Jean-Marie Hameury, Strasbourg Astronomical Observatory

DIM basic hypotheses

- Thin disk approximation:
 - Keplerian motion
 - Radial gradients small as compared to vertical gradients
 - Vertical structure decouples from radial structure
 - Radial gradients small as compared to vertical gradients
 - Vertical hydrostatic equilibrium
- Alpha viscosity
 - Also for vertical structure
 - Hydrostatic and thermal equilibrium assumed, with an effective alpha different from the actual one
- Thermal equation in z direction: time-dependent terms proportional to heat dissipation in steady state, i.e. to P
 - => effective α , different from actual α
- $T_{eff} = T_{eff}(\Sigma, T_c, r)$ $v = v(\Sigma, T_c, r)$
- If thermal equilibrium, $T_c = T_c(\alpha, \Sigma, r) => S$ curves
- α different on the hot and cold branches: $\alpha = \alpha(T_c, ...)$

Jan 26, 2017 KITP Disks17

• Disc stable if

$$\dot{M} < M_A = 4 \ 10^{15} \ M_1^{-0.88} r_{10}^{-2.65} \ g/s \ everywhere$$
 or $\dot{M} < M_B = 9.5 \ 10^{15} \ M_1^{-0.89} r_{10}^{-2.68} \ g/s \ everywhere$ i.e. if

$$\dot{M} < M_A(r_{in}) = 9 \ 10^{12} \ M_1^{-0.88} \ r_9^{2.65} \ g/s \ (WD)$$

$$1 \ 10^5 \ M_1^{-0.88} \ r_6^{2.65} \ g/s \ (NS)$$
 or
$$\dot{M} < M_B(r_{out}) = 4.5 \ 10^{18} \ M_1^{-0.89} r_{11}^{2.68} \ g/s$$

Additional ingredients

- Tidal torques:
 - Angular momentum conservation equation
 - Heating term
 - $T_{tid} \sim (r/a)^5$ or $exp((r-r_{tid})/\delta r)$
- Hot spot
- Inner disc truncation by e.g. magnetic field
- Irradiation by a hot white dwarf
- Mass transfer fluctuations
- Chemical composition (He discs)
- => 3 movies

- Heating front: width ~ a few h, velocity v_f ~ α_h c_s
- Cooling front: broader and slower

- Inside/out outbursts general case
- Outside/in outbursts if M larger than $\sim M_A(r_{out})$; do not start at the disc edge, but at $r_{in} << r << r_{out}$
- Peak mass accretion rate: $^{\sim}$ $\dot{M}_{B}(r_{out})$ if the heating front reaches the outer disc edge
- Quiescence time = diffusion time; to 1st order independent on M, varies as $\alpha_{\rm cold}^{-1}$
- Low M: sequence of small and large outbursts; the heating front does not reach the outer edge

Drawbacks, uncertainties, problems

- α viscosity, temperature dependent
- Heating fronts narrow,
- Model predict that quiescent level increases with time; not observed