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1. Gravitational instability (GI) in accretion disks
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protoplanetary disks
(SH and Shi, in review) 

3. Radial dependence of GI in irradiated protoplanetary disks 
(SH and Shi, in preparation)



Why Viscosity Is So Important in the Disks (2)

! Viscosity is important both in dynamics and in energetics:

! viscous stress ⇒ angular momentum transfer in the disks
! viscous dissipation ⇒ heat source of the disks
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Angular momentum transport in accretion disks

• The evolution equation of surface density ⌃(r, t) is written as
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• If shear stress is locally determined as Wr�(⌃; r), the evolution equa-

tion can be solved as a diffusion equation.



Origin of shear stress in accretion disks

Maxwell stress

magneto-rotational
 instability (MRI)

dΩ / dr < 0

Reynolds stress

vertical shear
instability, …

gravitational stress

gravitational
instability (GI)

Q < 1
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Figure 1
(a) A 3D isothermal simulation from the parameter studies of Kratter et al. (2010a), where Md/M∗ ≈ 0.5.
The strong left-right asymmetry is evidence of a dominant m = 1 mode. (b) A 3D simulation from Cossins
et al. (2009) with slow cooling, where Md/M∗ ≈ 0.1. Note the dominance of high m spiral structure.
Reproduced by permission of the AAS.

unstable modes is never initiated on scales ≪H . These results imply that gravito-turbulence
extends over a very small range of length scales. Additionally, there is no obvious indication of
an energy cascade with dissipation occurring on the smallest scales. On the contrary, in global,
thin-disk simulations, Cossins et al. (2009) find that mode dissipation occurs through large-scale,
almost sonic shocks. In this respect, the dynamics introduced by local GI is not akin to what one
usually calls turbulence. Morphologically, structures in shearing box simulations look more like
turbulence than the high m, tightly wound spirals seen in global simulations. This might be an
artifact of the shearing sheet/box approximation but merits further investigation. Whether gravito-
turbulence shares properties with isotropic, isothermal turbulence has important implications for
fragmentation, as we discuss in Section 3.8.

3.3.2. Large H/r. As the mass of the disk is increased, the disk becomes unstable at larger values
of H/r and higher values of Q, as predicted from the Lau & Bertin (1978) dispersion relation. Once
the disk-star mass ratio increases above ≈0.1, the evolution of the instability changes character
somewhat, transitioning from quasi-stationary spiral structures to recurrent strong episodes of
spiral activity, followed by brief quiescent phases. This behavior has been observed in a range of
simulations including isolated disks with adiabatic equations of state with and without optically
thin cooling (Laughlin et al. 1997, Tsuribe & Inutsuka 1999, Matsumoto & Hanawa 2003, Lodato
& Rice 2005, Mejia et al. 2005), isothermal and irradiated embedded disks (Krumholz et al. 2007,
Kratter et al. 2010a), and even 2D, embedded disks with radiative heating and cooling (Zhu et al.
2012). A similar, recurrent behavior has also been identified in N-body galaxy simulations, where
dynamical cooling occurs via the injection of low-velocity dispersion, or “cold” particles (Sellwood
& Carlberg 1984).

The episodic behavior observed in global simulations is likely due to one of two phenomena.
The first is the growth of the m = 1 mode, as the disk mass becomes comparable with the
stellar mass [Md ≥ 0.3M∗, in analytic estimates from Adams et al. (1989)]. Nonaxisymmetric
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Kratter and Lodato (2016)
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Gravitational instability in accretion disks

• Instability condition for the axisymmetric mode in infinitesimally thin

disks (Toomre 1964)

Q ⌘ c
s

⌦

⇡G⌃
< 1

• Q tends to be self-regulated to ⇠ 1 (Paczynski 1978)

1. Q < 1: GI and heating sets in

2. T increases if heating overcomes cooling

3. Q > 1: GI and heating is quenched

4. T decreases

5. ! 1
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Figure 1
(a) A 3D isothermal simulation from the parameter studies of Kratter et al. (2010a), where Md/M∗ ≈ 0.5.
The strong left-right asymmetry is evidence of a dominant m = 1 mode. (b) A 3D simulation from Cossins
et al. (2009) with slow cooling, where Md/M∗ ≈ 0.1. Note the dominance of high m spiral structure.
Reproduced by permission of the AAS.

unstable modes is never initiated on scales ≪H . These results imply that gravito-turbulence
extends over a very small range of length scales. Additionally, there is no obvious indication of
an energy cascade with dissipation occurring on the smallest scales. On the contrary, in global,
thin-disk simulations, Cossins et al. (2009) find that mode dissipation occurs through large-scale,
almost sonic shocks. In this respect, the dynamics introduced by local GI is not akin to what one
usually calls turbulence. Morphologically, structures in shearing box simulations look more like
turbulence than the high m, tightly wound spirals seen in global simulations. This might be an
artifact of the shearing sheet/box approximation but merits further investigation. Whether gravito-
turbulence shares properties with isotropic, isothermal turbulence has important implications for
fragmentation, as we discuss in Section 3.8.

