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Milky Way Dark Matter halos: Theory

Measured distribution of speeds near 
solar circle implies 10% variation 
relative to multivariate gaussian fit

Including substructure, local density probably 
not less than 1/2 the canonical value

Phase-space structure in the local dark matter distribution 3

for all six halos with about 200 million particles within R200. Fur-

ther details of the halos and their characteristics can be found in

Springel et al. (2008).

In the following analysis we will often compare the six level-2

resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,

we scale the halos in mass and radius by the constant required to

give each a maximum circular velocity of Vmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-

nate system that is aligned with the principal axes of the inner halo,

and which labels particles by an ellipsoidal radius rell defined as

the semi-major axis length of the ellipsoidal equidensity surface on

which the particle sits. We determine the orientation and shape of

these ellipsoids as follows. For each halo we begin by diagonal-

ising the moment of inertia tensor of the dark matter within the

spherical shell 6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and

shape of the best fitting ellipsoid. We then reselect particles with

6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-

to-major axis ratios which vary from 0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark

matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of

DM particles passing through laboratory detectors. It is important,

therefore, to determine not only the mean value of the DM density

8 kpc from the Galactic Centre, but also the fluctuations around this

mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our

simulations using an SPH smoothing kernel adapted to the 64

nearest neighbours. We then fit a power law to the resulting dis-

tribution of ln ρ against ln rell over the ellipsoidal radius range

6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram of ρ/ρmodel for all particles

in 6 kpc < rell < 12 kpc, where each is weighted by ρ−1 so that

the resulting distribution refers to random points within our ellip-

soidal shell rather than to random mass elements. We normalise the

resulting DPDFs to have unit integral. They then provide a prob-

ability distribution for the local dark matter density at a random

point in units of that predicted by the best fitting smooth ellipsoidal

model.

In Fig. 1 we show the DPDFs measured in this way for all

resimulations of Aq-A (top panel) and for all level-2 halos after

scaling to a common Vmax (bottom panel). Two distinct compo-

nents are evident in both plots. One is smoothly and log-normally

distributed around ρ = ρmodel, the other is a power-law tail to high

densities which contains less than 10−4 of all points. The power-

law tail is not present in the lower resolution halos (Aq-A-3, Aq-

A-4, Aq-A-5) because they are unable to resolve subhalos in these

inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-

sults, suggesting that resolution level 2 is sufficient to get a reason-

able estimate of the overall level of the tail. A comparison of the six

level 2 simulations then demonstrates that this tail has similar shape

in different halos, but a normalisation which can vary by a factor

of several. In none of our halos does the fraction of the distribu-

tion in this tail rise above 5× 10−5. Furthermore, the arguments of

Springel et al (2008) suggest that the total mass fraction in the in-

ner halo (and thus also the total volume fraction) in subhalos below
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Figure 2. Top four panels: Velocity distributions in a2 kpc box at the Solar
Circle for halo Aq-A-1. v1, v2 and v3 are the velocity components parallel

to the major, intermediate and minor axes of the velocity ellipsoid; v is the
modulus of the velocity vector. Red lines show the histograms measured

directly from the simulation, while black dashed lines show a multivari-

ate Gaussian model fit to the individual component distributions. Residuals

from this model are shown in the upper part of each panel. The major axis

velocity distribution is clearly platykurtic, whereas the other two distribu-

tions are leptokurtic. All three are very smooth, showing no evidence for

spikes due to individual streams. In contrast, the distribution of the velocity

modulus, shown in the upper left panel, shows broad bumps and dips with

amplitudes of up to ten percent of the distribution maximum.Lower panel:

Velocity modulus distributions for all 2 kpc boxes centred between 7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives

the median of all the fitted multivariate Gaussians. The dark and light blue

contours enclose 68% and 95% of all the measured distributions at each ve-

locity. The bumps seen in the distribution for a single box are clearly present

with similar amplitude in all boxes, and so also in the median curve. The

bin size is 5 km/s in all plots.
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FIG. 1: The local dark-matter-density probability distri-
bution function P (ρ) for the analytic model, as a func-
tion of the density ρ scaled by the mean density ρ!, for
{f(ρ!), α} = {0.05, 0} (black solid curve), {0.2, 0}, (dotted
red curve), {0.05, 1}, (short-dash blue curve) {0.2, 1} (long-
dash green curve). We smooth the Dirac delta function for
the smooth component to a Gaussian of rms one-tenth the
smooth-component density. The power-law tails are due to
subhalos.

