RADIATIVE AND MECHANICAL EFFICIENCIES OF BLACK HOLE ACCRETION

BLACK HOLE FEEDBACK

Olek Sądowski - MIT Massimo Gaspari - Princeton

Einstein Fellows

I. EFFICIENCY OF BLACK HOLE ACCRETION

2. AGN FEEDBACK

3. SUBGRID

ACCRETION ON BLACK HOLES

Black holes are most compact - this **compactness** allows for extraction of significant fraction of the gravitational energy (up to 40% of accreted rest mass energy for a BH!)

BH accretion is involved in some of most energetic phenomena:

- X-ray binaries
- Active galactic nuclei
- Tidal disruptions of stars
- Gamma ray-bursts
- Ultraluminous X-ray Sources

MODES OF ACCRETION

log of gas density

Thick and hot (ADAF)

- Lowest accretion rates $\dot{M} \lesssim 10^{-3} \dot{M}_{\rm Edd}$
- · Optically thin, hard spectrum
- Geometrically thick

$$L_{\rm Edd} = 1.25 \cdot 10^{38} M/M_{\odot} \, {\rm ergs/s}$$

 $\dot{M}_{\rm Edd} = \frac{L_{\rm Edd}}{\eta c^2} = 2.4 \cdot 10^{18} \frac{M_{\rm BH}}{M_{\odot}} \, {\rm g/cm^3}$

MODES OF ACCRETION

Thin disks

- moderate accretion rates $10^{-3}\dot{M}_{\rm Edd} \lesssim \dot{M} \lesssim 1\dot{M}_{\rm Edd}$
- · optically thick, soft spectrum

$$L_{\rm Edd} = 1.25 \cdot 10^{38} M/M_{\odot} \, {\rm ergs/s}$$

 $\dot{M}_{\rm Edd} = \frac{L_{\rm Edd}}{\eta c^2} = 2.4 \cdot 10^{18} \frac{M_{\rm BH}}{M_{\odot}} \, {\rm g/cm^3}$

accretion rate

MODES OF ACCRETION

Super-critical

- highest accretion rates $\dot{M} \gtrsim 1 \dot{M}_{
 m Edd}$
- optically and geometrically thick
- ultraluminous X-ray sources (ULX), gamma ray bursts (GRB), tidal disruptions of stars (TDEs)

accretion rate

TRANSITION REGIME

surface density (~optical depth)

TRANSITION REGIME

TRANSITION REGIME

- Radiative output increases with accretion rate
- Radiative efficiency depends on electron heating (here described through the electron heating fraction $\delta_{\rm e}$)

SIMULATIONS

SIMULATING BH ACCRETION

Essential components:

- space-time: (GR, Kerr-Schild metric)
- magnetized, fully ionized gas: ideal MHD
- photons:
 radiation transfer (simplified)
- electrons:
 thermal & non-thermal
- radiative postprocessing: spectra, images
- multidimensional fluid dynamics solver

SIMULATING BH ACCRETION

Essential components:

- space-time: (GR, Kerr-Schild metric)
- magnetized, fully ionized gas: ideal MHD
- photons:
 radiation transfer (simplified)
- electrons:
 thermal & non-thermal
- radiative postprocessing: spectra, images
- multidimensional fluid dynamics solver

KORAL (Sadowski+13,14,15)

- Finite-difference, explicit + implicit, conserving scheme for solving GR ideal RMHD
- Radiation evolved under two-moment approximation, provides cooling and pressure
- Grey but conservation of number of photons (allows for tracking the radiation temperature)
- Comptonization
- Synchrotron and bremmstrahlung Planck and Rosseland opacities
- Independent evolution of thermal electrons and ions
- Coulomb coupling
- Non-thermal electrons

$$(\rho u^{\mu})_{;\mu} = 0$$

 $(T^{\mu}_{\nu})_{;\mu} = G_{\nu},$
 $(R^{\mu}_{\nu})_{;\mu} = -G_{\nu}.$
 $(nu^{\mu})_{;\mu} = \dot{n}.$

$$F^{*\mu\nu}_{;\nu}=0$$

$$T_{\rm e}(n_{\rm e}s_{\rm e}u^{\mu})_{;\mu} = \delta_{\rm e}q^{\rm v} + q^{\rm C} + G_t$$

 $T_{\rm i}(n_{\rm i}s_{\rm i}u^{\mu})_{;\mu} = (1 - \delta_{\rm e})q^{\rm v} - q^{\rm C},$

Sufficient set to study accretion flows at any accretion rate!

