Coherence and superfluidity of nonequilibrium polariton quantum fluids

Michiel Wouters

Linear polariton properties

Polariton life time 1-100's ps
some structures

LPN Paris

EPFL Lausanne nonequilibrium

Interaction properties

- Interactions due to excitonic component
- Short range
- Polarization dependent (bi-exciton Feshbach resonance)
- Weak interactions: $\tilde{g}=m g / \hbar^{2} \ll 1$
\Rightarrow mean field theory mostly OK
N. Takemura et al., Nat. Phys./PRB 2014,
M. Vladimirova et al. PRB 2010.

Excitation schemes

resonant excitation
pumping laser
pumping laser directly injects coherent polaritons
\checkmark clean
\checkmark flexible
x phase inherited by pumping laser
\rightarrow coherence trivial
parametric excitation
pumping laser
one scattering process creates $\mathrm{k}=0$ polaritons
\checkmark spontaneous coherence
\checkmark relatively clean
x very sensitive to laser parameters
nonresonant excitation
pumping laser

Exciton Reservoir
complicated relaxation process creates k=0 polaritons
\checkmark spontaneous coherence
\checkmark robust with respect to laser parameters
x dirty

Outline

- generalized Gross-Pitaevskii equation
- coherence properties (including fluctuations)
- superfluid properties (including gauge field)
I. Carusotto and C. Ciuti, RMP 2013

Gross-Pitaevskii equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t}\langle\hat{\psi}\rangle=\langle[\hat{\psi}, \hat{H}]\rangle \\
& H=\int d x\left[\hat{\psi}^{\dagger}(x)\left(-\frac{\nabla^{2}}{2 m}+V+\frac{g}{2}|\hat{\psi}(x)|^{2}\right) \hat{\psi}(x)+A_{L}(x, t) \hat{\psi}^{\dagger}(x)+A_{L}^{*}(x, t) \hat{\psi}(x)\right]
\end{aligned}
$$

and the approximation $\quad\left\langle\hat{\psi}^{\dagger} \hat{\psi} \hat{\psi}\right\rangle \approx|\langle\hat{\psi}\rangle|^{2}\langle\hat{\psi}\rangle$ which requires $\quad|\langle\hat{\psi}\rangle|^{2} \xi^{d} \gg 1$
yields $\quad i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}\right) \psi+A_{L}$

coherent pumping can be taken into account as a Hamiltonian term
cf. c-field theory for atomic condensates [Svistunov, Gajda,...]

Gross-Pitaevskii equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t}\langle\hat{\psi}\rangle=\langle[\hat{\psi}, \hat{H}]\rangle \\
& H=\int d x\left[\hat{\psi}^{\dagger}(x)\left(-\frac{\nabla^{2}}{2 m}+V+\frac{g}{2}|\hat{\psi}(x)|^{2}\right) \hat{\psi}(x)+A_{L}(x, t) \hat{\psi}^{\dagger}(x)+A_{L}^{*}(x, t) \hat{\psi}(x)\right]
\end{aligned}
$$

and the approximation $\left\langle\hat{\psi}^{\dagger} \hat{\psi} \hat{\psi}\right\rangle \approx|\langle\hat{\psi}\rangle|^{2}\langle\hat{\psi}\rangle$ which requires $|\langle\hat{\psi}\rangle|^{2} \xi^{d} \gg 1$
yields $i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}\right) \psi+A_{L}-i \frac{\gamma}{2} \psi$

coherent pumping can be taken into account as a Hamiltonian term
cf. c-field theory for atomic condensates [Svistunov, Gajda,...]
Losses cannot be described by a Hamiltonian and require a master equation description

Gross-Pitaevskii equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t}\langle\hat{\psi}\rangle=\langle[\hat{\psi}, \hat{H}]\rangle \\
& H=\int d x\left[\hat{\psi}^{\dagger}(x)\left(-\frac{\nabla^{2}}{2 m}+V+\frac{g}{2}|\hat{\psi}(x)|^{2}\right) \hat{\psi}(x)+A_{L}(x, t) \hat{\psi}^{\dagger}(x)+A_{L}^{*}(x, t) \hat{\psi}(x)\right]
\end{aligned}
$$

and the approximation $\left\langle\hat{\psi}^{\dagger} \hat{\psi} \hat{\psi}\right\rangle \approx|\langle\hat{\psi}\rangle|^{2}\langle\hat{\psi}\rangle$ which requires $|\langle\hat{\psi}\rangle|^{2} \xi^{d} \gg 1$
yields $i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}\right) \psi+A_{L}-i \frac{\gamma}{2} \psi$

coherent pumping can be taken into account as a Hamiltonian term
cf. c-field theory for atomic condensates [Svistunov, Gajda,...]

