Gravito-turbulence in Irradiated Protoplanetary Disks

Shigenobu Hirose (JAMSTEC, Japan)

in collaboration with Ji-Ming Shi (Princeton)

February 16, 2017 Confronting MHD Theories of Accretion Disks with Observations KITP

Outline

- 1. Gravitational instability (GI) in accretion disks
- Shearing box simulations of GI at 50 AU in irradiated protoplanetary disks (SH and Shi, in review)
- **3. Radial dependence of GI in irradiated protoplanetary disks** (SH and Shi, in preparation)

Angular momentum transport in accretion disks

• The evolution equation of surface density $\Sigma(r, t)$ is written as

$$\frac{\partial \Sigma}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{2}{r\Omega} \frac{\partial}{\partial r} \left(r^2 W_{r\phi} \right) \right) = 0$$

• If shear stress is locally determined as $W_{r\phi}(\Sigma; r)$, the evolution equation can be solved as a diffusion equation.

Origin of shear stress in accretion disks

$$W_{r\phi} = \int \left\langle -B_r B_\phi \right\rangle dz + \int \left\langle \rho v_r \delta v_\phi \right\rangle dz + \int \left\langle \frac{g_r g_\phi}{4\pi G} \right\rangle dz + \int \left\langle \frac{g$$

Maxwell stress

Reynolds stress

s gravitational stress

magneto-rotational instability (MRI) dΩ / dr < 0 vertical shear instability, ...

gravitational instability (GI) **Q < 1**

dz

Kratter and Lodato (2016)

Gravitational instability in accretion disks

• Instability condition for the axisymmetric mode in infinitesimally thin disks (Toomre 1964)

$$Q \equiv \frac{c_{\rm s}\Omega}{\pi G\Sigma} < 1$$

- Q tends to be self-regulated to ~ 1 (Paczynski 1978)
 - 1. Q < 1: GI and heating sets in
 - 2. T increases if heating overcomes cooling
 - 3. Q > 1: GI and heating is quenched
 - 4. T decreases
 - 5. → 1

Angular mom. transport by GI depends on M_{disk} / M_{star}

Kratter and Lodato (2016)

M _{disk} / M _{star}	large	small
angular mom. transport	non-local	local

Locality of angular momentum transport

• Transport is local when $M_{\rm disk}/M_{\rm star} \leq 0.25$ (Lodato & Rice 2005)

Gravito-turbulence vs. fragmentation

• Using a simple cooling function with β being constant cooling time

$$\frac{\partial e}{\partial t} = -\frac{e}{\beta \Omega^{-1}},$$

Gammie (2001) found for 2D (razor thin) disks of $\gamma=2$

 $\begin{cases} \beta > 3 & \text{gravito-turbulence with } Q \sim 1 \\ \beta < 3 & \text{fragmentation.} \end{cases}$

β = 2 (strong cooling)

Gammie (2001)

 $\beta = 10$ (weak cooling)

Fragmentation criterion in terms of $\boldsymbol{\alpha}$

• In thermal equilibrium where the β cooling equals the α dissipation,

$$\alpha = \frac{4}{9} \frac{1}{\gamma(\gamma - 1)\beta}$$

• Gravito-turbulence of $\alpha > \alpha_{\rm max} \sim 0.06$ cannot be sustained (Rice, Lodato & Armitage 2005).

Rice, Lodato and Armitage (2005)

No solid fragmentation criterion?

- Fragmentation is stochastic since shock heating is very localized.
- Fragmentation becomes increasingly rare for larger β .

Key parameters in GI in accretion disks

• Toomre parameter
$$Q \equiv \frac{c_{\rm s}\Omega}{\pi G\Sigma}$$

- self-regulated to $Q\sim 1$
- disk-star mass ratio $M_{\rm disk}/M_{\rm star}$ and angular momentum transport
 - local for small $M_{\rm disk}/M_{\rm star}$ and global for large $M_{\rm disk}/M_{\rm star}$
- cooling time $\beta \equiv t_{\rm cool} \Omega$
 - fragmentation criterion: $\beta_{\min} = 3$ for $\gamma = 2$ ($\alpha_{\max} = 0.06$)
 - no solid criterion due to stochastic fragmentation?