For a power-law f(ρ1) = f(ρ!)(ρ1/ρ!)−α (and α > 0),

F (ρ1) = 1 − exp

{

−
f

α

[

1 −

(

ρ1

ρmax

)]}

, (7)

and if α is not too small (α ≥ 0.5 ), the dependence
on the cutoff density ρmax disappears. In that case,
F (ρ!) # 1 − exp[−f(ρ!)/α] # f(ρ!)/α, where the
last approximation valid for f(ρ!) $ α. One guess
for f(ρ1) is that it is inversely proportional to the for-
mation time t ∝ ρ−1/2 for halos of density ρ. If so,
then F (ρ!) # 2f(ρ!) is the fraction of the Milky Way
mass that is in subhalos, roughly 20% for f(ρ!) = 0.1.
A stronger dependence on ρ1 would result in a smaller
F (ρ!). It is then straightforward to calculate the PDF
P (ρ) to find power-law dependence P (ρ) ∝ ρ−(2+α) for
densities above the smooth density.

B. Results and Discussion

To illustrate, Fig. 1 shows the PDFs, on a log-log plot,
for four combinations of the parameters f(ρ!) and α in
the model. The distributions feature a high-density tail
(close to a power-law), due to the fraction (1−F ) of the
mass that is in substructure. Also shown is a smooth

component at a density ρsm < ρ!; for purposes of illus-
tration, we smooth the Dirac delta-function dependence
of this smooth component to a Gaussian of rms one-tenth
the smooth-component density. The Figure shows that
as f(ρ!) is increased, the amplitude of the high-density
tail is increased at the expense of the smooth compo-
nent. We also see that increasing α increases the smooth-
component density while decreasing the amplitude of the
high-density tail.

Table I provides numerical results for the smooth-
component density, the fraction of the volume occupied
by the smooth component, and the annihilation enhance-
ment B (discussed in more detail below) for PDFs P (ρ)
parameterized by the survival fraction f(ρ!) and the
survival-fraction power-law index α.

Here are some comments and general conclusions from
these results so far:

(1) If f(ρ!) is roughly f ! 0.2 as suggested by nu-
merical simulations, then the reduction in the smooth-
component density is no less than 30% the mean den-
sity. The implied fractional uncertainty in the local dark-
matter density is thus not too much larger than that
(roughly factor of two) implied by uncertainties in the
stellar/gas contribution to the local rotation curve, or
the uncertainties that arise if we allow for a flattened halo
(which generally increase the local dark-matter density).

f(ρ!) α ρsmooth smooth fraction B

0.05 0 0.75 95% 47

0.1 0 0.56 91% 88

0.2 0 0.3 83% 156

0.05 0.5 0.95 97% 3.9

0.1 0.5 0.89 94% 6.8

0.2 0.5 0.78 88% 12

0.05 1 0.98 98% 1.3

0.1 1 0.96 95% 1.6

0.2 1 0.91 91% 2.1

TABLE I: The density ρsmooth of the smooth component, the
fraction of the volume occupied by the smooth component,
and the annihilation enhancement B for density distributions
P (ρ) parameterized by the survival-fraction amplitude f(ρ!)
and the survival-fraction power-law index α.

(2) The fraction of the volume occupied by the smooth
component is larger than the fraction of the mass in the
smooth component, as the higher-density components oc-
cupy correspondingly less volume. As a result, in most of
the models, the density in the vast majority of the halo
volume is the density of the smooth component.

(3) We have assumed that each halo and subhalo has
a uniform density. More realistically, the density of each
halo and subhalo will decrease with radius, perhaps with
an NFW profile, which has a density that depends on
radius r as ρ ∝ r−1 in the inner regions. The volume in
such a halo changes with density as (dV/dρ) ∝ ρ−3 for
ρ → ∞. This falls with density more rapidly at large ρ
than P (ρ) ∝ ρ2+α as long as α < 1. Thus, if α < 1,
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 Ground-based proper motions: Scholz & Irwin 1994, Schweitzer et al. 1997, Ibata et al. 1997, Dinescu et al. 2005
 Space-based proper motions: Piatek et al. 2002-2007

