
of these results can be obtained by noting that in a stationary
state both the condensate wave function and the Bogoliubov
modes oscillate at the single frequency !, while the imagi-
nary part of the dispersion (77) has to be reabsorbed into the
complex wave vector ~k. Restricting our attention to zero-
frequency !Bog ¼ 0 Bogoliubov modes propagating along

the velocity axis, the real and imaginary parts of the complex
wave vector ~k are plotted in the lower middle and right panels
of Fig. 23 as a function of the speed v: The generalized
Landau critical velocity ~vc corresponds to the threshold for
the appearance of a nonvanishing real part, i.e., for the onset
of the oscillating modulation upstream of the defect. The
weaker the effective decay rate !, the closer ~vc is to the
equilibrium prediction cs.

As reviewed in Sec. V, polariton condensates in the OPO
regime share the same spontaneous Uð1Þ symmetry-breaking
mechanism and the same diffusive Goldstone mode as the
incoherently pumped ones. On this basis, we then expect that
the mechanism of superfluidity illustrated in Fig. 23 for
incoherently pumped condensates may provide a physical
explanation of the intriguing superfluidity observations in
the OPO regime reported by Amo et al. (2009).

E. Metastability of supercurrents

A striking manifestation of superfluidity is the metastabil-
ity of supercurrents (Leggett, 1999). For simplicity, consider
a multiply connected geometry in the form of a torus: Single
valuedness of the condensate wave function"ðrÞ imposes the
so-called Onsager-Feynman quantization condition to the
supercurrent around the torus,

I
vs $ dl ¼

2!ℏ
m

Nw; (88)

where vs is the superfluid flow velocity and the integer Nw

is the so-called winding number indicating the number of
times the phase of the wave function winds up in a loop
around the torus.

While in classical hydrodynamics any friction process is
able to continuously slow down the flow around the torus,
the quantization condition (88) makes the lifetime of finite
Nw ! 0 supercurrents extremely long in repulsively interact-
ing superfluids with no extra internal degree of freedom even
in the presence of a significant wall roughness. In order for
the winding number Nw to vary, a node has in fact to appear in
the condensate wave function, which (except for the critical
region just below the superfluid critical temperature T#)
requires surmounting a very high free-energy barrier. As a
result, a number of different metastable supercurrent states
exist for the condensate, labeled by the winding number Nw.

This physics was first investigated in superfluid liquid 4He
(Vinen, 1961; Reppy and Depatie, 1964; Reppy, 1965) and,
more recently, in ultracold atom condensates (Ryu et al.,
2007; Ramanathan et al., 2011): In this latter case, it was
explicitly shown that the toroidal geometry is essential to
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FIG. 23 (color online). Upper panels: Generalized GPE simula-
tion of an incoherently pumped condensate hitting a weak and
stationary defect at three different speeds v=cs ¼ 1:5, 1, 0.4 across
the critical value for superfluidity (from left to right). Lower-left
panel: Force exerted on the defect by the moving condensate as a
function of the speed v. The different (solid, dashed, and dotted)
curves correspond to growing values of the effective loss rate.
Lower center and right panels: Real and imaginary parts of the
complex wave vector ~k of the zero-frequency Bogoliubov mode as a
function of v. From Wouters and Carusotto, 2010.
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smoothed threshold for 
increasing dissipation

This physical picture is confirmed by numerical simula-
tions of the time evolution under the generalized GPE (1)
starting from an initial condition with a supersonic flow.
Periodic boundary conditions are assumed. For a low de-
fect density, the supercurrent state is maintained for very
long times with no sign of decay. The characteristic
Cerenkov-like density patterns in the vicinity of each de-
fect are spatially separated and do not interfere [Fig. 5(a)].
The momentum distribution in k space [Fig. 5(b)] shows
the condensate peak right at the initial momentum state and
a much fainter resonant Rayleigh scattering ring [8]. The
situation is different for a higher density of defects. In this
case, the real space density perturbations created by the
different defects substantially overlap with each other. As a
result, interference effects are more likely to create nodes
in the condensate wave function and therefore to trigger
dissipation of the supercurrent. The occurrence of such a
process is apparent in Fig. 5(d) as a much reduced late-time
value of the condensate momentum.

This fact illustrates another important difference with
respect to standard, equilibrium condensates: in that case,
the dissipation of a supercurrent leads to a significant
heating and reduction of the condensate fraction. In the
present case, the condensate is transferred to a lower
momentum state but maintains its long-range coherence;
the momentum broadening that is visible in Fig. 5(d) is
related to the localized modulation created by the defects.
Even if the presence of some frequency dependence in the
pumping is crucial to concentrate the population in low-
energy modes, the final shape of the momentum distribu-
tion depends only weakly on its specific form.

In conclusion, we have theoretically investigated the
superfluidity properties of nonequilibrium condensates of
exciton polaritons. Contrary to previous expectations,
superfluidity is shown to be robust against particle loss.
Fringes in the density profile are created by a moving
defect only above a critical speed; correspondingly, the
drag force shows a pronounced thresholdlike behavior.
Remarkably, metastability of supercurrents is found to
persist even for velocities well above the critical speed.
We are indebted to Vincenzo Savona, Cristiano Ciuti,

and Davide Sarchi for continuous enlightening exchanges.
Stimulating discussions with E. Cancellieri, J. Keeling, C.
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FIG. 5 (color online). Real (linear color scale) and momentum
space (logarithmic color scale) densities of a nonequilibrium
condensate after a temporal evolution of !t ¼ 300 for an initial
momentum k=k! ¼ 2 and two different densities of defects. The

dots in the real space panels indicate the position of the defects.
The square in the momentum space panels indicates the initial
momentum of the condensate. Parameters are the same as in
Fig. 4, except for !K=! ¼ 10.
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This physical picture is confirmed by numerical simula-
tions of the time evolution under the generalized GPE (1)
starting from an initial condition with a supersonic flow.
Periodic boundary conditions are assumed. For a low de-
fect density, the supercurrent state is maintained for very
long times with no sign of decay. The characteristic
Cerenkov-like density patterns in the vicinity of each de-
fect are spatially separated and do not interfere [Fig. 5(a)].
The momentum distribution in k space [Fig. 5(b)] shows
the condensate peak right at the initial momentum state and
a much fainter resonant Rayleigh scattering ring [8]. The
situation is different for a higher density of defects. In this
case, the real space density perturbations created by the
different defects substantially overlap with each other. As a
result, interference effects are more likely to create nodes
in the condensate wave function and therefore to trigger
dissipation of the supercurrent. The occurrence of such a
process is apparent in Fig. 5(d) as a much reduced late-time
value of the condensate momentum.

This fact illustrates another important difference with
respect to standard, equilibrium condensates: in that case,
the dissipation of a supercurrent leads to a significant
heating and reduction of the condensate fraction. In the
present case, the condensate is transferred to a lower
momentum state but maintains its long-range coherence;
the momentum broadening that is visible in Fig. 5(d) is
related to the localized modulation created by the defects.
Even if the presence of some frequency dependence in the
pumping is crucial to concentrate the population in low-
energy modes, the final shape of the momentum distribu-
tion depends only weakly on its specific form.

In conclusion, we have theoretically investigated the
superfluidity properties of nonequilibrium condensates of
exciton polaritons. Contrary to previous expectations,
superfluidity is shown to be robust against particle loss.
Fringes in the density profile are created by a moving
defect only above a critical speed; correspondingly, the
drag force shows a pronounced thresholdlike behavior.
Remarkably, metastability of supercurrents is found to
persist even for velocities well above the critical speed.
We are indebted to Vincenzo Savona, Cristiano Ciuti,

and Davide Sarchi for continuous enlightening exchanges.
Stimulating discussions with E. Cancellieri, J. Keeling, C.
Menotti, F. Piazza, D. Sanvitto, and A. Smerzi are
acknowledged.
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[11] M.H. Szymańska, J. Keeling, and P. B. Littlewood, Phys.

Rev. Lett. 96, 230602 (2006).
[12] M. Wouters and I. Carusotto, Phys. Rev. A 76, 043807

(2007).
[13] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402

(2007).
[14] I. Carusotto, M. Wouters, and C. Ciuti, Presentation

at ICSCE4 (2008), http://www.tcm.phy.cam.ac.uk/BIG/
icsce4/talks/carusotto.pdf; J. Keeling and N.G. Berloff,
Nature (London) 457, 273 (2009).

[15] A. Amo et al., Nature Phys. 5, 805 (2009).
[16] A. Amo et al., Nature (London) 457, 291 (2009).
[17] J. Keeling and N.G. Berloff, Phys. Rev. Lett. 100, 250401

(2008).
[18] M. Wouters, I. Carusotto, and C. Ciuti, Phys. Rev. B 77,

115340 (2008)
[19] A. Baas et al., Phys. Rev. Lett. 100, 170401 (2008); M.

Wouters, Phys. Rev. B 77, 121302 (2008); P. R. Eastham,
Phys. Rev. B 78, 035319(R) (2008).

[20] K. G. Lagoudakis et al., Nature Phys. 4, 706 (2008).
[21] D. Porras, C. Ciuti, J. J. Baumberg, and C. Tejedor, Phys.

Rev. B 66, 085304 (2002).
[22] I. Carusotto et al., Phys. Rev. Lett. 97, 260403 (2006).
[23] W.C. Tait, Phys. Rev. B 5, 648 (1972).
[24] G. E. Astrakharchik and L. P. Pitaevskii, Phys. Rev. A 70,

013608 (2004).
[25] M. Wouters and V. Savona, Phys. Rev. B 79, 165302

(2009).

kγ x

k γ y

(a)

−20 0 20

−20

0

20

k
x
/kγ

k y/k
γ

(b)

−2 0 2

−2

0

2

kγ x

k γ y

(c)

−20 0 20

−20

0

20

k
x
/kγ

k y/k
γ

(d)

−2 0 2

−2

0

2

FIG. 5 (color online). Real (linear color scale) and momentum
space (logarithmic color scale) densities of a nonequilibrium
condensate after a temporal evolution of !t ¼ 300 for an initial
momentum k=k! ¼ 2 and two different densities of defects. The

dots in the real space panels indicate the position of the defects.
The square in the momentum space panels indicates the initial
momentum of the condensate. Parameters are the same as in
Fig. 4, except for !K=! ¼ 10.
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… but drag does not prohibit persistent 
superflows

Wouters and Carusotto PRL 2010.
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Gross-Pitaevskii equation: mean field classical physics

? effect of (quantum) fluctuations out of equilibrium

Truncated Wigner approximation: 
add a noise term to Gross-Pitaevskii, that is proportional to losses
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Bogoliubov approximation

For weak and slow phase fluctuations, neglect nonlinear term

exponential decay, as in equilibriumh †
(x) (x

0
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to thermalise or not to thermalise
Small momenta

Bose-Einstein distribution/classical field theory: nk / T

k2

stochastic models for polariton condensation: nk / noise

k2

(thermal equilibrium)

(diffusive Goldstone mode)



to thermalise or not to thermalise

Kasprzak et al. 2006

polariton Boltzmann tail
The energy of the emission line at threshold is plotted as

a function of detuning in Fig. 1!a". For strong positive or
negative detunings, the emission energy at threshold matches
that of the bare cavity mode deduced from fitting the polar-
iton anticrossings. Nevertheless close to zero detuning or for
positive detunings up to +10 meV, the emission line at
threshold lies at significantly lower energy than the calcu-
lated uncoupled cavity mode deduced from low density mea-
surements. This reduced blueshift of the emission line when
increasing excitation power could be mistaken for a sign that
the system remains in the strong coupling regime, with a
reduction of the Rabi splitting.