3.3.2. Large H/r. As the mass of the disk is increased, the disk becomes unstable at larger values
of H/r and higher values of Q, as predicted from the Lau & Bertin (1978) dispersion relation. Once
the disk-star mass ratio increases above ≈0.1, the evolution of the instability changes character
somewhat, transitioning from quasi-stationary spiral structures to recurrent strong episodes of
spiral activity, followed by brief quiescent phases. This behavior has been observed in a range of
simulations including isolated disks with adiabatic equations of state with and without optically
thin cooling (Laughlin et al. 1997, Tsuribe & Inutsuka 1999, Matsumoto & Hanawa 2003, Lodato
& Rice 2005, Mejia et al. 2005), isothermal and irradiated embedded disks (Krumholz et al. 2007,
Kratter et al. 2010a), and even 2D, embedded disks with radiative heating and cooling (Zhu et al.
2012). A similar, recurrent behavior has also been identified in N-body galaxy simulations, where
dynamical cooling occurs via the injection of low-velocity dispersion, or “cold” particles (Sellwood
& Carlberg 1984).

The episodic behavior observed in global simulations is likely due to one of two phenomena.
The first is the growth of the m = 1 mode, as the disk mass becomes comparable with the
stellar mass [Md ≥ 0.3M∗, in analytic estimates from Adams et al. (1989)]. Nonaxisymmetric

www.annualreviews.org • Gravitational Instability Disks 281

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 2
01

6.
54

:2
71

-3
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.o

rg
 A

cc
es

s p
ro

vi
de

d 
by

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 - 

Sa
nt

a 
B

ar
ba

ra
 o

n 
02

/0
8/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Kratter and Lodato (2016)

Angular mom. transport by GI depends on Mdisk / Mstar

“gravito-turbulence"m=1 spiral waves

Mdisk / Mstar large small

angular mom. 
transport non-local local

Mdisk / Mstar ~ 0.5 Mdisk / Mstar ~ 0.1
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Figure 1. Surface density structure at the end of the simulations for (upper left) q = 0.05, (upper right) q = 0.1 and (bottom) q = 0.25.

momentum of the disc is conserved to within a few per cent through-
out all the simulations.

When low values of the artificial viscosity are used, particle in-
terpenetration might lead to a poor representation of strong shocks
in SPH. This is not a serious issue in our case, because in our sim-
ulations only mildly supersonic shocks are involved. Based on the
density contrast in the spiral arms, we estimate the Mach number
of the shocks to be M ! 1.5. At these low values of M, a value
of β SPH ≈ 0.2 is already sufficient to stop particle interpenetration
(Bate 1995). This is confirmed by the well-defined spiral structure
that we obtain (which would have been smeared out if significant
particle interpenetration was indeed present), consistent with the re-
sults of previous simulations that used the standard SPH viscosity
and higher values for the viscosity coefficients (Rice et al. 2003a,b).

4.2 Angular momentum transport and energy dissipation

The torque produced by gravitational instabilities in the disc is given
by the sum of the two terms described in equations (10) and (11).
After averaging the stress tensor azimuthally and radially, over a
small region "R = 0.1, we compute the corresponding value of α

(see equation 4):

α(R) =
∣

∣

∣

∣
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&c2
s

. (14)

The resulting radial profiles of α are shown in Fig. 5 for the three
cases q = 0.05, 0.1 and 0.25. The upper panels show separately
the hydrodynamic and gravitational contributions to α, while the
bottom panels show the sum of the two. The plots show the time
average of α at the end of the simulation, once the disc has reached
a quasi-steady state. The time-averaging interval is 500 time units,
i.e. 0.6 orbital times at the outer disc edge.

We can now use the general results of viscous disc theory outlined
in Section 2 to test the locality of transport in our simulations. In fact,
equation (9) gives us firm expectations for the value of α needed to
balance the imposed cooling, if energy dissipation can be treated in
a viscous framework, i.e. by using equation (7). In particular, in our
simulations t cool$ = β = 7.5, γ = 5/3 and, because our discs are
nearly Keplerian, d ln $/d ln R ≈ −3/2. Inserting these numbers
in equation (9) would give us an expected value of α ≈ 0.05. It
is important to note that the fact that the expected α turns out to
be nearly independent on radius is a result of choosing the cooling
time to be simply proportional to the dynamical time-scale. In the
general case, of course, the resulting α need not be constant. The
dotted line in Fig. 5 shows the expected value of α. Our results are
in fairly good agreement with the expectations of viscous transport
theory.

It is also interesting to compare the dissipation rate D(R) that
would result if the transport process were viscous, i.e. computing
D(R) based on equation (7), with the actual dissipation rate. Because

C⃝ 2004 RAS, MNRAS 351, 630–642
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Mdisk / Mstar = 0.25

Mdisk / Mstar = 0.10Mdisk / Mstar = 0.05

Lodato and Rice (2005)

638 G. Lodato and W. K. M. Rice

0 5 10 15 20
-0.1

0

0.1

0.2

0 5 10 15 20
-0.1

0

0.1

0.2

0 5 10 15 20
-0.1

0

0.1

0.2

0 5 10 15 20
-0.1

0

0.1

0.2

0 5 10 15 20
-0.1

0

0.1

0.2

0 5 10 15 20
-0.1

0

0.1

0.2

Figure 5. Effective α produced by gravitational instabilities for (upper left) q = 0.05, (upper right) q = 0.1 and (bottom) q = 0.25. The top panel shows the
separate contribution of αgrav and αReyn, and the lower panel shows the sum of the two contributions compared with the expected value from a local viscous
model (dotted line).