SIMULATIONS

Name	$T_{\rm i}/T_{\rm e}$	$\dot{M}/\dot{M}_{ m Edd}$	$L_{\rm rad}/\dot{M}c^2$	$L_{\rm tot}/\dot{M}c^2$	$L_{\rm kin}/\dot{M}c^2$	$t_{\rm end}/t_{\rm g}$
f2t10	10	9.7×10^{-7}	0.0005	0.035	0.034	25000
f3t10	10	1.0×10^{-5}	0.0026	0.025	0.022	29000
f4t10	10	2.7×10^{-4}	0.033	0.065	0.032	26000
f5t10	10	2.9×10^{-3}	0.033	0.067	0.034	27500
f4t30	30	1.9×10^{-4}	0.0026	0.033	0.030	25000
f5t30	30	4.1×10^{-3}	0.017	0.056	0.039	28000
f6t30	30	1.6×10^{-2}	0.020	0.062	0.042	28000
f5t100	100	1.7×10^{-3}	0.0016	0.032	0.030	20500
f6t100	100	1.0×10^{-2}	0.014	0.055	0.041	27000

Other parameters:

 $a_* = 0.0$, resolution: 336x336x32, $\pi/2$ wedge in azimuth

SIMULATIONS

Name	$T_{\rm i}/T_{\rm e}$	$\dot{M}/\dot{M}_{ m Edd}$	$L_{\rm rad}/\dot{M}c^2$	$L_{\rm tot}/\dot{M}c^2$	$L_{\rm kin}/\dot{M}c^2$	$t_{\rm end}/t_{\rm g}$
f2t10	10	9.7×10^{-7}	0.0005	0.035	0.034	25000
f3t10	10	1.0×10^{-5}	0.0026	0.025	0.022	29000
f4t10	10	2.7×10^{-4}	0.033	0.065	0.032	26000
f5t10	10	2.9×10^{-3}	0.033	0.067	0.034	27500
f4t30	30	1.9×10^{-4}	0.0026	0.033	0.030	25000
f5t30	30	4.1×10^{-3}	0.017	0.056	0.039	28000
f6t30	30	1.6×10^{-2}	0.020	0.062	0.042	28000
f5t100	100	1.7×10^{-3}	0.0016	0.032	0.030	20500
f6t100	100	1.0×10^{-2}	0.014	0.055	0.041	27000

Other parameters:

 $a_* = 0.0$, resolution: 336x336x32, $\pi/2$ wedge in azimuth

Temperature

Radiative efficiency:

- increases with accretion rate
- reaches few % already at le-3 Eddington
- significant radiative emission from geometrically thick but optically thin disk

Kinetic efficiency:

- mechanical output insensitive to the mass transfer rate
- for a non-rotating BH close to 3%
- kinetic energy likely to dissipate and heat ISM

I. EFFICIENCIES OF BLACK HOLE ACCRETION

2. AGN FEEDBACK

3. SUBGRID

SMBHS AFFECT GALAXIES

Growing evidence for the importance of SMBH feedback:

- suppression of star formation rate for most massive galaxies
- SMBH mass velocity dispersion relation
- observations of cavities inflated by AGN outflows

•

HEATING THE CORE

- without external heating cores of clusters cool down very quickly
- implied SFR too high
- AGN heating provides the necessary energy source to explain the observed temperature profiles

 $L_{\rm x} \simeq 6 \times 10^{43} \, (T_{\rm x}/2.2 \, {\rm keV})^3 \, {\rm erg \, s^{-1}}$

FEEDING THE SMBH

MULTIPHASE CCA

DYNAMICS

ROTATION + COOLING + TURBULENCE + AGN HEATING => Chaotic Cold Accretion [CCA] $\sigma_v \sim 160 \text{ km/s}$ $\mathcal{H} \sim \langle \mathcal{L} \rangle$

turbulent eddies

injected turbulence ~160 km/s (similar to Hitomi detection)

AGN FEEDBACK CYCLE VIA CCA FUELING:

1

MG+16

top-down multiphase condensation

CCA feeds SMBH chaotic collisions

AGN outflows boosted

$$P_{\rm out} = \epsilon \, \dot{M}_{\rm BH} c^2$$

 $\mathcal{L} < \mathcal{H}$

INFLOWS

OUTFLOWS

thermalization region (outflows stop, energy deposited)

ENERGY BALANCE

$$P_{\text{out}} = P_{\text{OUT}} = L_{\text{x}}$$

$$L_{\rm x} \simeq 6 \times 10^{43} \, (T_{\rm x}/2.2 \, {\rm keV})^3 \, {\rm erg \, s^{-1}}$$

$$P_{\rm out} = \varepsilon_{\bullet} \dot{M}_{\bullet} c^2,$$

$$\varepsilon_{\bullet} \simeq 0.03 \pm 0.01$$
,

Growth rate of the BH:

$$\dot{M}_{\bullet} = \frac{L_{\rm x}}{\varepsilon_{\bullet} c^2} \simeq (0.04 \text{ M}_{\odot} \text{ yr}^{-1}) L_{\rm x,43.8}$$

= $(0.04 \text{ M}_{\odot} \text{ yr}^{-1}) T_{\rm x,7.4}^3$.

OUTFLOW PROPERTIES

Quenched cooling flow the rate at which clumps of gas fall into the innermost region due to Chaotic Cold Accretion (based on obs. + sim., see Gaspari+)

$$\dot{M}_{\rm cool} \simeq (1.1~{\rm M}_{\odot}\,{\rm yr}^{-1})\,T_{\rm x,7.4}^2 = (1.1~{\rm M}_{\odot}\,{\rm yr}^{-1})\,L_{\rm x,43.8}^{2/3},$$

Mechanical power:

(induced by the accretion flow)

$$P_{
m out} = rac{1}{2} \dot{M}_{
m out} \, v_{
m out}^2,$$
 $P_{
m OUT} = rac{1}{2} \dot{M}_{
m OUT} \, v_{
m OUT}^2,$

(affected by interaction with external gas - entrainment)

(INNER) OUTFLOW VELOCIT

$$P_{
m out} = rac{1}{2} \dot{M}_{
m out} \, v_{
m out}^2,$$
 $P_{
m OUT} = rac{1}{2} \dot{M}_{
m OUT} \, v_{
m OUT}^2,$

$$P_{\text{out}} = P_{\text{OUT}} = L_{\text{x}}$$

$$P_{\rm out} = \varepsilon_{\bullet} \dot{M}_{\bullet} c^2,$$

$$P_{\mathrm{out}} = \varepsilon_{\bullet} \dot{M}_{\bullet} c^2, \qquad P_{\mathrm{OUT}} = \varepsilon_{\mathrm{BH}} \dot{M}_{\mathrm{cool}} c^2$$

$$\dot{M}_{
m out} = \dot{M}_{
m cool} - \dot{M}_{ullet} = \left(1 - rac{arepsilon_{
m BH}}{arepsilon_{ullet}}
ight) \dot{M}_{
m cool} pprox \dot{M}_{
m cool}$$
 accretion flow large scale horizon generated outflows CCA inflow inflow rate

Velocity of outflows - UFOs:

$$v_{\text{out}} = \sqrt{\frac{2\,\varepsilon_{\bullet}\dot{M}_{\bullet}c^{2}}{\dot{M}_{\text{out}}}} = \sqrt{\frac{2\,\varepsilon_{\text{BH}}}{1 - \varepsilon_{\text{BH}}/\varepsilon_{\bullet}}} \, c \simeq \sqrt{2\,\varepsilon_{\text{BH}}} \, c \quad (17)$$

$$\simeq (1.4 \times 10^{4} \, \text{km s}^{-1}) \, T_{\text{x},7.4}^{1/2} = (1.4 \times 10^{4} \, \text{km s}^{-1}) \, L_{\text{x},43.8}^{1/6}$$