This incomplete blueshift, when lasing emission occurs, is
clearly a feature occurring close to the excitonic resonance.
This can be understood by considering the change of index
of refraction of the GaAs when evolving from the excitonic
regime toward the electron-hole plasma regime. A calcula-
tion of the low temperature GaAs index of refraction has
been reported in Ref. 17 for several carrier densities. At low
carrier density, the real part of the index of refraction pre-
sents a derivative-shaped excitonic feature centered at the
exciton resonance energy Ex, superimposed to a slowly vary-
ing function ñ!E" slightly increasing with the energy. ñ!E"
accounts for the index of refraction due to all other reso-
nances in the quantum well, and is the index of refraction
value to be taken into account to calculate the energy of the
uncoupled cavity mode. For high carrier densities, the exci-
tonic feature progressively vanishes and the index of refrac-
tion nHD!E" presents a peak at an energy EHD slightly higher
than the exciton energy, superimposed to a slowly varying
function close to ñ!E". Thus for energies close to EHD,
nHD!E" is larger than ñ!E". As a result, the cavity mode
wavelength is at lower energy than what is deduced from low
density measurements. Thus the overall emission blueshift
with increasing excitation power is reduced. This incomplete
blueshift occurs only near EHD, i.e., for zero or positive de-
tunings #see Fig. 1!a"$. It is induced by the refractive index
of the quantum well layer only and is not influenced by the
rest of the cavity layers. It is thus proportional to the overlap
A between the electromagnetic field of the cavity mode and
the quantum well layer. Since the Rabi splitting is propor-
tional to %A, the spectral distance between the lasing emis-
sion and the calculated cavity mode varies as !2. It is thus
particularly pronounced in our sample because it exhibits a
very large Rabi splitting, as compared to samples of previous
reports8,11 where the transition toward the weak coupling re-
gime was studied.

Finally let us describe the emission pattern of the present
microcavity. Figure 3 summarizes the integrated intensity of
the angle resolved measurements presented in Fig. 2. The
integrated intensity is plotted as a function of the emission
peak energy. In Fig. 3 we also plot with open symbols the
integrated intensity divided by the square of the polariton
Hopfield coefficient corresponding to the polariton photon
content. In the strong coupling regime, this quantity is di-
rectly proportional to the polariton population. At low exci-
tation power, we find as in many previous works6,11 that the
polariton population is not thermalized. This is because the
polariton-polariton interaction time is much longer than the

polariton lifetime. Above the lasing threshold in the weak
coupling regime, the intensity distribution presents a pro-
nounced peak close to k=0 !corresponding to E=Emin" and
an exponential decay at higher energy. This shape remains
very similar when dividing the intensity by the Hopfield co-
efficient !red open symbols" even if this operation is mean-
ingless in the weak coupling regime. This emission pattern
presents striking similarities with that reported for the polar-
iton condensate.6,15 Such an emission pattern has been high-
lighted as a proof that a thermalized condensate is achieved.
This is an analogy to the case of atomic physics where a
large fraction of the atoms is in the condensate and coexists
with a thermalized cloud of uncondensed atoms.18 In our
case, the system is in the photon lasing regime and the emis-
sion pattern probably simply reflects the energy distribution
of the electron-hole pairs, the emission of which is filtered by
the cavity mode.

Our aim in this paper is to underline that this emission
pattern, a sharp peak near the energy minimum followed by
a Boltzmann distribution at higher energies, can be similarly
observed in a conventional laser in the weak coupling re-
gime. Although massive occupation of the lower energy
states is an important characteristic of condensates, it cannot
be used by itself to distinguish polariton condensation from
photon lasing.

To conclude we have studied a III-V GaAs based semi-
conductor microcavity presenting a very small cavity volume
and a large number of quantum wells, thus being an ideal
candidate for Bose condensation. We confirm as in previous
reports that under high energy nonresonant excitation, the
polariton laser is not obtained and that only conventional
photon lasing occurs. Nevertheless we show that because of
refraction index changes when increasing the carrier density,
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tegrated intensity as a function of the emission energy for !black
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what with weak interactions?

 

What for μ→0 ?? (equilibrium: fragmentation of the condensate)

Can a laser be spatially coherent without photon-photon interactions?

`c =
4~2n
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segment. The steeper the slope, the larger the bias. Indeed, since the fire front segment does not 
realize where we have set our mathematical axis (forward), nor is it aware of the average overall 
slope of the kinetic interface, common sense dictates that the fire is most likely to propagate along 
the direction of the local normal. The effective global forward translation is only the result of the 
locally normal propagation. To compensate the local bias of the uniform translation mechanism, it 
is easy to see that an extra term should be added to the surface equation. From Fig. 3.lc, we note 
that the locally normal propagation must be projected on the forward axis to represent the effective 
advance in the equation. This amount is proportional to dm. 

As is traditional, we keep only the first leading nonlinear contribution in the equation. Assuming 
( V/Z)~ small, the above expression can be expanded as 1 + 1/2(Vh)2 + . . -, and the constant term 
can be dropped, as in the EW case. In this way we arrive at the nonlinear, stochastic interface 
equation first reported and analyzed in a paper by Kardar, Parisi and Zhang [ KPZ86], which later 
became referred to in the literature as the KPZ equation. In the following, we shall for convenience 
adhere to this popular terminology. The reader should bear in mind though, this equation was known 
implicitly to quite a few people. A systematic RG study was already conducted by Forster, Nelson 
and Stephen [FNS77], though in the hydrodynamic context. A more proper name, “noise-driven 
Burgers’ equation” [B74] somehow did not make into large circulation. The equation reads, 

(3.la) 

with noise correlator 

(7)(x’, t/)7)(x, t)) = mqx - x)&t - t’) (3.lb) 

Note that this equation, nothing more than EW supplemented by a nonlinearity, looks much simpler 
than Eq. (2.3) for the full Eden cluster, since noise is additive rather than multiplicative. Nevertheless, 
the two are intrinsically equivalent. 

As a digression, we note that despite the naturalness suggested by the preceding remarks, the 
first derivation of (3.1) was much more painful, unaware of the earlier efforts of Burgers and FNS, 
relying upon purely formal mathematical considerations. One observes that the EW equation with 

EW implies 
uniform Il-awlatiw 

Fig. 3.1. (a) Piece of kinetically roughened surface, advances, on average, (b) via uniform translation according to the 
Edwards-Wilkinson equation, whereas (c) the more natural assumption is that of locally normal growth, involving a 
correction term Jm [ KPZ86]. 

Kardar-Parisi-Zhang physics

Without fourth order derivative: KPZ equation

• For atomic Bose quantum fluids  [Kulkarni et al. PRA 2013, Arzamasovs et al. arxiv:
1309.2647]

• For polaritons, see also: E. Altman et al., arxiv:1311.0876, L. Sieberer et al. arXiv:
1412.5579.

• nice review: T. Halpin-Healy, Y.-C. Zhang, 
Phys. Rept. 1995

• originally derived in crystal growth: 
Kardar, Parisi, Zhang, PRL 1986

226 7: Halpin-Healy, Y-C. Zhang/Physics Reports 254 (1995) 215-414 

(b) 

Fig. 2.2. Snapshots illustrating surface and bulk properties of three distinct stochastic growth models: (a) Eden cluster, (b) 
ballistic deposit, and (c) RSOS solid. All belong to the KPZ universality class [ HH93]. 

growth mechanisms were interesting in their own right and, moreover, might have wide applicability in 
understanding kinetic roughening phenomena observed in Nature. Among the many simulation models 
relevant to our present task can be found: random deposition with surface diffusion [F86,MJ87], 
ballistic deposition [ FV85,MRSB86], different variations of the Eden model [ JB85ab,MJB86,JM87] 
- including various noise reduction schemes [ WK87ab,KW88], RSOS models [ KK89], single-step 
[MRSB86,PRL87] and polynuclear growth [ G84,KrS89]. A complete account can be found in 
the recent book [ FV9lr] and some well-written reviews [ KrS91r,M93r]. These models have one 
thing in common - they are all exceedingly simple to define, yet produce rich and rather different 
geometrically complex structures on microscopic scales. The effort to understand the large length 
scale surface fluctuations has led to an evolving sequence of stochastic partial differential equations. 
We propose to the reader some illustrative examples, stressing in the end the essential and underlying 
universality in their kinetically roughened surfaces. 

