A tale of radiation pressure
dominated disks: theory, observations,
and cycles of life.
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The Eddington Limit

v steady spherically symmetrical
accretion

» Fully ionized hydrogen

v Radiation exerts force on the
electrons via Thomson scattering
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Assumptions:

* Spherical accretion (?7?)

* Close enough to the compact object, all disks
are the same! (?)

* There should be no difference in the macro-
physics of accretion onto.a BH and a NS. (?7?)

* Inclination Is not an issue (?7??77?)

— or we accept that we cannot do much about it
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~Disk is unstable when you reach
Eddington....

e Actually, the disk becomes thermally unstable at
around a few % Eddington! thanks to radiation
from the inner parts of the disk.

* Many theoretical work on this subject.
Prediction: limit cycles (Honma et al.
1992;Szuszkiewicz & Miller 1998; Janiuk et al.
2002; Li et al. 2007)

e Have we seen disk instabilities?
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* Have we seen disk instabilities? Yes... for many years...
but in one single source:

GRS 1915+105



~ |GRS 1915+105

* Discovered in August 1992

("GRS" stands for "GRANAT source")
e ~10 MO Black hole

* ~10 kpc
e ~ 33 days orbital period
- ~1.2 M K-M llI companion star

o Often at LE y
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luminosity of the source is near the Eddington luminosity. The inclusion of a jet allows us to reproduce
several additional observed features of GRS 1915+ 105. We conclude that the most likely structure of
the accretion flow in this source is that of a cold disk with a modified viscosity law, plus a corona that
accounts for much of the X-ray emission and unsteady plasma ejections that occur when the luminosity
of the source is high. The disk is geometrically thin (as required by the data) because most of the accre-

tion power is drained by the corona and the jet.
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Fig. 9.—Light curves for unstable accretion disk with a viscosity prescription given by eq. (12), and with a fluctuating corona and plasma ejections. The
fraction fis given by eq. (18), oy = 0L.008, and £, = 8 for all the panels. The dimensionless accretion rate s is shown in the upper or lower right-hand corner of

each panel.

TIME-DEPENDENT DISK MODELS FOR THE MICROQUASAR GRS 1915+105, NAYAKSHIN et al. 2000




So although theory predicted disk
Instabilities starting at few %
Eddington, we only see them at ~L ead

(so far in one source)

Hardness




What makes the disk stable at high
accretion rates?

» Advection cooling? (abramowicz et al. 1988)

* Energy Is channeled to corona/winds/jet/others?
(e.g., Svensson & Zdziarski 1994)

» Alternative parametrization of the viscosity ?
(e.g.,Lightman & Eardley 1974; Stella & Rosner 1984)

» Stochastic variations In the viscous parameter
(Janiuk, A. & Misra, R. 2012)

Are numerical simulations the solution?
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What about NSs?

he case of type II bursts (the release of gravitational
potential energy due to spasmodic accretion onto a
compact object) in

(I) Bursting Pulsar

(i1) the Rapid Burster



Bursting pulsar

— NS as it shows pulsations (but no
thermonuclear bursts)

— distance NOT known

— Spin: 0.467 s, 11.8 days orbital period,
B=10A10 — 10N 11 G
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Of course the Iinstablilities are ...
different ...
(or are they not?)



Rapid burster

— NS as it shows thermonuclear x-ray bursts
— Distance known (in a globular cluster)

— NO spin, B or system parameters measured
so far.
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And a few weeks ago...

Obs 1 (Oct 16 1999)

Rapid Burster

— NS

— B <10"8G

— Suggested low spin
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Can It be that we are seeing the same
Instability in both BHs and NSs ?

Despite the differences?



First hint
(observations vs. observations)?
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Rapid burster
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Gnuplot (window id : Q)
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Second hint
(Observations vs Theory)?
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Summary

* Theory predicts that radiation dominated disks should
be thermally unstable unless you have a way to
dissipate the extra energy.

Do we see systems showing “expected” instabilities?
Yes, the 4 weirdest sources out there!

* S0 why are these sources different? For good or for bad,
the news are that you can have a BH and a NS showing
very similar instability.

* The question still remains: why only 4! when there are
many systems out there which look exactly the same.
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