Ilse Cleeves Hubble Fellow, SAO/CfA/ITC With many thanks to my colleagues at Michigan: Ted Bergin, Fred Adams, CfA: Karin Öberg, David Wilner, Charlie Qi, Sean Andrews, Ryan Loomis, Jane Huang **KITP: Confronting MHD Theories of Accretion Disks with Observations** February 6th, 2017

Image Credit: University of Copenhagen/Lars Buchhave

Disk-ionization properties as revealed by molecular emission

I. Dense Molecular Cloud

~1 Myr

~ 3-10 Myr

III. Protoplanetary Disk

Phases of Star Formation

II. Protostar

10⁵ yr

IV. Planetary Systems

> 10 Myr

Credit: Bill Paxton

The Key Role of Ionizing Processes

The ionization regulates the active chemistry (both gas and ice!) and environmental conditions (temperature, coupling to B-fields) during planet formation.

"High energy" ionization: H₂ and He Ionization sources include X-rays, cosmic rays (CRs) and radionuclides (SLRs).

Large gradients in overall ionization rates and a high degree of spatial variation.

(e.g., Carballido+2008, Johansen+2007, Matsumoro & Pudritz 2005, 2007, Charnoz+2012, Gressel+2012)

IONIZATION STATE IS A KEY PHYSICAL PARAMETER OF THE DISK, AND THERE ARE BOTH INTERNAL AND EXTERNAL FACTORS

CGRO / COMPTEL 1.8 MeV, 5 Years Observing Time

Short-lived Radionuclides

Finocchi & Gail 1997, Oullette et al. 2007, 2010

Intensity (ph cm² s¹ sr¹) x 10⁸

0.00 0.16 0.33 0.49 0.65 0.82 0.96 1.14 1.31 1.47 1.63 1.80 1.96 2.12 2.29 2.45 2.61

Local particle acceleration?

Padovani et al. 2016

Stellar Radiation Field

Disks are dusty...

... and likely contain radioactive species (²⁶Al) in the refractory component.

Short-Lived Radionuclide Decay

CR-dominated

X-ray dominated

Cosmic Ray Ionization in Disks:

Largely unconstrained

CR-dominated

W-dominated W-dominated X-ray dominated

VV-dominated But what is "typical?"

The main ionization sources in the disk midplane are highly uncertain.

See also Jura & Young 2013.

PREVIOUS OBSERVATIONAL STUDIES OF DISK IONIZATION

CO 3-2 [..] ŷ∇_2 -44 2 0 -2 -4 $\Delta \alpha \mid ''$

place!

Guilloteau et al. 2006

The "line" is in the wrong

"We also show that the detection of H_2D^+ in DM Tau, previously reported by these authors, is only a 2-sigma detection when the proper velocity is adopted."

lons occupy a three layered structure: (1) a warm, upper layer, HCO+ most abundant, xi $\approx 4 \times 10^{-10}$; (2) a cooler molecular layer with T = 16-20 K, N₂H⁺ and DCO⁺ abundant, with xi $\simeq 3 \times 10^{-11}$; and (3) the cold midplane (T<15 K) where H_{3^+} abundant and xi < 3×10^{-10} .

Fast forward to 2017: H₂D⁺ still not detected! (Cleeves, Qi et al. in prep)

Disk lonizing Mechanisms

Cosmic Rays, Radionuclides, X-rays

WINDS AND THE COSMIC RAY IONIZATION RATE

WINDS AND THE COSMIC RAY IONIZATION RATE

- * The solar wind expels >99% of CRs, especially with < 100MeV.
- * T Tauri stars have winds, strong stellar and perhaps disk B-fields.
- * Two sources of CR-deflection, winds and disk magnetic fields.
- * Expected to substantially reduce the CR flux by OOM.

$10^1 \, 10^2 \, 10^3 \, 10^4 \, 10^5 \, 10^6 \, 10^7 \, 10^8 \, 10^9 \! 10^{10}$ $E_{CR} eV$

WINDS AND THE COSMIC RAY IONIZATION RATE: RADIAL VARIATIONS

Calculations courtesy Jeremy Drake, CfA

WINDS AND THE COSMIC RAY IONIZATION RATE

- * The solar wind expels >99% of CRs, especially with < 100MeV.
- * T Tauri stars have winds, strong stellar and perhaps disk B-fields.
- * Two sources of CR-deflection, winds and disk magnetic fields.
- * Expected to substantially reduce the CR flux by OOM.