2.5.1. On growth and form: Eden clusters, ballistic deposits, and RSOS sur$aces 
Numerical algorithms aim directly at simulating the cluster growth mechanism; although the various 

growth rules do not bear any resemblance at all to the continuous equations highlighted in this paper, 
we will see that if some basic features such as symmetry and locality are respected, the dynamic 
scaling behavior will not depend on many of the microscopic details. Conversely, to establish links 
with the continuum equations on the microscopic level is not easy, see, for example, Sections 3.7 
and 3.8 in this review. In any case, consider the three stochastic growth algorithms delineated below, 
implemented in the so-called “strip geometry” on a square lattice of horizontal width L, with periodic 
boundary conditions imposed in the lateral directions, and of infinite vertical extent. The resulting 
structures are drawn in Fig. 2.2: 

(0 

(ii) 

Eden model. A row of seed particles is placed at the base and a cluster is grown by randomly 
choosing one of the perimeter sites. 
Ballistic deposition. Here, a column i E 1, . . . . L is picked at random, a particle is dropped 
vertically in that column and sticks upon first contact with the evolving deposit. In the code, 
theupdate rule would read: h(i,t+l) =max[h(i- l),h(i)+l,h(i+ l)], where the surface 
position h and space coordinate i assume integer values. After many interations, it produces a 
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Kuramoto-Sivashinski equation

Without noise

originally introduced without noise term to describe 

• reaction-diffusion systems   [Y. Kuramoto, T. Tsuzuki, Progr. Theoret. Phys. , 1977]
• flame front propagation        [G. Sivashinsky,  Acta Astron. , 1977]

shows chaotic dynamics for attractive interactions that is in KPZ universality class
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Without second order derivative
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… not much studied

known to be in the KPZ universality class (Ueno et al. PRE 2005)
 ⇒ exponential decay of spatial coherence
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We find with dimensional analysis/numerics:



Temporal coherence

KPZ scaling: h †
(x, t) (x

0
, t
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characteristic KPZ scaling of the coherence time as ⌧c(k) ⇠ k�3/2

different scaling from Bogoliubov theory ⌧c(k) ⇠ k�2

GGPE simulations: 
KPZ scaling easier to reach for 
weaker interactions

3

the splitting-flip method: the wave function evolves al-
ternatively as ψk(t) → e−iT∆tψk(t) in the Fourier space
and ψ(x, t) → e−iV∆tψ(x, t) in the real space, where
T = !2k2/(2m) and V = g|ψ|2 + i[P0/(1 + |ψ|2/ns)− γ].
The two evolutions are connected by a Fourier transform,
and the noise term is added every time when the real
space wave function ψ(x, t) is updated. The KSE (10)
is numerically simulated with the Euler one time step
method, θ̃(t̃ + ∆t̃) = θ̃(t̃) + ∆θ̃, in which the nonlinear
term is computed using the pseudospectral discretization
approach.19 Since the simulation is performed on Eq. (10)
in a dimensionless form, the real units of phase correla-
tion Eq. (16) are retrieved by employing the rescaling
formula Eq. (9). In both GGPE and KSE cases, we im-
plement the simulations on a one-dimensional system of
128 sites with periodic boundary conditions. To measure
the correlation function of the GGPE under dynamic bal-
ance, we start from the initial configuration with uniform
density and random local phase. After about 105 ∼ 106

iterations with time step ∆t=0.001, the system is stabi-
lized at a steady state.
Then the ensemble averaging of temporal correlation

g(1)(x, t) is performed over about 1000 sequences of sam-
ples of ψ(x, t). Each sequence of time evolution has a
duration of t=1000. For the KSE, we start with a flat dis-
tribution of θ(x, t). We let the phase field evolves freely at
the same step as GGPE up to t=1000, during which the
phase correlation is measured. This process is repeated
about 1000 times to get the ensemble average.

III. TEMPORAL CORRELATION AND
DYNAMIC SCALING

A. Correlation time in Fourier space

The spatial coherence of non-equilibrium condensates
has been explored in an earlier work by us by means of
the GGPE and the KSE,11 where the long distance decay
of the spatial coherence was found to be exponential. It
was found that the nonlinear term in the noisy KSE (8)
can affect the coherence length but it does not change the
nature of the decay. In the present work, we shall con-
centrate on the temporal correlations. In analogy with
the spatial coherence, we expect the effects of the non-
linearity in the phase equation (8) to be more prominent
for weak interactions µ̃ → 0.
As seen in Eq. (6), the Bogoliubov theory claims an ex-

ponential decay for the temporal correlation. We there-
fore introduce a correlation time τc to characterize the
time dependence of correlations, and estimate this time
scale by fitting the temporal correlation function to an
exponential,

g(1)k (t) = e−t/τc(k). (17)

Fig. 1 displays our numerical results for τc as a function
of momentum k in two representative cases, (a) the ‘lin-
ear’ regime with µ=2 and (b) the ‘nonlinear’ regime with

FIG. 1. (Color online) Characteristic momentum-dependence
of correlation time τc in (a) linear regime of µ=2 and (b) non-
linear regime of µ=0. Three typical power-law dependences
of k are plotted by red dashed, black dash-doted and blue
solid lines as guide to eyes. The green squares and red balls
are simulations on GGPE and KSE, respectively, and the blue
hollow circles denote Bogoliubov theory. kc is the bifurcation
momentum, and ∆x = 0.5 the discretisation length in real
space.

µ̃=0. The simulations on GGPE and KSE are plotted by
the green squares and red balls, respectively, which agree
with each other very well in both panels justifying that
the spatial and temporal coherences are indeed domi-
nated by the phase fluctuations. For comparison, the
blue open circles represent the Bogolubov theory predic-
tions from Eq. (6). The red dashed, black dash-dotted,
and blue solid lines indicate, respectively, the 1/k4, 1/k2,
and 1/k3/2 relations in the double logarithmic scale.
According to the Bogoliubov theory Eq. (6), the long

time properties of g(1)k are classified into two categories
depending on the value of k. When k > kc (kc is marked

by black dotted lines in Fig. 1), the profile of g(1)k shows a
time-dependence of e−Γt, which corresponds to a trivial
constant τc = 1/Γ. When k ≤ kc, the long time behavior
turns out to be e−(Γ−ωk)t, and one gets

τc ∼ 1/
[

Γ−
√

Γ2 − ϵk(ϵk + 2µ)
]

. (18)

If µ ̸= 0, in the region k → 0, the leading order terms
of Eq. (18) gives τc ∼ Γ/(ϵkµ) ∼ 1/k2. This behavior
is illustrated in panel (a) by the gathering of three dif-
ferent symbols along the black dash-dotted line for small
momenta, indicating that Bogoliubov theory works well
if the interaction energy µ is sufficiently strong (linear
regime for the phase equation). At the smallest wave
vectors however, a small discrepancy between the Bogoli-
ubov theory and the numerics appears. This is expected,
because the nonlinear KPZ scaling behavior should take
over at large distance and time scales.
When the interaction energy vanishes (µ̃ → 0) devia-

tions from the linear theory become pronounced at much
smaller scales (larger momenta). In Fig. 1, we show
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Eq. (18), giving τc ∼ 2Γ/ϵ2k ∼ 1/k4, by the red dashed
line and blue hollow circles in panel (b). The numerical
simulations on GGPE and KSE reveal a marked devia-
tion from the Bogoliubov theory, immediately below the
bifurcation wave vector kc. Instead of the τc ∼ 1/k4

relation, the simulations show unambiguously a 1/k3/2

dependence, a well-known feature due to the dynamic
scaling behavior of KPZ universality class. In the simu-
lation of GGPE in Fig. 1, the noise strength is fixed at
D=0.01. We have also tested some different values of D.
Except for a shift in τc, we did not find any difference in
the scaling.
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FIG. 2. (Color online) Extraction of correlation time τc by
fitting the temporal correlations in terms of Eq. (17). The
upper panels (a)-(c) show the correlations for three different
values of k when µ=2. The lower ones (d)-(f) are for µ=0.
The black squares and green circles are from GGPE and KSE
simulations, respectively. Numerical fittings to exponential
decays are illustrated by the red dashed and blue solid lines.
The orange dash-dotted lines represent results from Bogoli-
ubov theory as a reference.

In the nonlinear regime, where the Bogoliubov theory
breaks down, it is a priori no longer guaranteed that
the exponential decay (17) remains accurate. In order
to address this concern, we present our raw data of sim-
ulations together with fitting curves in Fig. 2. Here we

show the time evolutions of function ln
[

g(1)k (t)/g(1)k (0)
]

for three different momenta, k = π/32 (the smallest non-
zero k in our simulation), π/8 and π/2. The black squares
and green circles denote the simulation data of GGPE
and KSE, and their fitting results are plotted by the red
dashed and blue solid lines, respectively. One can see in
both linear (upper panels) and nonlinear (lower panels)
regimes, the straight lines fit quite well on the simula-
tion results up to a cut-off point, after which numerical
error spoils the data. Thus we conclude that even in the
nonlinear regime, the temporal correlation decays within
our numerical uncertainty like an exponential, and the
1/k3/2 dependence of τc does characterize the dynamic
coherence of the nonequilibrium quantum fluid.

FIG. 3. (Color online) Time evolution of representative corre-
lation functions in (a) linear regime with µ=2 and (b) nonlin-
ear regime with µ=0. The blue solid lines depict the correla-
tions at short distance, x/∆x=16, while the black dash-dotted
lines present those at long distance, x/∆x=48, both of which
are obtained via GGPE. The corresponding KSE simulations
are plotted by the red squares and green circles, respectively.

B. Scaling function in real space

So far, we have investigated the scaling of the temporal
coherence in momentum space. While experimentally ac-
cessible, it may be hard to make a precise measurement
of the coherence time close to zero momentum, where
the intensity is very high. Alternatively, also coherence
at fixed distance can be studied.
In Fig. 3, we study the time evolution of spatial corre-

lation in (a) linear regime with µ=2, and (b) nonlinear
regime with µ=0. The blue curves (red squares) dis-
play the time-dependence of the correlation for closely
spaced points with x/∆x=16, obtained with the GGPE
(KSE). For comparison, the correlation between two dis-
tant points of x/∆x=48 is shown by the black dash-
dotted curve (green circles) computed with GGPE (KSE)
over the same time range.
As one can see, with elapsing time difference, the tem-

poral correlations at short and long spatial distance tend
to the same asymptote, though they are very different at
equal time. Here one also notices some small difference
between GGPE and KSE results, which we attribute to
density fluctuations.
As discussed in the introduction, the KPZ universality

class is characterized by a distinctive scaling function.
With Eq. (16), we can connect the scaling function f to
the spatial coherence as

f(t/xz) = C(x, t)x−2χ = −2 ln
[

g(1)(x, t)
]

x−2χ. (19)

Fig. 4 plots our numerical results of the shifted scaling
function f(t/xz) − f(0) obtained from numerical simu-
lations over GGPE (upper panels) and KSE (lower pan-
els), respectively. Here we select several separations in
real space x/∆x=16, 32, 48 on the N=128 chain with
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FIG. 4. (Color online) Dynamic scaling behaviors of GGPE
(upper panels) and KSE (lower panels) for different interac-
tion energy µ. Here f(t/xz) is the dynamic scaling function,
and z is the scaling exponent extracted from numerical sim-
ulations (see text). The three different curves in each panel
denote short, intermediate and long distances.

periodic boundary condition. The three curves can be
made to collapse by a proper spatiotemporal rescaling.
Specifically, when µ=2, we find z to be 1.7 for the GGPE
simulation in panel (a), and 1.8 for the KSE data in panel
(c). These values are between the Bogoliubov prediction
(z = 2) and the KPZ theory (z = 1.5). This shows that
for our simulations, the finite size effects are still too large
to evidence the KPZ scaling. On the other hand, when

interactions vanish, µ=0, we find the typical KPZ value
of z=1.5 for both GGPE and KSE. This result proves
that the KPZ physics dominates at all length scales over
the Bogoliubov physics in the absence of interactions. In
finite size non-equilibrium quantum fluids, it is thus eas-
ier to evidence the characteristic KPZ scaling when the
interaction energy is small.

