

Disk-jet symbiosis in M87: Polarization of light and Faraday rotation in GRMHD simulations

Monika Moscibrodzka

Radboud University (Netherlands)

Jason Dexter (MPE)

Jordy Davelaar (RU)

Heino Falcke (RU)

KITP - 10 February 2017

Core of M87

- M87: Virgo A, 16.7 Mpc, MBH=6x109Msun
- M87 core prototype radio loud LLAGN $(L{\sim}10^{-6}\ L_{edd}),\ FR-I\ jet\ (10^{45}\ ergs/s),\ i{=}20deg$
- Source at freq > 43 GHz not well resolved yet, model predictions
- Near future mm-VLBI observations w/ Event Horizon Telescope resolve 30 microarcsec < BH_{shadow} = 38 microarcsec

 Unique source test MHD theory of accretion and jets symbiosis on the event horizon scales

Radiatively inefficient accretion flow in the center of LLAGN

General relativistic MHD simulations of RIAF

- Ideal-MHD in 3D
- Standard and normal evolution
- Disk: MRI turbulence
- Magnetized outflows, jets
- Collisionless, twotemperature plasma

$$\frac{T_{\rm p}}{T_{\rm e}} = R_{\rm high} \frac{\beta^2}{(1+\beta^2)} + R_{\rm low} \frac{1}{(1+\beta^2)}$$

Modeling emission from GRMHD models of RIAF

- We model millimeter emission (EHT: 230 GHz and GMVA: 86 GHz)
 - synchrotron emission dominant cooling process (relativistically hot, magnetized plasma)
 - near horizon emission Doppler boosts, gravitational lensing

- The goal is to constrain the model free parameters
 - Proton/electron coupling ratios
 - Mass accretion rate onto the BH
 - Spin of the BH
 - Geometry of magnetic fields near BH event horizon

1) $GRMHD \mod + radiative transfer \mod = radio image$

2) GRMHD model + radiative transfer model = radio image

Polarized Transport through turbulent plasma around Kerr BH

(grtrans, Dexter 2016)

circular polarization

Faraday optical thickness $>> 1 \sim 10^6$ (equations can be stiff)

linear polarization (polarization ticks)

1) Polarization structure of **disk emission** dominated models Moscibrodzka et al. 2017

- EVPA organized, strong linear polarization
- in non-VLBI beam depolarized down to LP $\sim 5\%$ (inconsistent with existing obs., Kuo+2014)

2) Polarization structure of jet emission dominated models

- overall lower LP but some strongly polarized patches offset from intensity peak
- in non-VLBI beam depolarized down to LP $\sim 1\%$ (consistent with obs.)
- No coherent polarization pattern

Polarization structure of jet emission dominated models

Moscibrodzka et al. 2017

Full set of equations

Without Faraday effects

• Faraday rotation measure

$$RM = \frac{\chi(\lambda_1) - \chi(\lambda_2)}{\lambda_1^2 - \lambda_2^2}$$

Faraday rotation measure

$$RM = \frac{\chi(\lambda_1) - \chi(\lambda_2)}{\lambda_1^2 - \lambda_2^2}$$

• RM in our black hole systems @ λ =1.3mm (230 GHz) with non-VLBI

Sgr A*: LP ~ 5 %, RM = - $5.6(\pm 0.7) \times 10^5 \text{ rad/m}^2$

(Marrone+2007 & ref. therein)

M87: LP $\sim 1\%$, $|RM| < 7.5 \times 10^5 \text{ rad/m}^2 \text{ (Kuo} + 2014)$

Faraday rotation measure

$$RM = \frac{\chi(\lambda_1) - \chi(\lambda_2)}{\lambda_1^2 - \lambda_2^2}$$

• RM in our black hole systems @ λ =1.3mm (230 GHz) with non-VLBI

Sgr A*: LP ~ 5 %, RM = - $5.6(\pm 0.7) \times 10^5 \text{ rad/m}^2$

(Marrone+2007 & ref. therein)

M87: LP $\sim 1\%$, $|RM| < 7.5 \times 10^5 \text{ rad/m}^2 \text{ (Kuo} + 2014)$

• Constraints on accretion rates using semi-analytical RIAF models:

$$RM = 10^4 \frac{e^3}{2\pi m_e^2 c^4} \int f_{\rm rel} n_e B_{||} dl$$

Sgr A*: $M_{acc} = 5 \times 10^{-9} - 2 \times 10^{-7} M_{sun}/yr$

M87: $M_{acc} < 9x10^{-4} M_{sun}/yr$

Should we limit GRMHD free parameters with these accretion rate constraints?

- Semi-analytical RIAFs have: no B field geometry; no jets; no GR effects
- Assumption that polarized source is behind Faraday screen, $x(\lambda) \sim \lambda^2$ (shown in Sgr A* only, not in M87)
- M87 viewing angle \sim 20deg \rightarrow looking at source through outflowing matter (are we measuring M_{acc} ?)

Faraday Rotation measure simulation

Moscibrodzka et al. 2017

$$\frac{d}{ds} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix} = \begin{pmatrix} j_I \\ j_Q \\ j_U \\ j_V \end{pmatrix} - \begin{pmatrix} \alpha_I & \alpha_Q & \alpha_U & \alpha_V \\ \alpha_Q & \alpha_I & \rho_V & \rho_U \\ \alpha_U & -\rho_V & \alpha_I & \rho_Q \\ \alpha_V & -\rho_U & -\rho_Q & \alpha_I \end{pmatrix} \begin{pmatrix} I \\ Q \\ U \\ V \end{pmatrix}$$

$$\chi_{\text{tot}} \equiv arg(Q_{\text{tot}} + iU_{\text{tot}})/2$$

$$\chi_{\rm tot} \equiv arg(Q_{\rm tot} + iU_{\rm tot})/2$$

$$RM_{observed} = \frac{\chi_{tot}(\lambda_1) - \chi_{tot}(\lambda_2)}{\lambda_1^2 - \lambda_2^2}$$

•
$$RM = 10^4 \frac{e^3}{2\pi m_e^2 c^4} \int f_{\rm rel} n_e B_{||} dl$$

Rotation measure from radiative transfer models (blue points, 230-240 GHz), from integral (red points)

Moscibrodzka et al. 2017

Summary

- We show first GRMHD-based polarized images of M87 jet-disk connection near event horizon
- Disk dominated models: lower accretion rates, organized EVPAs, higher LP
- Jet dominated models (that nicely connect to radio jet): 100xhigher accretion rates, strong EVPA scrambling, low polarization (image integrated 1%, observed 1%)
- Jet dominated models that require $M_{acc}>>9\times10^{-4}~M_{sun}/yr$ (limits from RM simple models) are actually consistent with RM when modeled correctly
- We can probably test models with mm-VLBI imaging, however
 - We see jets but no disks maybe difficult to test accretion theory
 - A lot of polarization scrambling due to Faraday effects, can we constrain the magnetic fields in the disk and jets?