Our approach to GI in accretion disks

• Toomre parameter
$$Q \equiv \frac{c_{\rm s}\Omega}{\pi G\Sigma}$$

- self-regulated to $Q\sim 1$
- disk-star mass ratio $M_{\rm disk}/M_{\rm star}$ and angular momentum transport
 - local for small $M_{\rm disk}/M_{\rm star} \rightarrow$ shearing box simulations
- cooling time $\beta \equiv t_{cool}\Omega \rightarrow$ realistic thermodynamics with irradiation
 - fragmentation criterion: $\beta_{\min} = 3$ for $\gamma = 2$ ($\alpha_{\max} = 0.06$)
 - no solid criterion due to stochastic fragmentation?
- 3D vertical stratification

Purpose of this study and simulation setup

- to explore nonlinear outcome of GI in irradiated protoplaneatary disks
 - nature of gravito-turbulence
 - fragmentation criterion
- using 3D stratified shearing box simulations
 - realistic thermodynamics (opacities and equation of state)
 - irradiation

Basic equations

$$\begin{split} & \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0, & \text{continuity eq.} \\ & \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) = -\nabla p - \rho \nabla \Phi + \frac{\kappa_{\mathsf{R}} \rho}{c} \boldsymbol{F}, & \text{momentum eq.} \\ & \frac{\partial e}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = -(\nabla \cdot \boldsymbol{v}) p - (4\pi B(T) - cE) \kappa_{\mathsf{P}} \rho, & \text{gas energy eq.} \\ & \frac{\partial E}{\partial t} + \nabla \cdot (E \boldsymbol{v}) = -\nabla \boldsymbol{v} : \mathsf{P} + (4\pi B(T) - cE) \kappa_{\mathsf{P}} \rho - \nabla \cdot \boldsymbol{F}, & \text{rad. energy eq.} \\ & \boldsymbol{F} = -\frac{c\lambda}{\kappa_{\mathsf{R}} \rho} \nabla E, & \text{solved time-implicitly} & \text{FLD approx.} \\ & \nabla^2 \Phi = 4\pi G \rho. & \text{Poisson eq.} \end{split}$$

Fiducial run

 $\theta = 0.02$ r = 50AU $\Sigma = 100 \text{ gcm}^{-3}$

 $(M_{disk} / M_{star} \sim 0.09)$

Gravito-turbulence

Gravito-turbulence

Gravito-turbulence

Gravito-turbulence is not usual "turbulence"

- There is no apparent turbulent cascade with energy dissipation occuring on the smallest scales.
- GI repeatedly excites density waves, which dissipate through shock waves and compressional heating.

Hydrostatic balance (gravitational accelerations)

self6000: 20 - 100

Hydrostatic balance (pressure gradients)

self6000: 20 - 100

Dependence on surface density Σ

 $\theta = 0.02$ r = 50AU $30 < \Sigma < 300 \text{ gcm}^{-2}$

 $(0.03 < M_{disk} / M_{star} < 0.26)$

laminar

gravitoturbulence

gravitoturbulence

fragmentation

 $\Sigma = 100 \text{ gcm}^{-3}$ (fiducial run)

 $\Sigma = 200 \text{ gcm}^{-3}$

 $\Sigma = 300 \text{ gcm}^{-3}$

Fragmentation run ($\Sigma = 300 \text{ gcm}^{-3}$)

Fragmentation run ($\Sigma = 300 \text{ gcm}^{-3}$)

"First core collapse"

Mass accretion rate as a function of $\boldsymbol{\Sigma}$

alpha as a function of $\boldsymbol{\Sigma}$

Cooling time β as a function of Σ

Toomre Q as a function of Σ

Dependence on radius r and surface density Σ

 $\theta = 0.02$

Nonlinear outcome of GI in protoplanetary disks

Phase diagram of nonlinear outcome of GI

Gravito-turbulence is sustained when 1 > Q > 0.7

Fragmentation criterion on Q

Another fragmentation criterion on β (or α)

Summary

- 1. We investigated the nonlinear outcome of GI in irradiated protoplanetary disks using radiation hydrodynamics simulations.
- 2. At a fixed radius of 50AU, gravito-turbulence is sustained for a range of Σ corresponding to $0.7 \le Q \le 1$, where β tends to be constant.
- 3. In gravito-turbulence, density waves excited by GI dissipate through both shock waves and compressional heating.
- 4. Vertically diverging flows generated by collision of the density waves contribute to both hydrostatic and thermal balances.
- 5. From parameter survey on both r and $\Sigma,$ fragmentation seems to occur when either $Q \leq 0.7$ or $\beta \leq 2$ is satisfied.