Dark Matter in Local Group

Updated applications of Timing argument imply Local Group mass of 5 x 1012 Msun and MW 
mass of 2 x 1012 Msun [van der Marel & Guthalakurta 2008, Li & White 2008]

– 23 –

Fig. 1.— Orbital poles of Milky Way satellite galaxies as derived from their measured
proper motion and radial velocities. The directions are shown in an aitoff projection in

Galactocentric coordinates. The solid lines give the projected arc-segments derived from
the uncertainties of the measured proper motions. Different symbols mark data derived

by different methods: circles: HST, diamonds: ground-based measurements, and hexagons:
the weighted mean values from Table 1. The filled star symbol marks the mean spherical

direction l of the directions of the angular momenta of the satellites excluding Sagittarius
and Sculptur, and the solid loop gives the spherical standard deviation of this sample. The
smaller, open star symbol marks the mean spherical direction as before, but now treating the

LMC/SMC as a bound system whose barycentre is moving with the velocity of the LMC,
assuming an LMC/SMC mass ratio of 5/1. The dashed loops indicate regions with 15◦

and 30◦ from the direction of the normal to the plane fitted to the 11 classical Milky Way
satellites (the DoS pole). Note the proximity of l to the normal of the DoS.



The Milky Way Dark Matter Halo

Mass estimates broadly 
consistent with those that 
use satellite dynamics (Frenk & 
White 1981, Little & Tremaine 1987, 
Kochanek 1996, Evans & Wilkinson 1999, Li 
& White 2008)

Xue et al. 2008 uses population 
of 2000 BHB stars out to 60 kpc

where Mbulge ¼ 1:5 ; 1010 M", c0 ¼ 0:6 kpc, Mdisk ¼ 5 ;
1010 M" , and b ¼ 4 kpc (similar to Smith et al. 2007). The ra-
dial potential for a spherical NFWdensity profile can be expressed
as

!NFW(r) ¼ # 4!G"sr3vir
c3r

ln 1þ cr

rvir

! "
; ð13Þ

where c is a concentration parameter, defined as the ratio of the
virial radius to the scale radius. For standard"CDM cosmogonies
we do not attempt to constrain halo flattening. The parameter"s is
a characteristic density given by

"s ¼
"cr#m#th

3

c3

ln (1þ c)# c=(1þ c)
; ð14Þ

where "cr ¼ 3H2/8!G is the critical density of the universe, #m

is the contribution of matter to the critical density, and #th is the

critical overdensity at virialization. The virial mass can then be
determined from the virial radius using

Mvir ¼
4!

3
"cr#m#thr

3
vir: ð15Þ

For our analysis we adopt #m ¼ 0:3, #th ¼ 340, and H0 ¼
65 km s#1 Mpc#1. Given recent discussions (and doubts raised)
regarding whether the baryons modify the dark matter profile, as
expected from ‘‘adiabatic contraction’’ (Dutton et al. 2007), we
consider both an unaltered and an adiabatically contracted NFW
profile in the fit of !tot.

By fitting the observed Vcir(r) with (rd!/dr)1/2 from !tot(r),
shown as equation (10), we can constrain the halo mass of the
MilkyWay. In this fit, we simply adopt an unaltered NFWprofile
and a present-day relation between the mean value of c andMvir,

log10c ¼ 1:075# 0:12( log10Mvir # 12): ð16Þ

This relation is accurate over the range 11 ' logMvir ' 13 and
is based on the model of Macciò et al. (2007) with #m ¼ 0:3,
#" ¼ 0:7, $8 ¼ 0:9, and ni ¼ 1:0. Therefore, theMvir is derived

Fig. 17.—Same as Fig. 16, but here the circular velocity curves were derived
under the assumption of a contracted NFW profile. The solid line indicates the
best-fit circular velocity curve to the Vcir(r) estimates, while the large symbols
represent theVcir(r) estimates. The contributions of the adoptedmodel components
(i.e., disk, bulge, and halo) and the circular velocity curves based on the Jeans
equation are plotted in different line styles. Estimates of virial mass,Mvir, virial ra-
dius, rvir , and concentration parameter, c, are labeled on the plots.