IV. CONCLUSIONS

To summarise, we have shown that the coherence func-
tion of a 1D non-equilibrium quantum fluid is subject to
the KPZ dynamic scaling. The KPZ scaling feature is
a consequence of the nonlinearity inherent in the non-
equilibrium system. It turns out to be a leading effect
in the weak interaction regime, dominating the decay of
phase correlation across space and time. In the nonlinear
regime, consistent numerical results on scaling exponents
have been obtained from the GGPE and KSE. Especially
at weak interaction, the characteristic KPZ scaling be-
havior of 1+1 dimensions is recovered with χ = 1

2 and
z = 3

2 in systems of moderate size. With the increase of
interaction strength, the nonlinear effect is, at intermedi-
ate distances, overtaken by the linear one, thus validating
the Bogoliubov approach.
Our results show that the KPZ universality class is

important to describe the coherence properties of 1D non-
equlibrium quantum fluids. It therefore looks promising
to further investigate the effect of the KPZ physics on
the two-dimensional clean12 and disordered20 systems.
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determine z such that rescaled temporal coherences
at different positions collapse.
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Eq. (18), giving τc ∼ 2Γ/ϵ2k ∼ 1/k4, by the red dashed
line and blue hollow circles in panel (b). The numerical
simulations on GGPE and KSE reveal a marked devia-
tion from the Bogoliubov theory, immediately below the
bifurcation wave vector kc. Instead of the τc ∼ 1/k4

relation, the simulations show unambiguously a 1/k3/2

dependence, a well-known feature due to the dynamic
scaling behavior of KPZ universality class. In the simu-
lation of GGPE in Fig. 1, the noise strength is fixed at
D=0.01. We have also tested some different values of D.
Except for a shift in τc, we did not find any difference in
the scaling.
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FIG. 2. (Color online) Extraction of correlation time τc by
fitting the temporal correlations in terms of Eq. (17). The
upper panels (a)-(c) show the correlations for three different
values of k when µ=2. The lower ones (d)-(f) are for µ=0.
The black squares and green circles are from GGPE and KSE
simulations, respectively. Numerical fittings to exponential
decays are illustrated by the red dashed and blue solid lines.
The orange dash-dotted lines represent results from Bogoli-
ubov theory as a reference.

In the nonlinear regime, where the Bogoliubov theory
breaks down, it is a priori no longer guaranteed that
the exponential decay (17) remains accurate. In order
to address this concern, we present our raw data of sim-
ulations together with fitting curves in Fig. 2. Here we

show the time evolutions of function ln
[

g(1)k (t)/g(1)k (0)
]

for three different momenta, k = π/32 (the smallest non-
zero k in our simulation), π/8 and π/2. The black squares
and green circles denote the simulation data of GGPE
and KSE, and their fitting results are plotted by the red
dashed and blue solid lines, respectively. One can see in
both linear (upper panels) and nonlinear (lower panels)
regimes, the straight lines fit quite well on the simula-
tion results up to a cut-off point, after which numerical
error spoils the data. Thus we conclude that even in the
nonlinear regime, the temporal correlation decays within
our numerical uncertainty like an exponential, and the
1/k3/2 dependence of τc does characterize the dynamic
coherence of the nonequilibrium quantum fluid.

FIG. 3. (Color online) Time evolution of representative corre-
lation functions in (a) linear regime with µ=2 and (b) nonlin-
ear regime with µ=0. The blue solid lines depict the correla-
tions at short distance, x/∆x=16, while the black dash-dotted
lines present those at long distance, x/∆x=48, both of which
are obtained via GGPE. The corresponding KSE simulations
are plotted by the red squares and green circles, respectively.

B. Scaling function in real space

So far, we have investigated the scaling of the temporal
coherence in momentum space. While experimentally ac-
cessible, it may be hard to make a precise measurement
of the coherence time close to zero momentum, where
the intensity is very high. Alternatively, also coherence
at fixed distance can be studied.
In Fig. 3, we study the time evolution of spatial corre-

lation in (a) linear regime with µ=2, and (b) nonlinear
regime with µ=0. The blue curves (red squares) dis-
play the time-dependence of the correlation for closely
spaced points with x/∆x=16, obtained with the GGPE
(KSE). For comparison, the correlation between two dis-
tant points of x/∆x=48 is shown by the black dash-
dotted curve (green circles) computed with GGPE (KSE)
over the same time range.
As one can see, with elapsing time difference, the tem-

poral correlations at short and long spatial distance tend
to the same asymptote, though they are very different at
equal time. Here one also notices some small difference
between GGPE and KSE results, which we attribute to
density fluctuations.
As discussed in the introduction, the KPZ universality

class is characterized by a distinctive scaling function.
With Eq. (16), we can connect the scaling function f to
the spatial coherence as

f(t/xz) = C(x, t)x−2χ = −2 ln
[

g(1)(x, t)
]

x−2χ. (19)

Fig. 4 plots our numerical results of the shifted scaling
function f(t/xz) − f(0) obtained from numerical simu-
lations over GGPE (upper panels) and KSE (lower pan-
els), respectively. Here we select several separations in
real space x/∆x=16, 32, 48 on the N=128 chain with

temporal coherence at fixed points



2D beyond phase fluctuations: BKT physics
4

tion as

g(1)(r) =
h ⇤

s

(r+R, t) 
s

(R, t)i
p

h ⇤
s

(R, t) 
s

(R, t)ih ⇤
s

(r+R, t) 
s

(r+R, t)i
,

(3)
where the averaging h. . . i is taken over both noise realisations
as well as the auxiliary position R, and where t is either a
fixed time after a steady-state is reached, or we take additional
time average in the steady-state [32].

Vortices and densities across the transition

It is particularly revealing to explore the steady-state
profiles, i.e.  

s,p,i

(r, t), of the signal, pump and idler
states. Fig. 1 shows a cut at k

y

= 0 of the OPO spec-
trum, | 

C,k

x

,k

y

=0(!)|2, determined by solving Eq. (2) for
 
X,C

(r, t) to a steady-state and evaluating the Fourier trans-
forms in both space and time. Note, that the logarithmic scale
of this 2D map plot (which we employ to clearly characterise
all three OPO states) makes the emission artificially broad in
energy, while in reality this is sharp (as required by a steady-
state regime), as well as it is very narrow in momentum. The
filtered space profiles  

s,p,i

(r, t) shown in the bottom panels
of Fig. 1 reveal that while the pump state is homogeneous and
free from defects, vortex-antivortex (V-AV) pairs are present
for both signal and idler states. Note, that while at the mean-
field level the sum of the signal and idler phases is locked
to the one of the pump (and thus a V in the signal implies
the presence of an AV at the same position in the idler), the
large fluctuations occurring in the vicinity of the OPO thresh-
old make this coherent phase-locking mechanism only weakly
enforced, resulting in a different number (and different core
locations) of V-AV pairs in the signal and idler states. Because
the density of photons in the idler state is much lower than the
one at the signal (see, e.g., the photonic momentum distri-
bution plotted as a solid black line inside the upper panel of
Fig. 1), while both states experience the same noise strength,
the number of V-AV pairs in the filtered photonic signal profile
is much lower than the number of pairs in the filtered photonic
idler profile. Phase locking between signal and idler is recov-
ered instead for pump powers well above the OPO threshold,
where long-range coherence over the entire pumping region is
re-established.

The proliferation of vortices below the OPO transition, fol-
lowed by a sharp decrease in their density and their binding
into close vortex-antivortex pairs is illustrated in Fig. 2. Here,
we plot the 2D maps of the phase for the single noise realisa-
tion of the filtered OPO signal  

s

(r, t) (photonic component)
for increasing values of the pump power f

p

in a narrow re-
gion close to the mean-field OPO threshold f th

p

; the position
of the generated vortices (antivortices) are marked with blue
(black) dots. While at lower pump powers there is a dense
“plasma” of Vs and AVs, the number of V-AV pairs decrease
with increasing pump powers till eventually disappearing al-
together (not shown). We do also record a net decrease in

FIG. 2: Binding-unbinding transition and vortex-antivortex pro-
liferation across the OPO threshold. Phase (colour map) of the
filtered OPO signal  

s

(r, t) and position of vortices (black dots)
and antivortices (red dots) for increasing values of the pump power,
in a narrow region close to the mean-field OPO threshold f

th
p

: (a)
f

p

= 1.00287f th
p

, (b) f
p

= 1.01648f th
p

, (c) f
p

= 1.01719f th
p

, and
(d) f

p

= 1.02436f th
p

. We observe a dramatic decrease of both the
number of Vs and AVs, as well as the typical distance between pairs,
as a function of the increasing pump power. The filtered profiles
are plotted at a late stage of the dynamics, at which a steady-state is
reached.

the distance between nearest neighbouring vortices with op-
posite winding number with respect to that between vortices
with the same winding number. In order to quantify the vor-
tex binding across the OPO transition, we measure, for each
detected vortex, the distance to its nearest vortex, rV-V and to
its nearest antivortex rV-AV; and similarly, for each detected
antivortex, we measure rAV-AV and rAV-V. We then consider
the symmetrised ratio b = rV-V+rAV-AV

rV-AV+rAV-V
. In order to extract a

noise realisation independent quantity, an average over many
different realisations, as well as over individual vortex posi-
tions, is performed to obtain hbi; this quantity hbi ! 1 for an
unbound vortex plasma, while hbi ! 0 when vortices form
tightly bound pairs. We observe a dramatic drop in hbi (green
squares in Fig. 3) when increasing the pump power across the
OPO threshold, indicating that vortices and antivortices are
indeed binding, as it is expected for a BKT transition.