indirect, i.e. based on the disc emission at long wavelengths, such
as in the infrared (starting from Adams et al. 1988) and at submil-
limetre (submm) wavelengths (Beckwith et al. 1990), or direct, i.e.
by imaging of silhouette discs in the Orion nebula (McCaughrean
& O’Dell 1996). Especially in the earliest phases of star forma-
tion these discs might be fairly massive; for example, Launhardt &
Sargent (2001), using submm observations, report the discovery of
a massive disc (with M disc/M⋆ ! 0.3) in a very young (class I)
protostellar object. There are also some indications that the discs in
FU Orionis objects might be fairly massive; Sandell & Weintraub
(2001) report M disc/M⋆ ! 0.1 in most of the FU Orionis discs they
have observed. As already mentioned, detailed modelling of FU
Orionis outbursts produces radial profiles of Q that fall below unity
already at a distance of ≈1 au from the central object (Bell & Lin
1994). All these systems are likely to be affected by self-gravity
that, if indeed energy dissipation is non-local, may produce some
observable modification in the SED. It is then interesting to see that
the models by Bell & Lin (1994) predict H/R ! 0.1, which, accord-
ing to the results of this work, are large enough for non-local effects
to become important, as suggested by Lodato & Bertin (2001).

In the context of AGN discs, the distance at which the disc be-
comes marginally stable to gravitational instabilities is typically of
the order of 103 Rg (Lodato & Bertin 2003), where Rg is the grav-
itational radius of the black hole. Water maser emission (Greenhill

& Gwinn 1997) and radio continuum observations (Gallimore et al.
1997) show that in many cases the disc can extend to radii much
larger than that, thus allowing self-gravity to influence the disc struc-
ture. In this context, self-regulated models have been applied both
to the modelling of the SED (Sirko & Goodman 2003) and to the
modelling of the rotation curve in the outer disc of the Seyfert galaxy
NGC 1068 (Lodato & Bertin 2003). Johnson & Gammie (2003) use
their 2D results with ‘realistic’ cooling (see Section 5.1) to argue
that the disc model proposed by Lodato & Bertin (2003) for NGC
1068 would be subject to fragmentation, but unfortunately Johnson
& Gammie (2003) do not explore the region of the parameter space
relevant to the Lodato & Bertin model.

As a final comment, we note that the present work refers to the
situation where the dominant source of transport and dissipation is
provided by gravitational instabilities. In observed systems, other
sources of transport could be present, which might reduce the effect
of gravitational instabilities.

6 C O N C L U S I O N S

In this paper we have investigated the transport properties induced by
disc self-gravity in relatively massive accretion discs. In particular,
we have discussed the extent to which angular momentum transport

C⃝ 2004 RAS, MNRAS 351, 630–642
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Mdisk / Mstar = 0.25

Locality of angular momentum transport

• Transport is local when M
disk

/M
star

 0.25 (Lodato & Rice 2005)



β = 10 
 (weak cooling)

β = 2 
 (strong cooling) Gammie (2001)

Gravito-turbulence vs. fragmentation

• Using a simple cooling function with � being constant cooling time

@e

@t
= � e

�⌦�1
,

Gammie (2001) found for 2D (razor thin) disks of � = 2

(
� > 3 gravito-turbulence with Q ⇠ 1

� < 3 fragmentation.



Investigating fragmentation in discs L59

Figure 3. Surface density structure of discs with the same mass as in
Fig. 2 but with a specific heat ratio of γ = 7/5, and cooling times of
tcool" = 12 (left-hand panel) and tcool" = 13 (right-hand panel). The lack
of fragmentation in the right-hand panel in this case suggests that for γ =
7/5 the fragmentation boundary is at a cooling time of between tcool" = 12
and 13. The colour scale of the density and the linear scale of the image are
the same as in Fig. 1.

As a further numerical check, we repeated one set of calculations
using 125 000 particles rather than 250 000 particles. We consid-
ered only the case where Mdisc = 0.25 and γ = 5/3. The result with
125 000 particles was the same as the simulation with 250 000 parti-
cles. Fragmentation occurred for tcool = 6"−1 and did not occur for
tcool = 7"−1. Therefore not only do the simulations that fragment
satisfy the Jeans criterion for fragmentation (Bate & Burkert 1997),
but it also appears that the results are resolution-independent.

3 A M A X I M U M VA L U E F O R G R AV I TAT I O NA L
S T R E S S E S

Based on the results summarized in Table 1, for every value of
Mdisc/M ∗ and γ , we can define a minimum cooling time for which
no fragmentation occurs, t nf, and a maximum cooling time for which
fragmentation does occur, t f. The boundary value of tcool for frag-
mentation can therefore be defined as t frag = 1/2(t nf + t f), with
a corresponding uncertainty given by #t frag = 1/2(t nf − t f). The
stress αmax, corresponding to t frag, can be computed from equa-
tion (1), and the corresponding uncertainty is given by #αmax =
(αmax/t frag)#t frag. The resulting values of t frag and αmax are shown
as data points in Fig. 4, together with the curves defined by equa-
tion (1), for three values of γ = 2, 5/3 and 7/5. The filled green
squares with error bars refer to the simulations presented here. The
open blue triangle represent the value found by Gammie (2001) in
his local, 2D simulations that assumed γ = 2. This is consistent with
our result which suggests that, for γ = 2, fragmentation should oc-
cur between tcool" = 3 and 4. In fact, it is worth noting that, since
Gammie’s simulations are 2D, we should not expect a perfect agree-
ment between our 3D results and his ones. This can be partially seen
already from Fig. 4. In particular, care should be taken in consider-
ing the role of the adiabatic index γ , which has a different physical
interpretation in 2D and in 3D. However, as discussed in more detail
in Gammie (2001), a mapping is possible between the 2D and the
3D adiabatic indices. In the case of self-gravitating discs, Gammie’s
choice of a 2D adiabatic index equal to 2 does correspond to γ = 2
also in 3D (Gammie 2001).