INFLOW VS OUTFLOW TRANSFER RATE

$$P_{
m out} = rac{1}{2} \dot{M}_{
m out} \, v_{
m out}^2,$$

$$P_{
m OUT} = rac{1}{2} \dot{M}_{
m OUT} \, v_{
m OUT}^2,$$

$$P_{\text{out}} = P_{\text{OUT}} = L_{\text{x}}$$

$$P_{\rm out} = \varepsilon_{\bullet} \dot{M}_{\bullet} c^2,$$

fraction of large scale inflow reaching the horizon:

$$\dot{M}_{ullet} = rac{arepsilon_{
m BH}}{arepsilon_{ullet}} \, \dot{M}_{
m cool}.$$

$$\dot{M}_{\bullet} = \frac{\varepsilon_{\rm BH}}{\varepsilon_{\bullet}} \dot{M}_{\rm cool}$$
 $\frac{\varepsilon_{\rm BH}}{\varepsilon_{\bullet}} \approx 10^{-2} - 10^{-1}$

ENTRAINMENT REGION

$$v_{
m OUT} = \sqrt{rac{2P_{
m OUT}}{\dot{M}_{
m OUT}}} = \eta^{-1/2} \, v_{
m out},$$

assuming I/r density scaling:

Entrainment factor:

$$\eta = \left(\Omega \rho_0 r_0 \, r \, rac{v_{
m out}}{\dot{M}_{
m out}}\right)^{2/3}$$

ENTRAINMENT REGION

$$\dot{M}_{
m OUT} = \eta \, \dot{M}_{
m out}$$

assuming I/r density scaling:

$$\eta = \left(\Omega \rho_0 r_0 \, r \, \frac{v_{\rm out}}{\dot{M}_{\rm out}}\right)^{2/3}$$

Entrainment factor for multi-phase gas:

$$\eta_{\rm hot} \simeq 40 \ T_{\rm x,7.4}^{-1} \, r_{1 \, \rm kpc}^{2/3}$$

$$\eta_{\rm warm} \simeq 183 \ T_{\rm x,7.4}^{-1} \, r_{1\,{\rm kpc}}^{2/3}$$

$$\eta_{\rm cold} \simeq 850 \ T_{\rm x,7.4}^{-1} \, r_{\rm 1\,kpc}^{2/3}$$

(OUTER) OUTFLOW VELOCITY VERIFICATION

$$v_{
m OUT} = \sqrt{rac{2P_{
m OUT}}{\dot{M}_{
m OUT}}} = \eta^{-1/2} \, v_{
m out},$$

Figure 2. Outflow velocity as a function of radial distance (normalized to the Schwarzschild radius $r_{\rm S}$) for the unified UFO plus warm absorber X-ray data (red; Tombesi et al. 2013) and the prediction of our energy-conserving CCA GR-RMHD model (blue; §3). The dashed green line shows the (inconsistent) purely momentum-driven outflow. The region within $100\,r_{\rm S}$ is the UFO generation region, where most of the inflow mass is ejected. At larger radii, the UFO entrains progressively more mass, slowing down. The adopted background profile slope is $\alpha=1$. The proposed model, based on linking the horizon/GR-RMHD and macro/CCA efficiencies, well reproduces the data within scatter.

I. EFFICIENCIES OF BLACK HOLE ACCRETION

2. AGN FEEDBACK

3. SUBGRID

What is typically done:

$$P_{\rm fb} = \epsilon_1 \dot{M}_{\bullet} c^2$$
$$\dot{M}_{\bullet} = \epsilon_2 \dot{M}_{\rm Bondi}$$

 ϵ_1 , ϵ_2 - some numbers, chosen in a way to make the simulation work right

Power put directly into thermal energy

One can do better!

 $L_{\rm x} \simeq 6 \times 10^{43} \, (T_{\rm x}/2.2 \, {\rm keV})^3 \, {\rm erg \, s^{-1}}$

Low-res (dR>10kpc)

- Estimate halo cooling rate, inject it back as thermal energy
- Grow BH with:

$$\dot{M}_{\bullet} = \frac{L_{\rm x}}{\varepsilon_{\bullet} c^2} \simeq (0.04 \text{ M}_{\odot} \text{ yr}^{-1}) L_{\rm x,43.8}$$

= $(0.04 \text{ M}_{\odot} \text{ yr}^{-1}) T_{\rm x,7.4}^3$.