$10^1 \, 10^2 \, 10^3 \, 10^4 \, 10^5 \, 10^6 \, 10^7 \, 10^8 \, 10^9 \! 10^{10}$ $E_{CR} eV$

WINDS AND THE COSMIC RAY Ionization Rate

<u>Solar Minimum to Maximum</u> Usoskin 2005

<u>"Extrapolated" Sun</u> Cleeves, Adams and Bergin 2013a

WINDS AND THE COSMIC RAY Ionization Rate

Ionization rate falls below that due to short-lived radionuclide decay for solar nebula ²⁶Al abundances (e.g., Umebayashi & Nakano 1981).

ANALYTIC CALCULATIONS OF RADIONUCLIDE RADIATIVE TRANSFER

High SLR Ionization

Previous work on SLR ionization treats energetics lorallythe first time, we take losses into Tapical note and produidte estimples fitset o KleSLR). Stopping column ~0.1-13 g cm⁻².

Cleeves, Adams, Bergin & Visser 2013b Cleeves, Bergin & Adams 2014b (Appendix A)

SHORT-LIVED RADIONUCLIDES: THE OUTER DISK

Losses from
escaping
$$\beta^+$$
, γ .

$$10^{-18}$$

$$10^{-19}$$

$$10^{-20}$$

$$10^{-21}$$

$$10^{-22}$$

$$10^{-23}$$

$$10^{-23}$$

$$10^{-1}$$

$$10^{0}$$

$$\Sigma_g$$

STELLAR RADIATION FIELD

Energy-dependent Monte Carlo X-ray/UV transport (Bethell & Bergin 2011a/b). Spatially varying disk properties. Using realistic templates or observed input stellar spectra.

DIVERSITY OF DISK IONIZATION IN THE MIDPLANE

Cleeves, Bergin, Qi, Adams, Öberg 2015

Chemical Signatures Submillimeter Ionization Diagnostics

CR-dominated

X-ray dominated

IONIZATION CHEMISTRY

Cleeves, Bergin and Adams 2014b

)

DISK MODELING TOOLS

Time-dependent chemical model: photo-chemistry, grain-surface chemistry, ion-chemistry, selfshielding... (Fogel et al. 2011).

Model resultant line emission, (LIME, Brinch +2010).

0,0,00,0,0,0000

Compare to observations.

CHEMICAL SIGNATURES

+Radionuclides

Changes in the incident CR rate cause a significant amount of chemical structure in molecular ion abundances.

These are *detectable* effects.

Cleeves, Bergin and Adams 2014b

A Targeted Case-study of TW Hya Cleeves, Bergin, Qi, Adams, and Öberg 2015

IONIZATION CONSTRAINTS: THE CASE OF TW HYA

Nearest (61 pc, Gaia) young star (3-10 Myr-old, Webb+1999, Song+2003, Weinberger+2013) with a gas rich circumstellar disk, M_{disk}~0.02-0.06 M_☉ (Bergin et al. 2013).

MAPPING IONIZATION IN THE TW HYA DISK: MODELS

HCO⁺ sensitive to the CO abundance and X-ray ionization rate.

CO well known to be depleted by 1-2 O.O.M. (Favre et al. 2013)

SED puts constraints on disk density and thermal structure.

MOLECULAR IONS N_2H^+ , HCO^+ **BULK NEUTRAL CHEMISTRY** CO and HCN

 N_2H^+ is sensitive to the CO abundance, X-ray ionization rate, and CR ionization rate.

HCN calibrates nitrogen abundances.

> HD traces the otherwise invisible H₂ reservoir

Cleeves, Bergin, Qi, Adams, and Oberg 2015

MAPPING IONIZATION IN THE TW HYA DISK: OBSERVATIONS

Cleeves, Bergin, Qi, Adams, and Öberg 2015

MAPPING IONIZATION IN THE TW HYA DISK: MODELS

Cleeves, Bergin, Qi, Adams, and Öberg 2015

MAPPING IONIZATION IN THE TW HYA DISK: MODELS

POSSIBLE SCENARIOS FOR LOW IONIZATION

TW Hya

$\zeta_{H2} \lesssim 10^{-19} \text{ s}^{-1}$?