As can be seen, fragmentation occurs at an almost constant value
of α (αmax ∼ 0.06, indicated by the horizontal green line in Fig. 4),
thus vindicating the idea that gravitational instabilities cannot pro-
vide (in a steady state) a stress larger than αmax. If the dissipation

0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4. The relationship defined by equation (1) for γ = 2 (solid line), γ =
5/3 (short-dashed line) and γ = 7/5 (long-dashed line). The data points show
the couples (t frag", αmax) as derived from the simulations: the green squares
refer to our simulations, while the blue triangle refers to Gammie (2001).
The horizontal green line illustrates the constant values α = 0.06251.

associated with αmax is not sufficient to balance the cooling rate,
then the reaction of the disc is to fragment into bound objects.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this Letter we elucidate the processes that lead to the fragmen-
tation of a massive disc. Our main result is the determination of a
maximum value for the stress that can be provided by gravitational
instabilities in a quasi-steady state. We then argue that fragmenta-
tion will occur whenever the external cooling requires, in order to
be balanced by internal heating, a stress larger than this maximum
value, which we estimate to be αmax ∼ 0.06 (in units of the local disc
pressure). As a consequence, discs with larger values of the ratio
of the specific heats will be less susceptible to fragmentation. For
γ = 7/5, for example, we estimate the fragmentation cooling time
to be between 12"−1 and 13"−1, compared with between 3"−1 and
4"−1 for γ = 2 (Gammie 2001).

We wish to stress that the threshold value for α that we have
found here refers to a quasi-steady state, in which the disc stays
in thermal equilibrium and the relevant physical quantities do not
change significantly on time-scales shorter than the thermal time-
scale. We have already shown (Lodato & Rice 2005) how very
massive discs (with masses comparable to that of the central ob-
ject) can generate transient strong spiral episodes, with correspond-
ingly large values of the stress α, which, however, do not last for
longer than one dynamical time-scale (see details in Lodato & Rice
2005).

A further remark is in order, in reference to the possibility of non-
local transport in self-gravitating discs. In all our simulations, we
did not find any significant evidence for non-local transport of en-
ergy due to self-gravity (Lodato & Rice 2004, 2005). If the disc does
not fragment, the dissipation provided by the gravitational stresses
balances almost exactly the imposed cooling rate. However, this
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Figure 1. Surface density structure of discs with masses Mdisc = 0.1 and
with cooling times of tcool! = 3 (top left), tcool! = 5 (top right), tcool! =
6 (bottom left) and tcool! = 7 (bottom right). The logarithmic colour scale
in each figure is from 10 to 2 × 104 g cm −2. The linear scale is from −25
to 25 for both axes.

this particular case we did not complete a tcool! = 4 run since the
tcool! = 5 run had already shown signs of fragmentation prior to the
completion of the tcool! = 4 simulation. For tcool! = 3 there are a
large number of fragments, consistent with Rice et al. (2003b). For
tcool! = 5 there are a number of fragments, while for tcool! = 6 there
is only a single fragment that in the image can be seen just below the
central object. For tcool! = 7, which ran for almost 7 outer rotation
periods, the disc is clearly unstable at all radii, but there are no signs
of fragmentation. We repeated the above procedure for disc masses
of Mdisc = 0.25 and 0.5, and for specific heat ratios of γ = 5/3 and
7/5. The results are summarized in Table 1. The columns in Table
1 are the ratio of disc to central object mass, Mdisc/M ∗, the specific
heat ratio, γ , the cooling time, tcool!, and, if fragmentation occurs,
the total energy (in code units) of the densest clump, E tot, where
E tot is the sum of the thermal energy and gravitational potential
energy (Bate, Bonnell & Price 1995). In the earlier work of Rice
et al. (2003a) there was a suggestion that the cooling time required
for fragmentation may depend on the total disc mass, relative to the
mass of the central object. The results shown in Table 1 suggest
that there is no disc mass dependence. Fragmentation occurs for
tcool! between 6 and 7 when γ = 5/3, and between 12 and 13 when
γ = 7/5, for all disc masses considered. The reason why there is a
difference from the results of Rice et al. (2003a) is unclear. Their
discs had slightly steeper surface density profiles (# ∝ R−7/4 rather
than # ∝ R−1), and it is possible that their tcool! = 5 simulation,
which did not fragment, may have done so had it been run for longer.
Table 1 also shows that in all the cases where clumps were detected,
the total energy of the densest clump is negative and that at least the
densest clump is bound.

Although Table 1 shows that the fragmentation boundary occurs
for cooling times longer than that predicted by Gammie (2001),
for γ = 5/3 the required cooling time is still smaller than the local

Table 1. Results of a series of simulations considering discs
with masses between Mdisc = 0.1 and 0.5, specific heat ratios
of γ = 5/3 and 7/5, and various cooling times. These results
suggest that the fragmentation boundary does not depend on
disc mass, and that for γ = 7/5 fragmentation may occur for
cooling times almost twice the local dynamical time.