Losses cannot be described by a Hamiltonian and require a master equation description

This equation describes almost all features seen in resonant pumping experiments

Phenomenological extension for incoherent excitation

incoherent relaxation

Exciton Reservoir

$$
i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}+\tilde{g} n_{R}\right) \psi+\frac{i}{2}\left(R n_{R}-\gamma\right) \psi
$$

Phenomenological extension for incoherent excitation

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}+\tilde{g} n_{R}\right) \psi+\frac{i}{2}\left(R n_{R}-\gamma\right) \psi \\
& \text { when } \quad R n_{R}<\gamma: \psi=0 \\
& \qquad \begin{array}{ll}
& \text { below threshold } \\
R n_{R}>\gamma: \psi \rightarrow \infty & \text { above threshold: } \\
\text { gain saturation needed }
\end{array}
\end{aligned}
$$

Phenomenological extension for incoherent excitation

$$
\begin{array}{ll}
i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}+\tilde{g} n_{R}\right) \psi+\frac{i}{2}\left(R n_{R}-\gamma\right) \psi \\
\text { when } \quad R n_{R}<\gamma: \psi=0 & \text { below threshold } \\
R n_{R}>\gamma: \psi \rightarrow \infty & \text { above threshold: } \\
& \text { gain saturation needed }
\end{array}
$$

Rate equation for the reservoir

$$
\frac{d n_{R}}{d t}=P-\gamma_{R} n_{R}-R n_{R}|\psi|^{2}
$$

threshold from $R n_{R}=\gamma$ is $P_{t h}=\gamma \gamma_{R} / R$ above threshold: $|\psi|^{2}=\left(P-P_{t h}\right) / \gamma$

discontinuous derivative because of mean field approximation

Adiabatic elimination of reservoir \rightarrow cGLE

when the reservoir can follow instantaneously the polariton density
N. Bobrovska, M. Matuszewski, PRB 2015

$$
\frac{d n_{R}}{d t}=P-\gamma_{R} n_{R}-R n_{R}|\psi|^{2}=0
$$

we have a single equation for the polariton field

$$
i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}+\frac{\tilde{g} P}{\gamma_{R}+R|\psi|^{2}}\right) \psi+\frac{i}{2}\left(\frac{R P}{\gamma_{R}+R|\psi|^{2}}-\gamma\right) \psi
$$

= laser model with saturable gain

Adiabatic elimination of reservoir \rightarrow cGLE

when the reservoir can follow instantaneously the polariton density
N. Bobrovska, M. Matuszewski, PRB 2015

$$
\frac{d n_{R}}{d t}=P-\gamma_{R} n_{R}-R n_{R}|\psi|^{2}=0
$$

we have a single equation for the polariton field

$$
i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g|\psi|^{2}+\frac{\tilde{g} P}{\gamma_{R}+R|\psi|^{2}}\right) \psi+\frac{i}{2}\left(\frac{R P}{\gamma_{R}+R|\psi|^{2}}-\gamma\right) \psi
$$

= laser model with saturable gain
expand the gain nonlinearity:

$$
i \frac{\partial}{\partial t} \psi=\left(-\frac{\nabla^{2}}{2 m}+V+g_{e f f}|\psi|^{2}\right) \psi+\frac{i}{2}\left(P_{e f f}-\gamma-a|\psi|^{2}\right) \psi
$$

which is of the form of the complex Ginzburg Landau equation
general review: Aranson and Kramer RMP 2002
for polaritons: Keeling and Berlof PRL 2008

Flows in inhomogeneous polariton condensates

E. Wertz et al. Nature Physics 2010
is reproduced numerically with any of the generalised GPEs

Liew, Wouters \& Savona, PRB 2010 Wouters, Carusotto, Ciuti, PRB 2008
as a simple consequence of 'energy conservation' $\psi(x, t)=e^{-i \omega_{c} t} \sqrt{n(x)} e^{i \theta(x)}$ requires that $\omega=\frac{1}{2 m}(\nabla \theta)^{2}+g n+g n_{R}+V$ is constant