By evaluating other relevant noise averaged observable
quantities, we are able to construct a phase diagram for
the OPO transition in Fig. 3 and link it with the proper-
ties of the BKT transition. We evaluate the averaged signal
photonic density at some time t in the steady-state, n

s

=
R

drh| 
s

(r, t)|2i/V , where V = (Na)2 is the system area

Extensive numerical simulations have been performed in the OPO case
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FIG. 3: The phase diagram and the BKT transition. Inset: Mean-
field photonic OPO densities for pump (black) n

p

and signal (orange)
n

s

states as a function of increasing pump power f
p

rescaled by the
threshold value f

th
p

(vertical black dashed line). The black square at
f

p

' f

th
p

indicates the tiny pump strength interval close to mean-field
threshold analysed in the main panel. Main panel: We plot with (or-
ange) squares the same mean-field signal density n

s

as in the inset.
All other data are noise averaged properties from stochastic simula-
tions as a function of the pump strength. The noise averaged signal
density n

s

is plotted with (blue) dots; the average vortex number in
the signal rescaled by its average maximum value, Nmax = 222.8
with (red) diamonds; the noise averaged and symmetrised distance
ratio hbi between nearest neighbouring V-V and AV-AV over V-AV
pairs with (green) empty squares. The shaded region indicates the
pump region for the BKT transition.

and h. . . i indicates the noise average for the stochastic dy-
namics (blue dots). We also show the steady state signal den-
sity in the mean field (orange squares). The corresponding
mean-field densities for both signal (orange line) and pump
(black line) are presented for comparison in the inset of Fig. 3.
At mean-field level, both signal and idler (not shown) sud-
denly switch on at the OPO threshold pump power, f

p

= f th
p

and both states are macroscopically occupied above thresh-
old. The effect of fluctuations is to smoothen the sharp mean-
field transition, as clearly shown by the (blue) dots in the main
panel of Fig. 3, where we plot the noise average signal den-
sity n

s

. This is because, even below the mean-field threshold,
incoherent fluctuations weakly populate the signal. Note also
that, even though somewhat smoothened, we can still appre-
ciate a kink in the n

s

density, but at higher values of the pump
power compared to the mean-field threshold f th

p

. We identify
this as the novel BKT transition for our out-of-equilibrium
system, as discussed more in detail below. This is further con-
firmed by a sudden decrease of the averaged number of vor-
tices in the signal (red diamonds), and of the averaged distance
between nearest neighbouring vortices of opposite winding
number, hbi (green squares), as a function of the pump power
concomitant with the observed kink for n

s

. These results sug-
gest that the system undergoes an OPO transition which, by
including fluctuations above mean-field, is indeed analogous
to the equilibrium BKT transition. Both vortices and antivor-
tices proliferate below some threshold and, above, they bind

FIG. 4: Algebraic and exponential decay of the first order cor-
relation function across the BKT transition. Main panel: Long-
range spatial dependence of g

(1)(r) for different pump powers
f

p

/f

th
p

close to the mean-field pump threshold (the symbols are the
same ones as in the inset and correspond to the same values of
f

p

/f

th
p

). Thick solid (thick dashed) lines are power-law (exponen-
tial) fitting, from which values of the exponent ↵ are derived. The
f

p

/f

th
p

= 1.0129 case (orange squares) is a marginal case where
both algebraic and exponential fits apply almost equally well, sig-
nalling the BKT transition region. Inset: Power-law algebraic decay
exponent ↵ for different pump powers f

p

/f

th
p

; error bars are standard
deviations of the time-average.

to eventually disappear altogether. As indicated by the black
square in the inset of Fig. 3, the region for such a crossover is
indeed narrow in the pump strength.

First-order spatial correlations

For systems in thermal equilibrium, the BKT transition is
associated with the onset of quasi-off-diagonal long-range or-
der, i.e., with the algebraic decay of the first-order correla-
tion function in the ordered phase, where vortices are bound,
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der, i.e., with the algebraic decay of the first-order correla-
tion function in the ordered phase, where vortices are bound,
and exponential decay in the disordered phase, where free vor-
tices do proliferate. In order to investigate whether the same
physics applies to our out-of-equilibrium open-dissipative po-
lariton system, we evaluate the signal first-order correlation
function g(1)(r) according to the prescription of Eq. (3) and
characterise its long-range behaviour in Fig. 4. We observe
the ordering transition as a crossover in the long-distance be-
haviour between an exponential decay in the disordered phase,
g(1)(r) ⇠ e�r/⇠, and an algebraic decay in the quasi-ordered
phase, g(1)(r) ⇠ (r/r0)�↵. We therefore fit the tail of the cal-
culated correlation function to both of these functional forms
and observe that, at the onset of vortex binding-unbinding and

Dagvadorj et al. Phys. Rev. X 5, 041028 (2015).



2D beyond phase fluctuations: BKT physics
4

tion as

g(1)(r) =
h ⇤

s

(r+R, t) 
s

(R, t)i
p

h ⇤
s

(R, t) 
s

(R, t)ih ⇤
s

(r+R, t) 
s

(r+R, t)i
,

(3)
where the averaging h. . . i is taken over both noise realisations
as well as the auxiliary position R, and where t is either a
fixed time after a steady-state is reached, or we take additional
time average in the steady-state [32].

Vortices and densities across the transition

It is particularly revealing to explore the steady-state
profiles, i.e.  

s,p,i

(r, t), of the signal, pump and idler
states. Fig. 1 shows a cut at k

y

= 0 of the OPO spec-
trum, | 

C,k

x

,k

y

=0(!)|2, determined by solving Eq. (2) for
 
X,C

(r, t) to a steady-state and evaluating the Fourier trans-
forms in both space and time. Note, that the logarithmic scale
of this 2D map plot (which we employ to clearly characterise
all three OPO states) makes the emission artificially broad in
energy, while in reality this is sharp (as required by a steady-
state regime), as well as it is very narrow in momentum. The
filtered space profiles  

s,p,i

(r, t) shown in the bottom panels
of Fig. 1 reveal that while the pump state is homogeneous and
free from defects, vortex-antivortex (V-AV) pairs are present
for both signal and idler states. Note, that while at the mean-
field level the sum of the signal and idler phases is locked
to the one of the pump (and thus a V in the signal implies
the presence of an AV at the same position in the idler), the
large fluctuations occurring in the vicinity of the OPO thresh-
old make this coherent phase-locking mechanism only weakly
enforced, resulting in a different number (and different core
locations) of V-AV pairs in the signal and idler states. Because
the density of photons in the idler state is much lower than the
one at the signal (see, e.g., the photonic momentum distri-
bution plotted as a solid black line inside the upper panel of
Fig. 1), while both states experience the same noise strength,
the number of V-AV pairs in the filtered photonic signal profile
is much lower than the number of pairs in the filtered photonic
idler profile. Phase locking between signal and idler is recov-
ered instead for pump powers well above the OPO threshold,
where long-range coherence over the entire pumping region is
re-established.

The proliferation of vortices below the OPO transition, fol-
lowed by a sharp decrease in their density and their binding
into close vortex-antivortex pairs is illustrated in Fig. 2. Here,
we plot the 2D maps of the phase for the single noise realisa-
tion of the filtered OPO signal  

s

(r, t) (photonic component)
for increasing values of the pump power f

p

in a narrow re-
gion close to the mean-field OPO threshold f th

p

; the position
of the generated vortices (antivortices) are marked with blue
(black) dots. While at lower pump powers there is a dense
“plasma” of Vs and AVs, the number of V-AV pairs decrease
with increasing pump powers till eventually disappearing al-
together (not shown). We do also record a net decrease in

FIG. 2: Binding-unbinding transition and vortex-antivortex pro-
liferation across the OPO threshold. Phase (colour map) of the
filtered OPO signal  

s

(r, t) and position of vortices (black dots)
and antivortices (red dots) for increasing values of the pump power,
in a narrow region close to the mean-field OPO threshold f

th
p

: (a)
f

p

= 1.00287f th
p

, (b) f
p

= 1.01648f th
p

, (c) f
p

= 1.01719f th
p

, and
(d) f

p

= 1.02436f th
p

. We observe a dramatic decrease of both the
number of Vs and AVs, as well as the typical distance between pairs,
as a function of the increasing pump power. The filtered profiles
are plotted at a late stage of the dynamics, at which a steady-state is
reached.

the distance between nearest neighbouring vortices with op-
posite winding number with respect to that between vortices
with the same winding number. In order to quantify the vor-
tex binding across the OPO transition, we measure, for each
detected vortex, the distance to its nearest vortex, rV-V and to
its nearest antivortex rV-AV; and similarly, for each detected
antivortex, we measure rAV-AV and rAV-V. We then consider
the symmetrised ratio b = rV-V+rAV-AV

rV-AV+rAV-V
. In order to extract a

noise realisation independent quantity, an average over many
different realisations, as well as over individual vortex posi-
tions, is performed to obtain hbi; this quantity hbi ! 1 for an
unbound vortex plasma, while hbi ! 0 when vortices form
tightly bound pairs. We observe a dramatic drop in hbi (green
squares in Fig. 3) when increasing the pump power across the
OPO threshold, indicating that vortices and antivortices are
indeed binding, as it is expected for a BKT transition.

By evaluating other relevant noise averaged observable
quantities, we are able to construct a phase diagram for
the OPO transition in Fig. 3 and link it with the proper-
ties of the BKT transition. We evaluate the averaged signal
photonic density at some time t in the steady-state, n

s

=
R

drh| 
s

(r, t)|2i/V , where V = (Na)2 is the system area

Extensive numerical simulations have been performed in the OPO case
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For systems in thermal equilibrium, the BKT transition is
associated with the onset of quasi-off-diagonal long-range or-
der, i.e., with the algebraic decay of the first-order correla-
tion function in the ordered phase, where vortices are bound,
and exponential decay in the disordered phase, where free vor-
tices do proliferate. In order to investigate whether the same
physics applies to our out-of-equilibrium open-dissipative po-
lariton system, we evaluate the signal first-order correlation
function g(1)(r) according to the prescription of Eq. (3) and
characterise its long-range behaviour in Fig. 4. We observe
the ordering transition as a crossover in the long-distance be-
haviour between an exponential decay in the disordered phase,
g(1)(r) ⇠ e�r/⇠, and an algebraic decay in the quasi-ordered
phase, g(1)(r) ⇠ (r/r0)�↵. We therefore fit the tail of the cal-
culated correlation function to both of these functional forms
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FIG. 1. The shift in period, AP, and dissipation Q '
are shown as a function of temperature at the super-
Quid transition.
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porous Vycor glass, ' exhibit any excess dissipa-
tion associated with the superfluid transition.
The peak in dissipation in the present experiment
points to a fundamental difference between onset
phenomena in two- and three-dimensional super-
fluids.
The behavior in the two-dimensional fluid as

seen in our experiment can be understood in
terms of the dynamic theory of Ambegaokar,
Halperin, Nelson, and Siggia (AHNS). ' In their
theory, as well as in the calculation of Huberman,
Myerson, and Doniach, ' the dissipation is asso-
ciated with the diffusive motion of two-dimension-
al vortices driven by the oscillating superf low
The dynamic theory given by AHNS (Ref. 6) is

directly applicable to the data in the high-fre-
quency regime of the present experiment.
In these experiments we have varied the oscilla-

tor amplitude by a factor greater than 100. At
low amplitudes, where the superfluid velocity is
less than 10 ' cm/sec, we find that the period
and Q ' are amplitude independent, while at larg-
er velocities nonlinear effects set in, the transi-
tion region and dissipation peak are broadened.
In Fig. 2, we display, on an expanded tempera-

ture scale, a set of low-amplitude data obtained
in the neighborhood of the transition. The solid
curves drawn through the data represent a fit'
of the AHNS theory to these data. The gross fea-
tures of the curves are controlled by the choice
for the transition temperature, T„and the value
for the jump in the superfluid mass per unit area,