Mdisc/M ∗ γ tcool! E tot

0.1 5/3 3 −9.7 × 10−7

0.1 5/3 5 −1.0 × 10−7

0.1 5/3 6 −3.8 × 10−5

0.1 5/3 7 no clumps
0.1 7/5 11 −8.8 × 10−7

0.1 7/5 12 −6.6 × 10−8

0.1 7/5 13 no clumps
0.25 5/3 5 −9.4 × 10−6

0.25 5/3 6 −3.0 × 10−7

0.25 5/3 7 no clumps
0.25 7/5 11 −8.2 × 10−7

0.25 7/5 12 −7.2 × 10−7

0.25 7/5 13 no clumps
0.5 5/3 6 −4.9 × 10−5

0.5 5/3 7 no clumps
0.5 7/5 11 −1.0 × 10−5

0.5 7/5 12 −7.5 × 10−6

0.5 7/5 13 no clumps

Figure 2. Surface density structure of discs with a mass of Mdisc = 0.25,
a specific heat ratio of γ = 5/3, and cooling times of tcool! = 6 (left-hand
panel) and tcool! = 7 (right-hand panel). The lack of fragmentation in the
right-hand panel suggests that the fragmentation boundary is at a cooling
time of between tcool! = 6 and 7. The colour scale of the density and the
linear scale of the image are the same as in Fig. 1.

dynamical time. It also shows that as the specific heat ratio decreases,
the required cooling time increases and is almost twice the local
dynamical time for γ = 7/5. The fragmentation boundary for a
disc mass of Mdisc = 0.25 and for both of the specific heat ratios
considered is shown in Figs 2 and 3. Fig. 2 shows the final surface
density structures for Mdisc = 0.25, a specific heat ratio of γ =
5/3, and cooling times of tcool! = 6 (left-hand panel) and tcool! =
7 (right-hand panel). The tcool! = 7 simulation was evolved for
almost an outer rotation period longer than the tcool!= 6 simulation,
yet shows no signs of fragmentation. The discs shown in Fig. 3 have
the same parameters as in Fig. 2 except that γ = 7/5, and the cooling
times are tcool! = 12 and 13. Again there is no sign of fragmentation
in the right-hand panel which was also evolved for almost an outer
rotation period longer than the simulation shown in the left-hand
panel.
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Figure 3. Surface density structure of discs with the same mass as in
Fig. 2 but with a specific heat ratio of γ = 7/5, and cooling times of
tcool" = 12 (left-hand panel) and tcool" = 13 (right-hand panel). The lack
of fragmentation in the right-hand panel in this case suggests that for γ =
7/5 the fragmentation boundary is at a cooling time of between tcool" = 12
and 13. The colour scale of the density and the linear scale of the image are
the same as in Fig. 1.

As a further numerical check, we repeated one set of calculations
using 125 000 particles rather than 250 000 particles. We consid-
ered only the case where Mdisc = 0.25 and γ = 5/3. The result with
125 000 particles was the same as the simulation with 250 000 parti-
cles. Fragmentation occurred for tcool = 6"−1 and did not occur for
tcool = 7"−1. Therefore not only do the simulations that fragment
satisfy the Jeans criterion for fragmentation (Bate & Burkert 1997),
but it also appears that the results are resolution-independent.

3 A M A X I M U M VA L U E F O R G R AV I TAT I O NA L
S T R E S S E S

Based on the results summarized in Table 1, for every value of
Mdisc/M ∗ and γ , we can define a minimum cooling time for which
no fragmentation occurs, t nf, and a maximum cooling time for which
fragmentation does occur, t f. The boundary value of tcool for frag-
mentation can therefore be defined as t frag = 1/2(t nf + t f), with
a corresponding uncertainty given by #t frag = 1/2(t nf − t f). The
stress αmax, corresponding to t frag, can be computed from equa-
tion (1), and the corresponding uncertainty is given by #αmax =
(αmax/t frag)#t frag. The resulting values of t frag and αmax are shown
as data points in Fig. 4, together with the curves defined by equa-
tion (1), for three values of γ = 2, 5/3 and 7/5. The filled green
squares with error bars refer to the simulations presented here. The
open blue triangle represent the value found by Gammie (2001) in
his local, 2D simulations that assumed γ = 2. This is consistent with
our result which suggests that, for γ = 2, fragmentation should oc-
cur between tcool" = 3 and 4. In fact, it is worth noting that, since
Gammie’s simulations are 2D, we should not expect a perfect agree-
ment between our 3D results and his ones. This can be partially seen
already from Fig. 4. In particular, care should be taken in consider-
ing the role of the adiabatic index γ , which has a different physical
interpretation in 2D and in 3D. However, as discussed in more detail
in Gammie (2001), a mapping is possible between the 2D and the
3D adiabatic indices. In the case of self-gravitating discs, Gammie’s
choice of a 2D adiabatic index equal to 2 does correspond to γ = 2
also in 3D (Gammie 2001).