Flows in inhomogeneous polariton condensates

E. Wertz et al. Nature Physics 2010
is reproduced numerically with any of the generalised GPEs

Liew, Wouters \& Savona, PRB 2010 Wouters, Carusotto, Ciuti, PRB 2008
as a simple consequence of 'energy conservation' $\psi(x, t)=e^{-i \omega_{c} t} \sqrt{n(x)} e^{i \theta(x)}$ requires that $\omega=\frac{1}{2 m}(\nabla \theta)^{2}+g n+g n_{R}+V$ is constant

or in 2D with disorder: vortices

Fig. 3.

Goldstone mode above threshold

$$
\psi=\psi+\delta \psi
$$

- there is always a zero frequency (real and imaginary part) mode due to the spontaneous $U(1)$ symmetry breaking.
- the low energy part becomes diffusive due to dissipation

Drag force under incoherent excitation

smoothed threshold for increasing dissipation

... but drag does not prohibit persistent superflows

Wouters and Carusotto PRL 2010.

coherence under cw nonresonant excitation

GPE + noise

Gross-Pitaevskii equation: mean field classical physics
? effect of (quantum) fluctuations out of equilibrium

Truncated Wigner approximation: add a noise term to Gross-Pitaevskii, that is proportional to losses

$$
i \frac{\partial}{\partial t} \psi=\left[-\frac{\nabla^{2}}{2 m}+g|\psi|^{2}+i\left(\frac{P}{1+|\psi|^{2} / n_{s}}-\gamma\right)\right] \psi+\xi
$$

[Carusotto and Ciuti 2005, MW and Savona 2009]

cw excitation

noisy GGPE
$i \frac{\partial}{\partial t} \psi=\left[-\frac{\nabla^{2}}{2 m}+g|\psi|^{2}+i\left(\frac{P}{1+|\psi|^{2} / n_{s}}-\gamma\right)\right] \psi+\xi$
density-phase representation

$$
\psi=\sqrt{n} e^{i \theta}
$$

far above threshold: phase fluctuation only $\quad\left\langle e^{i\left[\theta(x)-\theta\left(x^{\prime}\right)\right]}\right\rangle=e^{-\frac{1}{2}\left\langle\left[\theta(x)-\theta\left(x^{\prime}\right)\right]^{2}\right\rangle}$

Bogoliubov approximation

For weak and slow phase fluctuations, neglect nonlinear term

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}=-\eta\left(-\frac{\mu}{m} \nabla^{2}+\frac{1}{4 m^{2}} \nabla^{4}\right) \theta-\frac{1}{2 m}(\forall \theta)^{2}+\sqrt{\frac{D}{n_{0}}} \xi \\
& \left.\left.\langle | \theta(k)\right|^{2}\right\rangle=\frac{D /(2 \eta n)}{\mu\left[k^{2} / 2 m+\left(k^{2} / 2 m\right)^{2}\right]} \sim \frac{\text { noise }}{k^{2}}
\end{aligned}
$$

$$
\left\langle\psi^{\dagger}(x) \psi\left(x^{\prime}\right)\right\rangle \sim \exp \left(-\left|x-x^{\prime}\right| / \ell_{c}\right) \quad \text { exponential decay, as in equilibrium }
$$

$$
\ell_{c}=\frac{4 \hbar^{2} n}{D m} \eta \mu \quad \text { cf. equilibrium } \quad \ell_{c}=\frac{2 \hbar^{2} n}{k_{B} T m}
$$

in 2D: Bogoliubov theory predicts power law decay

to thermalise or not to thermalise

Small momenta
Bose-Einstein distribution/classical field theory: $\quad n_{k} \propto \frac{T}{k^{2}} \quad$ (thermal equilibrium)
stochastic models for polariton condensation: $\quad n_{k} \propto \frac{\text { noise }}{k^{2}} \quad$ (diffusive Goldstone mode)

to thermalise or not to thermalise

Small momenta

Bose-Einstein distribution/classical field theory: $\quad n_{k} \propto \frac{T}{k^{2}} \quad$ (thermal equilibrium) stochastic models for polariton condensation: $\quad n_{k} \propto \frac{\text { noise }}{k^{2}} \quad$ (diffusive Goldstone mode)