FIG. 2. The reduced period shift, 26P/P, and dis-
sipation Q are shown for a superQuid transition tem-
perature of 1.215 K. The solid lines are fits using the
dynamic theory of AHNS (Ref. 6) and the dashed curve
is the result of the static theory.

p, (T, ), at T, . These quantities appear in the
expression for the superfluid density near the
transition given by Kosterlitz and Thouless for
the static film:

The quantity, b, in Eq. (1) determines the strength
of the square-root cusp in the static theory. The
curves marked dynamic theory in Fig. 2 are
based on the linear-response calculation described
in Ref. 6. In brief, the reduced shift in period,
2~/P, and the superfluid dissipation Q ' are
related to a frequency-dependent dielectric con-
stant & by

2aP/P=(A/M)p, (T, ) Re(e ')
and

The real part of e is taken as due to bound pairs
according to Eq. (9a) of AHNS. It is calculated
by a numerical integration of the Kosterlitz re-
cursion relations. 4 For the imaginary part of e
contributions due to bound pairs, free vortices,
and a constant background (to account for the dis-
sipation remaining well below the transition) are
added together. In addition to the three param-
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Equilibrium BKT: 
universal jump in the superfluid 
density at the transition
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FIG. 9. (Color online) Superfluid fraction for three values of disorder: (a) ! = 12.8 Ec, (b) ! = 0.8 Ec, (c) ! = 0.016 Ec. The average
superfluid fractions and their error bars are shown as a function of the interaction energy. The shaded zones mark the phase transition computed
through the degree of coherence.

a system with twisted boundary conditions splitting it into N
bins as

E" =
N∑

i

ρSi(θi − θi−1)2, (15)

where ρSi is the superfluid fraction of the i th bin and θi ,θi−1 are
the phases at the boundary of the i th cell. With the constraint

∑

i

θi = ", (16)

it can be shown that minimizing the energy (15) corresponds
to taking the harmonic average of the superfluid fractions, i.e.,

ρS =
(

∑

i

1
ρSi

)−1

. (17)

For this reason each point shown in Fig. 9 is computed as a
harmonic mean of the superfluid fraction of each realization
and the error bars are computed accordingly. The shaded zone
shows the phase boundary predicted by studying the long-
range decay of the one body density matrix.

In Fig. 9 it is evident that the boundary computed by means
of the correlation length coincides with the prediction based
on superfluidity. In fact, the zero value for the superfluid
fraction is consistent with the error bars of all the cases
belonging to the insulator phase, whereas the superfluid points
acquire a finite ρS . It is worth noticing that the average
procedure is most demanding when close to the boundary and
is reflected in larger error bars in the proximity of the phase
transition.

VII. PHASE DIAGRAM

With the methods explained so far we can characterize the
phase of the Bose gas. We are able to draw the mean field
phase diagram of the 1D Bose gas at zero temperature as a
function of disorder and interaction energies.

We presented an earlier version of this phase diagram in
Ref. [15]. In Fig. 10 we show an extended phase diagram that
includes the TF regime. It clearly shows two different trends
depending on the ratio between the characteristic energies at
the transition and Ec. These regimes can be identified by
the ratio κ = U/Ec; in fact the limit κ ≪ 1 represents the

WN limit, where the healing length is much longer than the
disorder correlation length. The opposite case κ ≫ 1 marks
the TF regime. The numerical results give two power-law
dependencies of the boundary in these limiting cases !/Ec =
C(U/Ec)γ , with γ equal to 3/4 and 1, respectively. The
lower part of the phase diagram represents the WN limit: in
this regime a single energy scale characterizes the disordered
potential [27] (see the appendix)

E0 = !

(
!

Ec

)1/3

. (18)

Thus, assuming that at the transition the interaction energy is
proportional to E0, we directly obtain

U

Ec

= C1

(
!

Ec

)4/3

, (19)

that correctly reproduces the power-law found numerically.
In the opposite regime, i.e., the TF regime µ ≫ Ec, the
scale of the potential is much larger than the typical length
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FIG. 10. (Color online) Sketch of the phase diagram of the 1D
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Bose gas in disorder potential:
mean field version of superfluid-
Bose glass phase transition
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(only the superfluid part responds to a small phase twist)

can also be used out of equilibrium:
Janot et al. 2013

A. Janot, T. Hyart, P. R. Eastham, and B. Rosenow, Phys. Rev. Lett. 111, 230403 (2013). 



Normal fraction

Twisted boundary condition is equivalent to vector potential
or a slow rotation of the system

For vanishing rotation speed, the superfluid part cannot move because of phase 
quantisation (Hess-Fairbank effect)

We compute the current of a rotating 
cylindrical shell and define the normal fraction as

The kinetic energy becomes

A = (✓/L)e
x

(�ir�Ae
x

)2

f
n

=
hj

x

i
hniA

A. J. Leggett, Rev. Mod. Phys. 71, 318 (1999).

In the following, I will consider the simplest model of a
weakly interacting dilute Bose gas:

H ¼
X

k

!kc
y
kc k þ

X

k;k0;q

U

2
c y

kþqc
y
k0#qc k0c k; (2)

where !k ¼ k2=2m. In addition, one must include
pump and decay processes such that the bare inverse

retarded Green’s function ½Dð0ÞR
k '#1 ¼ !# !k þ i"#

ipð!Þ where the pump has the form pð!Þ ¼ ## $! and
" describes decay [14]. This form of pumping is motivated
by recent works by Wouters and Carusotto [8] (as well
as related models [15]), and simplifies the calculation of
%ij compared to models with density-dependent pump
processes. When condensed, such a model has the

diffusive spectrum &ðkÞ ¼ #i'þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 # '2

p
with ' ¼

$(=ð1þ $2Þ, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(=½mð1þ $2Þ'

p
. Thus, finding a non-

zero superfluid density in such a model addresses how the
diffusive spectrum affects superfluidity.

To correctly find the superfluid response function [16]
requires vertex corrections in the response function. In
equilibrium, this can be avoided by using sum rules that
result from conservation of density; however, with finite
particle lifetimes, this is not necessarily a priori justified. I
will postpone until later the discussion of how the vertex
corrections are to be determined and next summarize the
physical reason that a superfluid density can survive.

Figure 1 illustrates the classes of Feynman diagram
(including vertex corrections) that result at one-loop order.
The first five diagrams contribute to the superfluid density,
while the last gives the normal density. This can be seen by
noting that the first five diagrams all have the current vertex
scatter a particle out of the condensate, and thus involve a
factor #iðqÞ / qi; hence, they all contribute to %ij / qiqj.
In order that the superfluid density does not vanish, it is
crucial that the fluctuation propagatorDR

q ð! ¼ 0Þ that also
appears in these five diagrams behave as 1=q2 at q ! 0 so
that overall %ij / qiqj=q

2 remains finite. The existence of
superfluid density therefore depends on how the denomi-
nator of the Green’s function behaves.

In thermal equilibrium, the Green’s function behaves as
DR

q ð!Þ / ½ð!þ i0Þ2 # c2q2'#1 and so the correct scaling
of DR

q ð! ¼ 0Þ is dependent on having a linear spectrum,

hence the relation of the Landau critical velocity and
superfluid density. However, despite the changed spectrum
of the open dissipative system, one has DR

q ð!Þ / ½!2 þ
2i'!# c2q2'#1 and so the Green’s function at! ¼ 0 still
scales as DR

q / 1=q2, yielding a nonvanishing superfluid
density. Such behavior of the Green’s function has also
been seen to exist in several other models of nonequilib-
rium polariton condensates [5,6]. The fact that this struc-
ture of the Green’s function leads to a superfluid density,
despite the modified spectrum, is the first main result of
this Letter.
A second result is the effect of finite particle lifetime on

the normal density. In an equilibrium single component
system, the normal density vanishes at zero temperature
[1]. The normal density of the nonequilibrium system can
be straightforwardly calculated since, just as in the thermal
equilibrium case, there are no vertex corrections at one-
loop order [16], so one finds (in 2D):

)n

m
¼ #

ZZ d!k
2*

d!

2*
!k

i

4
Tr½'3D

K
k'3ðDR

k þDA
k Þ'; (3)

where the Green’s functions and Pauli matrices 'i are
written in Nambu space, i.e., DR

k ðt; t0Þ ¼ #i+ðt# t0Þ(
h½!kðtÞ;!y

k ðt0Þ'i;!y
k ¼ ðc y

k ; c#kÞ. Even for a thermal-
ized case, using the equilibrium fluctuation dissipation
theorem, DK

k ð!Þ ¼ ð2nBð!Þ þ 1Þ½DR
k ð!Þ #DA

k ð!Þ', one
finds that the presence of pump and decay terms affect
the normal density. As shown in Fig. 2, the normal density
does not vanish at zero temperature.
Having shown that superfluid density need not vanish in

a dissipative condensate, but is reduced by finite lifetime,
one may then ask how the superfluid and normal densities
could be measured in such a system. As an illustration, the
following suggests a method that uses the polariton
polarization degree of freedom [17] in order to apply ideas
that have only recently been proposed for how one might
measure of superfluid density in cold atom systems
[18,19]. A number of alternative methods likely also

FIG. 1. Types of Feynman diagram required for the response
function to one-loop order. Straight lines indicate noncondensate
excitations. Filled symbols involve the condensate, arising from
either interactions (circles) or coupling to currents (squares).
Wavy lines indicate source fields coupling to the current vertices.
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Numerical results

2

In general, the pumping intensity P is coordinate de-
pendent and can be represented as P (r) = P0p(r), with
P0 = maxP (r). Assuming that the interaction strength
is positive, g > 0, it is convenient to rewrite Eq. (4)
in a dimensionless form, by expressing the particle den-
sity | |2 in units of n0 ⌘ n

s

(P0/� � 1), time in units of
~/(gn0), and length in units of ~/

p
2mgn0:

i

@ 

@t

=


�r2 + | |2 + V0v

+ic

1� | |2 + (1 + ⌫

�1)(p� 1)

1 + ⌫| |2

�
 . (5)

Equation (5) contains three dimensionless scalar param-
eters: V0 = max |V (r)|/gn0, c = �/(2gn

s

) and ⌫ =
n0/ns

. The dimensionless functions p(r) and v(r) =
V (r)/(V0gn0) describe the spatial distributions of the
pumping intensity and static potential, respectively.