As can be seen, fragmentation occurs at an almost constant value
of α (αmax ∼ 0.06, indicated by the horizontal green line in Fig. 4),
thus vindicating the idea that gravitational instabilities cannot pro-
vide (in a steady state) a stress larger than αmax. If the dissipation

0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 4. The relationship defined by equation (1) for γ = 2 (solid line), γ =
5/3 (short-dashed line) and γ = 7/5 (long-dashed line). The data points show
the couples (t frag", αmax) as derived from the simulations: the green squares
refer to our simulations, while the blue triangle refers to Gammie (2001).
The horizontal green line illustrates the constant values α = 0.06251.

associated with αmax is not sufficient to balance the cooling rate,
then the reaction of the disc is to fragment into bound objects.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this Letter we elucidate the processes that lead to the fragmen-
tation of a massive disc. Our main result is the determination of a
maximum value for the stress that can be provided by gravitational
instabilities in a quasi-steady state. We then argue that fragmenta-
tion will occur whenever the external cooling requires, in order to
be balanced by internal heating, a stress larger than this maximum
value, which we estimate to be αmax ∼ 0.06 (in units of the local disc
pressure). As a consequence, discs with larger values of the ratio
of the specific heats will be less susceptible to fragmentation. For
γ = 7/5, for example, we estimate the fragmentation cooling time
to be between 12"−1 and 13"−1, compared with between 3"−1 and
4"−1 for γ = 2 (Gammie 2001).

We wish to stress that the threshold value for α that we have
found here refers to a quasi-steady state, in which the disc stays
in thermal equilibrium and the relevant physical quantities do not
change significantly on time-scales shorter than the thermal time-
scale. We have already shown (Lodato & Rice 2005) how very
massive discs (with masses comparable to that of the central ob-
ject) can generate transient strong spiral episodes, with correspond-
ingly large values of the stress α, which, however, do not last for
longer than one dynamical time-scale (see details in Lodato & Rice
2005).

A further remark is in order, in reference to the possibility of non-
local transport in self-gravitating discs. In all our simulations, we
did not find any significant evidence for non-local transport of en-
ergy due to self-gravity (Lodato & Rice 2004, 2005). If the disc does
not fragment, the dissipation provided by the gravitational stresses
balances almost exactly the imposed cooling rate. However, this
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Figure 6. Surface density, in terms of the initial surface density, on a loga-
rithmic scale, for a simulation with Nx = Ny = 1024 and β = 5. Top panel:
"t = 100; bottom panel: "t = 400.

However, after "t = 250, something interesting happens. Sud-
denly, the maximum surface density shoots up to values above 100,
indicating fragmentation. The bottom panel of Fig. 6 shows a snap-
shot of the surface density at "t = 400, after the disc has fragmented.
Only a single fragment was formed around "t = 250, in contrast
to simulations with β < βc, which usually show ∼5–10 fragments,
initially, which can subsequently merge.

The reason for this fragmentation at high values of β lies in the
nature of the gravitoturbulent state. Even before true fragmentation
occurs, clumps are formed and destroyed on a continuous basis.
This can be appreciated from the top panel of Fig. 5, where the
peaks in #max indicate a clump being destroyed. The rms density
fluctuation is of order unity, while the maximum surface density
reaches values of #max/#0 = 50 several times. One clump that does
not make it to collapse can be spotted near x = 0.05 and y = −0.45
in the top panel of Fig. 6.

Clumps of size ∼H can survive the tidal shear if their size is
less than the size of their Hill sphere. If we take the surface density
within the clump to be constant for simplicity, we must have that

H < R0

(
π#H 2

3M∗

)1/3

, (93)

where R0 is the radial distance to the central star and M∗ is its mass.
This condition can be recast in terms of the local value of Q:

Q <
1
3
. (94)

In other words, keeping the temperature fixed, we only need an in-
crease in surface density of a factor of 3 over the background Q0 ∼
1 state to form a clump that can resist the shear. Once formed, these
clumps will in general contract on a cooling time-scale (Kratter
& Murray-Clay 2011). Their survival depends mainly on if they
can resist the weak shocks that sweep around in gravitoturbulence.
Since shock heating is very localized, this makes fragmentation a
stochastic process: there will be a large spread in clump survival
times, until the first lucky clump survives long enough for collapse
to proceed. It should be noted that the condition given by equa-
tion (93) is not necessary if the cooling time-scale is comparable to
the dynamical time-scale. If cooling acts on a dynamical time-scale,
there is no time for the clump to shear apart before it collapses.

We have observed fragmentation up to β = 7, more than twice
the critical cooling time-scale found by Gammie (2001). The cor-
responding maximum value of the stress is αmax ≈ 0.03. For larger
values of β, the disc remained in a steady, gravitoturbulent state for
"t < 1000, with values of α that agree well with equation (3).

6.3 Higher resolution

We find that increasing the resolution by a factor of 2 (Nx = Ny =
2048) leads to easier fragmentation at higher values of β. As an
example, we show in Fig. 7 four simulations at β = 9, differing
only in the phase (not magnitude) of the initial noise. Two of the
discs fragment, one at "t ≈ 500 and other at "t ≈ 750. The other
two discs maintain a steady gravitoturbulent state for the full length
of the simulation. This nicely illustrates the stochastic nature of
disc fragmentation at high values of β: only in two out of four
simulations does a clump survive for long enough for collapse to
proceed. It is expected that if the simulations would be continued,

Figure 7. Evolution of the maximum surface density (top panel) and the
measured value of α (bottom panel) for four realizations with Nx = Ny =
2048 and β = 9. The dotted line in the bottom panel indicates the prediction
of equation (3).
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6 R ESULTS

The aim is to test for numerical convergence of the determination of
the critical cooling time-scale βc. We do this by running simulations
similar to those in Gammie (2001), but at higher resolution and for
longer time spans.