Large momenta

Kasprzak et al. 2006
photon Boltzmann tail

Bajoni et al. 2007
rate equation
$\frac{d n_{k}}{d t}=R_{\text {in }}(k)\left(n_{k}+1\right)-R_{\text {out }}(k) n_{k}$
steady state

$$
n_{k}=\frac{1}{\frac{R_{\text {out }}(k)}{R_{\text {in }}(k)}-1}
$$

eq. reservoir: ‘Kennard-Stepanov’

$$
\frac{R_{\text {out }}(k)}{R_{\text {in }}(k)}=A e^{-E_{k} / T}
$$

cf. Jonathan's talk

what with weak interactions?

$$
\ell_{c}=\frac{4 \hbar^{2} n}{D m} \eta \mu
$$

What for $\mu \rightarrow 0$?? (equilibrium: fragmentation of the condensate)
Can a laser be spatially coherent without photon-photon interactions?

Kardar-Parisi-Zhang physics

Without fourth order derivative: KPZ equation

$$
\frac{\partial \theta}{\partial t}=-\eta\left(-\frac{\mu}{m} \nabla^{2}+\frac{1}{4 \eta^{2}} \nabla^{4}\right) \theta-\frac{1}{2 m}(\nabla \theta)^{2}+\sqrt{\frac{D}{n_{0}}} \xi
$$

- nice review: T. Halpin-Healy, Y.-C. Zhang, Phys. Rept. 1995
- originally derived in crystal growth:

Kardar, Parisi, Zhang, PRL 1986

(c)

- For atomic Bose quantum fluids [Kulkarni et al. PRA 2013, Arzamasovs et al. arxiv: 1309.2647]
- For polaritons, see also: E. Altman et al., arxiv:1311.0876, L. Sieberer et al. arXiv: 1412.5579.

Kuramoto-Sivashinski equation

Without noise

$$
\frac{\partial \theta}{\partial t}=-\eta\left(-\frac{\mu}{m} \nabla^{2}+\frac{1}{4 m^{2}} \nabla^{4}\right) \theta-\frac{1}{2 m}(\nabla \theta)^{2}+\sqrt{n_{0}} \xi
$$

originally introduced without noise term to describe

- reaction-diffusion systems [Y. Kuramoto, T. Tsuzuki, Progr. Theoret. Phys. , 1977]
- flame front propagation [G. Sivashinsky, Acta Astron. , 1977]
shows chaotic dynamics for attractive interactions that is in KPZ universality class

Without second order derivative

$\frac{\partial \theta}{\partial t}=-\eta\left(-\frac{\lambda}{m} \nabla^{2}+\frac{1}{4 m^{2}} \nabla^{4}\right) \theta-\frac{1}{2 m}(\nabla \theta)^{2}+\sqrt{\frac{D}{n_{0}}} \xi$
... not much studied
known to be in the KPZ universality class (Ueno et al. PRE 2005)
\Rightarrow exponential decay of spatial coherence

We find with dimensional analysis/numerics:

$$
\ell_{c}=2 \eta^{1 / 7}\left(\frac{\hbar^{2}}{2 m}\right)^{6 / 7}\left(\frac{n_{0}}{D}\right)^{5 / 7}
$$

Temporal coherence

KPZ scaling: $\left\langle\psi^{\dagger}(x, t) \psi\left(x^{\prime}, t^{\prime}\right)\right\rangle \sim \exp \left(-\left|x-x^{\prime}\right| / \ell_{c}\right) \times f\left(\frac{\left|t-t^{\prime}\right|}{\left|x-x^{\prime}\right|^{3 / 2}}\right)$
characteristic KPZ scaling of the coherence time as $\tau_{c}(k) \sim k^{-3 / 2}$ different scaling from Bogoliubov theory $\tau_{c}(k) \sim k^{-2}$

GGPE simulations:
KPZ scaling easier to reach for weaker interactions

The scaling function

temporal coherence at fixed points

$$
f\left(t / x^{z}\right)=C(x, t) x^{-2 \chi}=-2 \ln \left[g^{(1)}(x, t)\right] x^{-2 \chi}
$$

determine z such that rescaled temporal coherences at different positions collapse.

2D beyond phase fluctuations: BKT physics

Extensive numerical simulations have been performed in the OPO case

Dagvadorj et al. Phys. Rev. X 5, 041028 (2015).

2D beyond phase fluctuations: BKT physics

Extensive numerical simulations have been performed in the OPO case

Dagvadorj et al. Phys. Rev. X 5, 041028 (2015).