Our numerical simulations are performed for a region
of sizes L

x

⇥ L

y

with periodic boundary conditions in
the x direction and the Neumann boundary conditions
at y = 0, L

y

. A uniform grid with N

x

⇥ N

y

nodes
is used. A vector potential, chosen as A = (A

x

, 0, 0)
with constant A

x

, is introduced by replacing @/@x with
@/@x� iA

x

in Eq. (5). For electrically charged particles,
our configuration would correspond to a 2D cylindrical
shell in an axially symmetric magnetic field parallel to
the cylinder axis. For this configuration and the used
units, equation (1) simplifies to f

n

= hj
x

(A
x

)i/(nA
x

)
with n = h| |2i. We should keep in mind, however, that
in the case of an inhomogeneous static potential and/or
pumping intensity, described by the functions v(r) and
p(r), respectively, the average current hj

x

i can be nonzero
even at A = 0. A natural generalization of the above ex-
pression for f

n

to this case seems to be

f

n

=
hj

x

(A
x

)i � hj
x

(0)i
nA

x

, (6)

where the current density in the units used is given by
the expression

j = Im [ ⇤r ] . (7)

III. RANDOM POTENTIALS

Irregular potential landscapes are highly relevant for
experimental realisations of polariton condensation be-
cause of growth imperfections in the semiconductor het-
erostructures. At equilibrium, the interplay between
Bose-Einstein condensation and disorder gives rise to rich
physics, with a zero temperature superfluid to Bose-glass
quantum phase transition23.

We start with the case of a uniform pumping intensity
(p(r) = 1) and a static potential, described by a ran-
dom distribution v(r). Two examples of the used random
distributions, v

A

(x, y) and v

B

(x, y), with the correlation
length ⇠

v

= 5 and 3, respectively, are shown in Figs. 1a

a

c

b
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Figure 1. Distributions v
A

(x, y) (panel a) and v

B

(x, y) (panel
b) for two random potentials with the correlation length ⇠

v

=
5 and 3, respectively. (c) f

s

and f

n

, calculated for v = v

A

,
L

x

= L

y

= 64, N
x

= N

y

= 32, A
x

= 0.1 and for v = v

B

,
L

x

= L

y

= 64, N
x

= N

y

= 64, A
x

= 0.03, as a function of V0.
Inset: f

s

and f

n

, calculated for v = v

A

, L
x

= L

y

= 64, N
x

=
N

y

= 32, V0 = 0.24, as a function of A
x

. The calculations are
performed for ⌫ = 1, c = 1, p(r) = 1.

and 1b. In Fig. 1c we plot the quantities f
s

and f

n

, corre-
sponding to these potential distributions, as a function of
the strength V0 of the potential. In a qualitative agree-
ment with the results of12, for both random potentials
the function f

s

decreases with V0 and falls to zero at a
su�ciently strong potential. At the same time, in the
whole range of V0 under consideration, the calculated f

n

remains close to zero or even becomes negative at large
V0, so that the expected “sum rule” f

s

+ f

n

= 1 is ob-
viously violated. At first sight, this violation could be
related exclusively to the calculated f

n

(e.g., to lack of
physical meaning of expression (6) or a lack of numerical
accuracy in the corresponding estimation). However, a
deeper analysis shows that the problem actually has a
more general character. Indeed, from the inset to Fig. 1c
one can see not only a pronounced asymmetry of f

n

(A
x

),
which further illustrates inconsistencies in treating the
found f

n

as the normal fraction of the condensate, but
also the presence of a clear discontinuity of f

s

(A
x

) at
|A

x

| ! 0. The latter allows us to put under question
also the possibility to interpret the calculated f

s

as the
superfluid sti↵ness. In other words, in the presence of

Disorder

cf. A. Janot, T. Hyart, P. R. Eastham, and B. Rosenow, Phys. Rev. Lett. 111, 230403 (2013). 
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, corre-
sponding to these potential distributions, as a function of
the strength V0 of the potential. In a qualitative agree-
ment with the results of12, for both random potentials
the function f

s

decreases with V0 and falls to zero at a
su�ciently strong potential. At the same time, in the
whole range of V0 under consideration, the calculated f
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remains close to zero or even becomes negative at large
V0, so that the expected “sum rule” f
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= 1 is ob-
viously violated. At first sight, this violation could be
related exclusively to the calculated f

n

(e.g., to lack of
physical meaning of expression (6) or a lack of numerical
accuracy in the corresponding estimation). However, a
deeper analysis shows that the problem actually has a
more general character. Indeed, from the inset to Fig. 1c
one can see not only a pronounced asymmetry of f

n

(A
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),
which further illustrates inconsistencies in treating the
found f

n

as the normal fraction of the condensate, but
also the presence of a clear discontinuity of f

s

(A
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) at
|A

x

| ! 0. The latter allows us to put under question
also the possibility to interpret the calculated f

s

as the
superfluid sti↵ness. In other words, in the presence of

Disorder

3

a random potential, neither Eq. (3) nor Eq. (6) seem to
provide correct estimates for the superfluid and normal
fractions of the condensate described by Eq. (5). This
fact can be attributed to the existence of non-negligible
in-plane currents in the condensates under consideration,
even at A = 0. Below we will illustrate the above state-
ment by few simple examples with regular potentials.

IV. REGULAR POTENTIALS

First, let us consider a structure with a partial cut in
the direction perpendicular to the vector potential e

x

A

x

.
The cut is introduced through the additional condition
 |

x=L

x

/2,yLcut
= 0. An example of the density and cur-

rent distributions in a system with such a cut, as given
in Figs. 2a and 2b, respectively, corresponds to V0 = 0,
p = 1, c = 1 and ⌫ = 2. At those parameter values
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Figure 2. Density | | (panel a) and current j

x

(panel b)
distributions, calculated for a system with L

x

= L

y

= 64,
N

x

= N

y

= 32, Lcut = 0.4L
y

, V0 = 0, p = 1 and c = 1 at
⌫ = 2, A

x

= 0. (c) f
s

and f

n

, calculated for the same system
at A

x

= 0.05, as a function of ⌫.

the contribution of the pumping-loss term to gGPE is
relatively large [see Eq. (5)] leading to the appearance
of rather strong currents on both sides of the cut (see
Fig. 2b). The corresponding values of f

s

and f

n

as well
as their sum are significantly smaller than one (see Fig. 2c
for ⌫  2). With increasing ⌫, the role of the pumping-
loss term is suppressed, equation (5) approaches the stan-
dard Gross-Pitaevskii equation, and the quantities f

s

and

f

n

gradually restore their physical meaning, so that the
sum f

s

+ f

n

tends to reach 1 at ⌫ ⇠ 10.
In Fig. 3 we show f

s

(V0) and f

s

(V0) calculated for a
system, where the aforementioned cut is replaced with a
potential well V0v(x), uniform in the y direction (see the
inset to Fig. 3). Figure 3 corresponds to a relatively large

Figure 3. f
s

and f

n

as a function of V0 for L
x

= 26, N
x

= 128,
c = 3, ⌫ = 2, p = 1, A

x

= 0.04. Inset: shape v(x) of the static
potential. maybe show also the polariton density in the inset

value of the parameter c (c = 3). In this case, the be-
haviour of f

n

(V0) closely resembles that in the presence of
a random static potential (Fig. 1c). The quantity f

s

(V0),
shown in Fig. 3, first manifests a decrease, qualitatively
similar to that in Fig. 1c. At larger V0, this decrease is
overridden oscillations of f

s

(V0). Here, the definition (1)
clearly loses its physical meaning of normal fraction.
The equality f

s

+ f

n

= 1 is seen to be satisfied only at
V0 ! 0. Like in our previous example, when suppress-
ing the pumping-loss term (in the present case this is
realised by decreasing the parameter c) so that the sys-
tem approaches an equilibrium regime, the behaviour of
f

s

(V0) and f

n

(V0) becomes more reasonable (see Fig. 4).
In particular, as seen from the inset to Fig. 4, the range
of potential strengths V0, where the condition f

s

+f

n

= 1
is obeyed, increases clearly with decreasing c, so that at
c = 0.03 this range includes V0 ⇠ 1.
In our last example we consider a system where

a strong asymmetry is induced by an inhomogeneous
pumping with the intensity maximum shifted with re-
spect to the extrema of the potential V0v(x) (see Fig. 5a).
The system is uniform in the y direction. As displayed
in Fig. 5b, the combined e↵ect of the potential barrier
and inhomogeneous pumping leads to a very non-uniform
density distribution with strong currents, mainly in the
positive x direction. In Fig. 5c, at relatively small V0, rea-
sonable, nearly zero values of f

s

are accompanied by a
counterintuitive decrease of f

n

with increasing the height
V0 of the potential barrier. At larger V0, both f

s

(V0) and
f

n

(V0) demonstrate some oscillatory behaviour, which
can hardly have any physical meaning. One can also
notice that the condition f

s

+ f

n

= 1 is not fully sat-

Regular cut

toward equilibrium
⌫

cf. A. Janot, T. Hyart, P. R. Eastham, and B. Rosenow, Phys. Rev. Lett. 111, 230403 (2013). 



Potential dip
3

a random potential, neither Eq. (3) nor Eq. (6) seem to
provide correct estimates for the superfluid and normal
fractions of the condensate described by Eq. (5). This
fact can be attributed to the existence of non-negligible
in-plane currents in the condensates under consideration,
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Nonequilibrium strongly affects the 
reaction of a condensate to (weak) 
gauge fields.