Low-res (dR>10kpc)

- Estimate halo cooling rate, inject it back as thermal energy
- Grow BH with:

$$\dot{M}_{\bullet} = \frac{L_{\rm x}}{\varepsilon_{\bullet} c^2} \simeq (0.04 \text{ M}_{\odot} \text{ yr}^{-1}) L_{\rm x,43.8}$$

= $(0.04 \text{ M}_{\odot} \text{ yr}^{-1}) T_{\rm x,7.4}^3$.

Super-high-res (dR~Rbondi)

- Estimate halo cooling rate
- Inject outflow with:

$$P_{\text{out}} = P_{\text{OUT}} = L_{\text{x}}$$

Grow BH with:

$$v_{\text{out}} = \sqrt{\frac{2\,\varepsilon_{\bullet}\dot{M}_{\bullet}c^{2}}{\dot{M}_{\text{out}}}} = \sqrt{\frac{2\,\varepsilon_{\text{BH}}}{1 - \varepsilon_{\text{BH}}/\varepsilon_{\bullet}}} \, c \simeq \sqrt{2\,\varepsilon_{\text{BH}}} \, c \quad (17)$$
$$\simeq (1.4 \times 10^{4} \,\,\text{km}\,\text{s}^{-1}) \, T_{\text{x},7.4}^{1/2} = (1.4 \times 10^{4} \,\,\text{km}\,\text{s}^{-1}) \, L_{\text{x},43.8}^{1/6}$$

$$\dot{M}_{\bullet} = \frac{L_{\rm x}}{\varepsilon_{\bullet} c^2} \simeq (0.04 \text{ M}_{\odot} \text{ yr}^{-1}) L_{\rm x,43.8}$$

= $(0.04 \text{ M}_{\odot} \text{ yr}^{-1}) T_{\rm x,7.4}^3$.

 $L_{\rm x} \simeq 6 \times 10^{43} \, (T_{\rm x}/2.2 \, {\rm keV})^3 \, {\rm erg \, s^{-1}}$

Typical resolution (dR~lkpc)

- Estimate halo cooling rate
- Grow BH with:

$$\dot{M}_{\bullet} = \frac{L_{\rm x}}{\varepsilon_{\bullet} c^2} \simeq (0.04 \text{ M}_{\odot} \text{ yr}^{-1}) L_{\rm x,43.8}$$

= $(0.04 \text{ M}_{\odot} \text{ yr}^{-1}) T_{\rm x,7.4}^3$.

Inject mass-loaded outflow:

$$\dot{M}_{
m OUT} = \eta \, \dot{M}_{
m out}$$

$$v_{
m OUT} = \sqrt{rac{2P_{
m OUT}}{\dot{M}_{
m OUT}}} = \eta^{-1/2} \, v_{
m out},$$

$$\eta_{
m hot} \simeq 40 \; T_{
m x,7.4}^{-1} \, r_{
m 1\,kpc}^{2/3}$$

$$\eta_{\rm warm} \simeq 183 \ T_{\rm x,7.4}^{-1} \, r_{1 \, \rm kpc}^{2/3}$$

$$\eta_{\rm cold} \simeq 850 \ T_{\rm x,7.4}^{-1} \, r_{\rm 1\,kpc}^{2/3}$$

SUMMARY

- GR radiative MHD simulations allow for the first time to numerically study the intermediate regime of BH accretion
- Radiative efficiency can reach few %
 of the rest mass energy flux even for
 thick and optically thin disks
 (~luminous hot accretion flows LHAFs)
- Mechanical efficiency ~3% for zero BH spin, independent of the accretion rate for thick disks
- Coupling micro- and macro-scale efficiencies allows for constraining the outflow properties in AGN
- First physical sub grid model for AGN feedback!

self-advertisement: "Thin accretion discs are stabilized by a strong magnetic field", Sadowski 2016

SUMMARY

- GR radiative MHD simulations allow for the first time to numerically study the intermediate regime of BH accretion
- Radiative efficiency can reach few %
 of the rest mass energy flux even for
 thick and optically thin disks
 (~luminous hot accretion flows LHAFs)
- Mechanical efficiency ~3% for zero BH spin, independent of the accretion rate for thick disks
- Coupling micro- and macro-scale efficiencies allows for constraining the outflow properties in AGN
- First physical sub grid model for AGN feedback!

self-advertisement: "Thin accretion discs are stabilized by a strong magnetic field", Sadowski 2016