Equilibrium BKT:
universal jump in the superfluid density at the transition

$$
\rho_{s}=\frac{2 m^{2}}{\pi} T_{B K T}
$$

Superfluid fraction out of equilibrium

Superfluid fraction

twisted boundary condition $E(\theta)-E(\theta=0)=f_{s} \frac{N}{2 m}(\nabla \theta)^{2}$
(only the superfluid part responds to a small phase twist)
$\frac{E}{N}=\mu=$ frequency in $\psi(x, t)=e^{-i \mu t} \psi(x, 0)$
can also be used out of equilibrium:
Janot et al. 2013

For a homogeneous equilibrium Bose gas:
$\mu=g n+\frac{1}{2 m}(\nabla \theta)^{2} \Rightarrow f_{s}=1$
with an external potential: f_{s} can be <1

Superfluid fraction

twisted boundary condition $E(\theta)-E(\theta=0)=f_{s} \frac{N}{2 m}(\nabla \theta)^{2}$
(only the superfluid part responds to a small phase twist)
$\frac{E}{N}=\mu=$ frequency in $\psi(x, t)=e^{-i \mu t} \psi(x, 0)$
can also be used out of equilibrium: Janot et al. 2013

For a homogeneous equilibrium Bose gas:
$\mu=g n+\frac{1}{2 m}(\nabla \theta)^{2} \Rightarrow f_{s}=1$
with an external potential: f_{s} can be <1
P.C. Hohenberg and P.C. Martin, Ann. Phys. N.Y. 34, 291 (1965) .
E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. B 66, 134529 (2002)
A. Janot, T. Hyart, P. R. Eastham, and B. Rosenow, Phys. Rev. Lett. 111, 230403 (2013).

Bose gas in disorder potential: mean field version of superfluidBose glass phase transition

Luca Fontanesi, Michiel Wouters, and Vincenzo Savona, Phys. Rev. A 81, 053603 (2010).

Normal fraction

Twisted boundary condition is equivalent to vector potential $A=(\theta / L) \mathbf{e}_{x}$ or a slow rotation of the system

The kinetic energy becomes $\left(-i \nabla-A \mathbf{e}_{x}\right)^{2}$
For vanishing rotation speed, the superfluid part cannot move because of phase quantisation (Hess-Fairbank effect)

We compute the current of a rotating cylindrical shell and define the normal fraction as $f_{n}=\frac{\left\langle j_{x}\right\rangle}{\langle n\rangle A}$ A. J. Leggett, Rev. Mod. Phys. 71, 318 (1999).
cf. Jonathan Keeling's work

J. Keeling, Phys. Rev. Lett. 107, 080402 (2011).

Numerical results

Disorder

cf. A. Janot, T. Hyart, P. R. Eastham, and B. Rosenow, Phys. Rev. Lett. 111, 230403 (2013).

Numerical results

Disorder

Regular cut

toward equilibrium

Potential dip

Nonequilibrium strongly affects the reaction of a condensate to (weak) gauge fields.

Our interpretation: due to the currents in the stationary state without gauge field

Conclusions

- Nonequilibrium condensation invites us to revisit the phyiscs of BEC/superfluids
- Coherence properties determined by KPZ nonequilibrium physics
- Response to Gauge field very different from equilibrium GPE (\rightarrow implications for BKT?)

Acknowledgements

Mathias Van Regemortel Selma Koghee
Dries Sels
Maarten Baeten
Vladimir Gladilin
Kai Ji
Onur Umucalilar
Iacopo Carusotto
Daniele De Bernardis
Benoit Deveaud \& co

Resonant excitation experiments

superfluidity:
scattering on defect suppressed

Amo et al. Nat. Phys. 2009
quantum hydrodynamics: soliton emission in wake of defect

no pump at soliton location (phase freedom)

Amo et al. Science 2011

Parametric oscillation experiments

Parametric oscillation

Sanvitto et al. PRB 2006

Triggered vortices

D. Sanvitto et al. Nat. Pays. 2011

Coherence measurements

R. Spano et al., NJP 2012

Nonresonant pumping experiments

Lagoudakis et al. Nature Physics 2008
real space coherence $\left\langle\psi^{\dagger}(x) \psi(-x)\right\rangle$

E. Wertz et al. Nature Physics 2010