6.1 Reproducing previous results

First of all, we try to reproduce previous results at the standard
resolution (Nx = Ny = 1024) and for "t < 100. As is usually
done, we define the disc to have fragmented when an overdensity of
100#0 survives for several cooling time-scales (e.g. Meru & Bate
2011; Rice et al. 2011).

We calculate the total stress in the sheet in the usual way (e.g.
Gammie 2001; Rice et al. 2011). The average Reynolds stress is
given by

⟨Hxy⟩ = ⟨#uv⟩, (90)

where ⟨⟩ denotes an average over the whole computational domain.
The gravitational stress is most easily determined in the Fourier
domain:

⟨Gxy⟩ =
∑

k

πGkxky |#k|2

|k|3
. (91)

The total stress can be parametrized using the α-prescription:

α = 2
3

⟨Hxy⟩ + ⟨Gxy⟩
⟨#c2

s ⟩
, (92)

which can then be compared to equation (3). We average the mea-
sured values of α over "%t = 20 to get a single value for a given
simulation.

In Fig. 4, we show the measured values of α together with the
prediction of equation (3). Over the range of β we consider, we find
agreement to within 5 per cent. Simulations with β < 4 were found
to fragment, which is in good agreement with Gammie (2001),
who found βc = 3. Moreover, the maximum value of α the disc
can sustain is αmax = 0.054 (for β = 4), in good agreement with
Rice et al. (2005), who found αmax = 0.06. We also note that the
measured rms density fluctuations agree with the results of Cossins
et al. (2009).

Since the physical scale of the instability, the most unstable wave-
length λT ∼ H is resolved, one might argue that these results should
be converged with respect to numerical resolution. Moreover, Gam-
mie (2001) showed that the measured value of α is independent of

1 10 100
β

0.001

0.010

0.100

α

Figure 4. Measured α parameter as a function of imposed cooling (open
circles) together with the prediction of equation (3) (solid line) for Nx = Ny =
1024 and "tmax = 100. The vertical dotted line shows the fragmentation
boundary.

resolution if N ≥ 512. We have confirmed that the results depicted
in Fig. 4 do not change when decreasing the resolution by a factor of
2. However, the value of α is not necessarily a good indicator of nu-
merical convergence. Given the prescribed amount of cooling, the
disc will try to generate enough heating to make up for the energy
that is removed. In the present set-up, it can only do that by gener-
ating the necessary stresses. Unless the simulation is dominated by
numerical viscosity, the measured value of α will always be very
close to the prediction of equation (3); otherwise, the disc cannot
maintain a steady state. This, however, does not necessarily mean
that the result makes sense, physically. In particular, convergence
with respect to α does not imply convergence for the value of βc.

In a similar way, resolving the physical scale of gravitational in-
stabilities is only a necessary condition for numerical convergence.
It would probably be sufficient if no other processes were going
on, and if the evolution is predominantly on dynamical time-scales.
If very slow time-scales on small scales are involved, it is likely
that higher resolutions are required to capture the numerical evolu-
tion correctly. We will see below that processes happening on the
cooling time-scale are critical in determining whether the disc will
fragment or not. It is therefore expected that for increasing β, higher
resolutions are required.

6.2 Longer time spans

We now keep the resolution fixed at Nx = Ny = 1024, but integrate
all simulations until "tmax = 1000 (or until fragmentation occurs).
In Figs 5 and 6, we focus on the case of β = 5, which was found
not to fragment for "t < 100.

In the top panel of Fig. 5, the evolution of the maximum surface
density in the sheet is shown. Before "t = 250, #max/#0 stays
below 50, approximately, and the measured value of α agrees with
equation (3) (bottom panel of Fig. 5). The top panel of Fig. 6 shows
a snapshot of the surface density at "t = 100. This looks like a very
good example of steady gravitoturbulence, with density fluctuations
that are consistent with those found by Cossins et al. (2009).
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Figure 5. Evolution of the maximum surface density (top panel) and the
measured value of α (bottom panel) for a run with Nx = Ny = 1024 and β =
5. The dotted line in the bottom panel indicates the prediction of equation (3).
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No solid fragmentation criterion?

• Fragmentation is stochastic since shock heating is very localized.

• Fragmentation becomes increasingly rare for larger �.
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Our approach to GI in accretion disks

• Toomre parameter Q ⌘ c
s

⌦

⇡G⌃

– self-regulated to Q ⇠ 1

• disk-star mass ratio M
disk

/M
star

and angular momentum transport

– local for small M
disk

/M
star

! shearing box simulations

• cooling time � ⌘ t
cool

⌦ ! realistic thermodynamics with irradiation

– fragmentation criterion: �
min

= 3 for � = 2 (↵
max

= 0.06)

– no solid criterion due to stochastic fragmentation?

• 3D — vertical stratification
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Purpose of this study and simulation setup

• to explore nonlinear outcome of GI in irradiated protoplaneatary disks

– nature of gravito-turbulence

– fragmentation criterion

• using 3D stratified shearing box simulations

– realistic thermodynamics (opacities and equation of state)

– irradiation



solved time-implicitly

Basic equations

@⇢

@t
+r · (⇢v) = 0, continuity eq.

@(⇢v)

@t
+r · (⇢vv) = �rp� ⇢r�+


R

⇢

c
F , momentum eq.

@e

@t
+r · (ev) = �(r · v)p� (4⇡B(T )� cE)

P

⇢, gas energy eq.