Our interpretation: due to the 
currents in the stationary state 
without gauge field



Conclusions

• Nonequilibrium condensation invites us to revisit 
the phyiscs of BEC/superfluids 

• Coherence properties determined by KPZ 
nonequilibrium physics 

• Response to Gauge field very different from 
equilibrium GPE (→ implications for BKT?)
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Resonant excitation experiments
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scattering on defect suppressed
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quantum hydrodynamics: 
soliton emission in wake of defect

Amo et al. Science 2011

no pump at soliton location
(phase freedom)



Parametric oscillation experiments

Spatial structure and stability of the macroscopically occupied polariton state
in the microcavity optical parametric oscillator
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Transverse spatial images of the signal generated in semiconductor microcavities under conditions of reso-
nant parametric scattering are obtained. When the system is pumped significantly above the threshold, the
signal image is found to be highly structured, consisting of a set of localized bright spots. By comparison with
a numerical model, it is shown that the structure arises from the blueshift generated by the nonlinear polariton-
polariton interaction which drives the microcavity optical parametric oscillator, in combination with partially
ordered spatial fluctuations in the cavity mode energy. An important outcome is that the form and stability of
the signal is strongly influenced by the local cavity disorder.

DOI: 10.1103/PhysRevB.73.241308 PACS number!s": 42.55.Sa, 42.65.Yj, 42.65.Lm, 78.90.!t

Polaritons are quasiparticles arising from the strong inter-
action between light and optically active excitations of a me-
dium. The light confinement in semiconductor microcavities
permits exciton polaritons to be observed and manipulated.
New dispersion curves are formed exhibiting very light
masses and properties such as bosonic stimulation.1 Strong
nonlinear emission from the bottom of the polariton disper-
sion is observed under conditions of resonant excitation of
the lower polariton branch.2–4 This arises from optical para-
metric oscillator !OPO" processes in which two polaritons in
the pump state scatter into signal and idler states in a process
which conserves energy and momentum !Fig. 1".5–8 The scat-
tering process leads to a macroscopic occupation of the sig-
nal !and idler".

In most of the experimental studies to date, the spatial
structure of the signal and idler states has not been investi-
gated, with only quantities such as total power,2–4 average
polarization,9 or far field !k-space" maps10,11 reported. Near
field images of the reflected pump beam are presented in
Refs. 12 and 13. Spatial patterning in the case of nonresonant
excitation has also been observed.14,15 Similarly, in most the-
oretical treatments, it has been assumed that pump, signal,
and idler modes are all plane waves. In reality, this is not the
case, because the excitation spot must have finite size that
leads to spatial variations in the pump power. In typical ex-
periments, these variations are on a length scale where dif-
fraction !enhanced by the cavity dispersion" is important, so
it is not possible to consider the pump as locally uniform. We
have recently shown theoretically16 that the blueshift, due to
the polariton-polariton repulsive interaction, tends to switch
the OPO off at high pump powers, so this spatial variation in
the pump can lead to a highly nonuniform signal spot.

In this work we present spectrally resolved real space im-
ages of the OPO signal and explain the observed patterning
and stability by comparison with a theoretical model that
takes into account finite spot size. In particular, we show that
defect induced spatial fluctuations in the cavity photon en-
ergy !the “photonic potential”", in combination with energy
renormalization of the polariton dispersion, are responsible

for polariton localization and stability of the OPO.
The sample studied is a 3" /2 GaAs microcavity grown by

metal-organic chemical-vapor disposition !MOCVD", similar
to that in Ref. 3 with Rabi splitting of #6 meV. The data are
collected with the quantum well exciton and the optical
mode on resonance at k#0, with the sample immersed in
liquid helium at 2 K. A Ti-sapphire laser on resonance with
the lower polariton branch at 12° was used to generate the
polariton population in the pump state, and the resultant sig-
nal and idler populations, as shown in Fig. 1. The signal state
is imaged by use of a specially designed wide aperture as-
pheric lens. The signal is spectrally resolved using an imag-
ing spectrometer to avoid scattered light from the pump
beam.

FIG. 1. !Color online" Photoluminescence spectra at k#0 and
k#2kp for a pump incident at k=kp resonant with the lower polar-
iton branch and power 3 times the threshold for the onset of para-
metric scattering. The inset is a spectral density plot showing the
spectrally resolved luminescence for each wave vector, with the
theoretical lower branch dispersion overlaid. The pump appears
spread in energy and k due to saturation of the charge-coupled
device detector.
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Parametric amplification

in a remarkable triply-resonant way with conservation of both
total energy and momentum.

A. Parametric amplifier and parametric luminescence

For low pump intensities, the parametric scattering process
takes place in a spontaneous way and produces an incoherent
luminescence into the signal and idler modes, characterized
by a broad spectral distribution in both energy and wave
vector (i.e., angle; see the middle panels of Fig. 7). If a
additional seed beam is incident on the microcavity around
the signal (idler) wave vectors, this gets coherently amplified
(Savvidis et al., 2000a) (see Fig. 8) and in turn generates a
four-wave mixed beam at the idler (signal) wave vector (Ciuti
et al., 2000). Following the first observations, many experi-
mentally unveiled different aspects of this sort of parametric
amplifier physics (Erland et al., 2001; Messin et al., 2001;
Saba et al., 2001), with special attention to its coherent and
quantum aspects (Huynh et al., 2003; Kundermann et al.,
2003; Savasta et al., 2005).

B. Optical parametric oscillator

As usual in bosonic systems, scattering processes can be
stimulated by an existing population in the final states, here
the signal and idler modes. When the pump intensity is
strong enough for the stimulated scattering rate to overcome
losses, a new stationary regime with a macroscopic occupa-
tion of single signal and idler modes is reached and a pair of
coherent signal and idler beams is emitted with a narrow
distribution in the energy and in-plane wave vector
(Baumberg et al., 2000; Stevenson et al., 2000). Other
general aspects of the parametric oscillation in microcavity
polariton systems were reported by Houdré et al. (2000b),
Savvidis et al. (2000b), Tartakovskii et al. (2002), and Butté
et al. (2003).

From a fundamental point of view, the parametric oscil-
lation in spatially extended geometries such as planar micro-
cavities is an interesting example of nonequilibrium phase
transition (Haken, 1975). The symmetry that is spontaneously
broken at the critical point is the Uð1Þ symmetry correspond-
ing to the simultaneous and opposite rotation of the global
signal and idler phases by the arbitrary angle ’,

S ! Sei’; I ! Ie#i’; (63)

even though the mean-field equations are (approximately, see
Wouters and Carusotto, 2007b) invariant under the Uð1Þ
symmetry, a specific value of the signal and idler phases is
chosen at every instance of the experiment. The strong anal-
ogies between the parametric oscillation operation and a
Bose-Einstein condensation transition are apparent in the
Penrose-Onsager criterion,

lim
jr#r0j!1

hEy
s ðrÞEsðr0Þi ! 0; (64)
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FIG. 2: Time evolution of the polariton signal after a weak pulsed probe with a vortex of m = 1

has been excited (a-h). The interference images (a-d) are obtained by overlapping the vortex with a

small expanded region of the same image far from the vortex core, where the phase is constant. The

time origin is taken when the extra population has reached 80% of its maximum value. To better

reveal the e↵ect of the imprinting of the vortex into the condensate steady state of the signal, the

contribution of the unperturbed polariton signal (in absence of the probe pulse) is subtracted from

all data. The depth of the vortex core and its position as a function of time for 4 di↵erent pump

powers (65 mW, blue diamonds, 100 mW, green triangles, 200 mW red circles, 300 mW, black

squares)—all above the OPO threshold (50 mW)—is shown in (i) and (j) respectively. The e↵ect

of probe power—0.15 µW in blue squares, 0.33 µW in green circles, 6.65 µW in black triangles,

8 µW in red diamonds—on the duration and depth of the core of the vortex is shown in (k).
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Figure 3. (a) Interference pattern for a detuning 1E = �4 meV and (b)
coherence map from the polariton emission when the pump is redshifted by
0.2 meV with respect to ETh in pump power conditions for having the OPO.
(c) Horizontal profile taken at the middle of the coherence map, showing a
decaying coherence at the center of the emission area, corresponding to an
incoherent polariton population, and a flat and lower coherence on the sides,
corresponding to the buildup of the condensate population.

arms passes from constructive to destructive gradually, giving a sinusoidal modulation
to the intensity as a function of the delay (figure 1(b)). To extract the coherence,
we use the following normalized expression: INorm [(x, y), (�x, �y)] = ITot�IRR�IM

2
p

IRR IM
=

g

(1) [(x, y), (�x, �y)] sin (!1t + '0), where ITot is the total intensity of the interference
pattern, IRR (IM) is the intensity recorded from the arm with the retro-reflector (single mirror),
! is the frequency of the periodic pattern of the interference fringes and '0 is a constant phase
of the condensate. Repeating this procedure for each point we reconstruct the entire coherence
map.

The momentum and energy narrowing at the OPO threshold corresponds to the
development of a macroscopic coherence in the real space as depicted in figures 2(d)–(f), and
highlighted by the horizontal profile taken at the center of the condensate emission, showing
a constant coherence extending along the whole condensate area, validating the predictions of
Carusotto and Ciuti [25].

When moving from ETh toward lower energies, two possible scenarios can happen: (i) a
fast exponential decay along the condensate area as predicted in [25] and demonstrated in [28]
(see figure 1(f) of [28]), or (2) a hybrid situation as presented in figures 3(a)–(c) where a rapid
exponential decay is superimposed on the top of a flat and lower coherence region. In the latter
case, the exponential part that decays within a few de Broglie wavelengths, as better depicted by
the horizontal profile shown in figure 3(c), is related to uncondensed polaritons, and the higher
degree of coherence at the center is due to the autocorrelation of the center with itself. The flat
part with a moderate degree of coherence is instead related to the nucleation of the condensate,
which is developing a constant phase.

The detuning, 1E , between the excitonic and photonic modes determines the excitonic
fraction and the interaction strength between polaritons. For negative detunings the photonic
fraction is higher and the interactions are expected to be lower, which could be attributed as
the cause of the extended coherence. In order to demonstrate that the observed large coherence

New Journal of Physics 14 (2012) 075018 (http://www.njp.org/)
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Nonresonant pumping experiments
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Figure 1 Interferogram and extracted phase. a, Interferogram with vortex: in 

the red circle one can see the forklike dislocation. b, Interferogram carrying the 

same information but this time the vortex is overlapped with a different region of 

the condensate and for different fringe orientation. The vortex appears at the 

same real space coordinates as before. c, Real space phase profile calculated 

from interferogram of (a). The red circle encloses the vortex (same real space 

area as on (a),(b)). d, Phase as a function of the azimuthal angle for a range of 

different radii as shown in the indent of figure (d) (zoom of (c)). Note that the 

data are repeated before and after the azimuthal angles 0 and 2π to better 

illustrate the 2π shift.    
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