- - Would have to extend well beyond R > 200 AU.
 - Wind ram pressure > ambient interstellar pressure.
 - Collimation?
- (Dolginov & Stepinski).
 - the chicken or the egg?
- 3. Short-Lived Radionuclides have the right order of magnitude.
 - ▶ Disk is too old (10 Myr) III no SLRs left.

A lab for CR exclusion mechanisms

1. Stellar, disk, or photoevaporative winds block CRs across the entire disk.

2. Magnetic irregularities in the disk as a source of local "opacity" to CRs

Irregularities are generated by turbulence (requiring ionization). Are they

Consequences of a Low **Ionization Environment** Dead zones + dust growth

Credit: P. Armitage

-X

"Dead Zone"

"Dead Zone"

lonizing processes set the size and extent of the dead zone.

"Dead Zone"

Higher X-rays = Flatter Dead Zone

"Dead Zone"

Higher CRs = More Radially Compact Dead Zone

Can estimate where the disk is MRI "dead" (Perez-Becker and Chiang 2010, Turner et al. 2007). \rightarrow Re = B-field to plasma Am = Ion-neutral collision time

Re > 3300 (orange), Am > 0.1 (black). Hatched region = Active.

Without CRs, MRI unsustainable at midplane → large MRI "dead zones."

IONIZATION AND DEAD ZONES: TW HYA

Low ionization regions of the disk are quiescent against MRI (low turbulence). Predicted TW Hya dead zone of R~50-65 AU.

Cleeves, Bergin, Qi, Adams, and Öberg 2015

LOW IONIZATION IN THE TW HYA DISK: **DEAD ZONES**

- Low ionization regions of the disk are quiescent against MRI (low turbulence).
 - Estimated TW Hya dead zone out to R~50-65 AU.
- Coincides with region of mmdust concentration.
 - Perhaps dust coaguation is being facilitated by a dead zone out to ~65 AU?

SSX, HR:0.2 TTM, HR:0.2 0.87mm 9mm 40 AU

(Wilner+2000, Andrews+2012, Andrews 2015, Menu+2014)

Cleeves, Bergin, Qi, Adams, and Oberg 2015

On-going Work and Future Directions

ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY (ALMA)

Credit: ESO/B. Tafreshi (<u>twanight.org</u>)

FUTURE DIRECTIONS: MAPPING IONIZATION

CO-EVOLVING DUST AND UV CHEMISTRY

IM Lup Protoplanetary Disk with ALMA, 161pc (Gaia)

Cleeves et al. 2016c

CO-EVOLVING DUST AND UV CHEMISTRY

Result: Full suite of CO and continuum data consistent with UV exposed cold chemistry, with mild external UV, $G_0 \leq 4.$

Cleeves et al. 2016c

CO-EVOLVING DUST AND UV CHEMISTRY

IM Lup Protoplanetary Disk with ALMA, 161pc (Gaia)

Result: External UV consistent with the local stellar population from Hipparcos population.

Cleeves et al. 2016c

Gas and dust constraints plus:

+ N₂H⁺ 3−2,

+ DCO+4-3, 3-2,

+ H¹³CO⁺, 3-2,

+ HC¹⁸O⁺ 4-3, 3-2 ···

Variable Ion chemistry in H¹³CO⁺!

Cleeves et al. 2017, submitted

Cleeves et al. 2017, submitted

Consistent with model expectations for high energy X-ray flares!

CONCLUSIONS

External and internal ionizing processes, which impact MRI efficiency, thermal structure, dust growth, and disk chemistry. 2

X-rays, cosmic rays, short-lived adionuclides most important for setting the ionization in the molecular disk.

3

4

Detailed modeling of TW Hya's molecular ions already points to low global CR rate $(\zeta_{CR} < 10^{-19} \text{ s}^{-1}).$ Preliminary modeling of IM Lup suggests similar low CR rates, but also variable, Xray driven ion chemistry perhaps along with radioactivity.

Thank you!