@E

@t
+r · (Ev) = �rv : P+(4⇡B(T )� cE)

P

⇢�r · F , rad. energy eq.

F = � c�


R

⇢
rE, FLD approx.

r2� = 4⇡G⇢. Poisson eq.



Fiducial run

θ = 0.02 
r = 50AU 

Σ = 100 gcm-3 

(Mdisk / Mstar ~ 0.09)



Gravito-turbulence



Gravito-turbulence



Gravito-turbulence



 
 

 

~ several H

Gravito-turbulence is not usual “turbulence”

• There is no apparent turbulent cascade with energy dissipation oc-

curing on the smallest scales.

• GI repeatedly excites density waves, which dissipate through shock

waves and compressional heating.
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Hydrostatic balance (pressure gradients)
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Thermal balance (heating rates)
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Thermal balance (cooling rates)
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Dependence on surface density Σ

θ = 0.02 
r = 50AU 

 30< Σ < 300 gcm-2 

(0.03 < Mdisk / Mstar < 0.26)
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Figure 9. Density (left column) and gas temperature (right column) snapshots of the lower half of the simulation box for, from the
top to the bottom, ⌃ = 60, 100 (fiducial), 200, and 300 g cm�2. Note that, in the right column, the color range in the bottom panel
(10  T  1500 K) is di↵erent from that in other panels (10  T  100 K).

the midplane are greatly a↵ected by the reprocessed irradi-
ation. At ✓ = 0.32, the peak temperature at the midplane
is reduced because the gravito-turbulence is weakened by
the heat of the reprocessed irradiation. At ✓ = 0.64, the
gravito-turbulence is almost shut o↵ and temperatures near
the midplane are mainly determined by the reprocessed ir-
radiation.

3.5 Cases with the simple cooling function

So far we have shown results using our radiative transfer
solver with the FLD approximation. For comparison, we
show results of simulations using the simple cooling func-
tion commonly used in gravito-turbulence simulations (e.g.
Gammie 2001). In those simulations, we simply replaced the
energy equation (5) with the following equation and solve it

using the predictor-corrector method:

@e
@t
= �(r · v)p � e

�⌦
+ q

irr

, (28)

where � is a constant cooling time. At the same time, we
dropped o↵ the radiation energy equation (6) and the radi-
ation force in the momentum equation (4). We performed
four cases of � = 30, 10, 3, and 1, where a snapshot of the
fiducial run was used as the initial condition. After an initial
transient that lasted for several orbits, they reached a steady
state except for the � = 1 case. In the � = 1 case, about 10%
of the total mass was lost via the vertical boundaries dur-
ing the first 10 orbits, and thus we stopped the calculation
there.5

5 The time averaging analysis was done for this first 10 orbits.
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Mass accretion rate as a function of Σ
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Toomre Q as a function of Σ
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Dependence on radius r and surface density Σ

θ = 0.02
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Nonlinear outcome of GI in protoplanetary disks

50AU



10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

LAMINAR

TURBULENT

PERIODIC BURST

BOUND CLUMP

RUNAWAY COLLAPSE

10 Σ
M

M
S
N

30 Σ
M

M
S
N

100 Σ
M

M
S
N

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

Phase diagram of nonlinear outcome of GI

laminar
flow

turbulence

bound
clump

repeated
bursts

50AU

bound clump
(runaway collapse)



10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

LAMINAR

TURBULENT

PERIODIC BURST

BOUND CLUMP

RUNAWAY COLLAPSE

10 Σ
M

M
S
N

30 Σ
M

M
S
N

100 Σ
M

M
S
N

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

Gravito-turbulence is sustained when 1 > Q > 0.7

laminar 
flow

turbulence

bound 
clump

repeated 
bursts

50AU
1 > Q > 0.7, β = 4 (α = 0.25) 

bound clump 
(runaway collapse)



10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

LAMINAR

TURBULENT

PERIODIC BURST

BOUND CLUMP

RUNAWAY COLLAPSE

10 Σ
M

M
S
N

30 Σ
M

M
S
N

100 Σ
M

M
S
N

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

Fragmentation criterion on Q

laminar 
flow

bound 
clump

repeated 
bursts

50AU

Qmin ~ 0.7

bound clump 
(runaway collapse)

turbulence

Qmax ~ 1



10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

LAMINAR

TURBULENT

PERIODIC BURST

BOUND CLUMP

RUNAWAY COLLAPSE

10 Σ
M

M
S
N

30 Σ
M

M
S
N

100 Σ
M

M
S
N

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

10 100 1000 10000
Σ [g cm−2]

10

100
r 

[A
U

]

Another fragmentation criterion on β (or α)

laminar 
flow

bound 
clump

repeated 
bursts

50AU

small                       β                     large 

Qmin ~ 0.7

βmin ~ 2 (αmax ~ 0.5)

turbulence

bound clump 
(runaway collapse)



Summary

1. We investigated the nonlinear outcome of GI in irradiated protoplane-

tary disks using radiation hydrodynamics simulations.

2. At a fixed radius of 50AU, gravito-turbulence is sustained for a range

of ⌃ corresponding to 0.7  Q  1, where � tends to be constant.

3. In gravito-turbulence, density waves excited by GI dissipate through

both shock waves and compressional heating.

4. Vertically diverging flows generated by collision of the density waves

contribute to both hydrostatic and thermal balances.

5. From parameter survey on both r and ⌃, fragmentation seems to

occur when either Q  0.7 or �  2 is satisfied.