Fig. 16.—Circular curve estimates matched by a combination of a stellar
bulge and disk and an unaltered NFW dark matter profile. The solid line
indicates the best-fit circular velocity curve to the Vcir(r) estimates, while the
large symbols represent the Vcir(r) estimates. The contributions of the adopted
model components (i.e., disk, bulge, and halo) and the circular velocity curves
based on the Jeans equation are plotted in different line styles. Estimates of virial
mass, Mvir , virial radius, rvir , and concentration parameter, c, are labeled on the
plots.

MILKY WAY DARK MATTER HALO MASS FROM SDSS 1155No. 2, 2008

the Sun of about 76 kpc, a distance which we impose as a se-
lection limit in the simulations. To select ‘‘halo’’ stars, we also
require that the stars be at least 4 kpc above or below the disk
plane. Finally, we average these 10 samples of simulated halo
stars. Figure 12 shows the distribution of these selected simu-
lated stars and the observed halo BHB stars in l and b.

This procedure results in a sample of simulated halo stars
(each position produces an ‘‘observational data set’’) with galacto-
centric radial velocities, galactocentric radii, escape velocities,
and circular velocities, whose distribution is shown in Figure 11.
This figure makes it clear that, even in a large sample, the ga-
lactocentric radial velocity rarely approaches the escape velocity
(one obvious reason being that we measure only the projected
component of the space velocity).

3.2. Estimating Vcir(r) from the Data

We analyze the implications of the observed BHB kinematics
for the Milky Way halo’s mass distribution in two steps. We first
estimate Vcir(r) from the data-simulation comparison in a set of
statistically independent radial bins, effectively constructing a cir-
cular velocity curve extending to 60 kpc. We then fit the circular
velocity curve with NFWhalo (and bulge+disk) models, resulting
in estimates of Mvir. It should be noted that the Milky Way halo’s
presumed virial radius extends about a factor of 4 beyond themost
distant BHB stars in our observed sample of tracers.

For the data/model comparison we construct the distributions,
P Vlos/Vcir(r)½ ", for the simulations and the data, respectively. For
the simulations, we use the procedure described in the above
section to obtain theVlos andVcir at each particle position.We com-
pare those Psim Vlos/Vcir(r)½ " distributions to analogous ones con-
structed from the data for a sequence of trial valuesVcir(r). As the
best observational estimate of Vcir(r), we then take that value for
which the probability that Pobs(Vlos/Vcir) and Psim(Vlos/Vcir) were
drawn from the same distribution is maximal. As we have no a
priori functional form for these distributions, we define this best
match as that which maximizes the probability in a two-sided
K-S test. To define confidence limits on the Vcir(r) estimate, we
repeat this procedure with bootstrapped versions of Pobs(Vlos/Vcir)
and take as !Vcir

the variance of the resulting Vcir distribution. We

Fig. 11.—Galactocentric radial velocity, escape velocity, and circular velocity
distributions of the stars in simulation I (top) and simulation II (bottom; see x 3);
the simulations are ‘‘viewed’’ from the position of the Sun to lie within the SDSS
DR6 footprint. The solid line delineates the predicted escape velocity, while the
dashed line indicates the predicted circular velocity. The dots represent the radial
velocities.

Fig. 12.—Galactic sky coverage of the observed BHB stars (red dots) and selected simulated stars (black dots), drawn from simulation I.

MILKY WAY DARK MATTER HALO MASS FROM SDSS 1151No. 2, 2008



Escape Velocity

Smith et al., 
Mon.Not.Roy.Astron.Soc.379:755-772,2007

RAVE escape velocity constraints
The RAVE Survey: Constraining the Local Galactic Escape Speed 11

Figure 7. The lower panel shows the 2-dimension likelihood contours that can be placed on the local escape velocity (vesc) and the shape of the velocity

distribution (k; see Section 2) from our combined high-velocity sample. The cross corresponds to the peak likelihood, while the contours denote 10 and 1

per cent of this peak likelihood value. The upper panel shows the likelihood distribution for vesc obtained by assuming a uniform prior on k ∈ [2.7, 4.7] (see
Section 3.1); the corresponding error bar shows the 90 per cent confidence interval. The dotted quantities show the results from a sample containing only the

high-velocity RAVE stars, i.e. a smaller sample of 16 stars.

the only difference is a general broadening of the contours. When

we apply the prior k ∈ [2.7, 4.7] we find that the 90 per cent con-
fidence interval becomes 496 < vesc < 655 km s

−1, with a median

likelihood of vesc = 556 km s
−1.

5.2 Bootstrap analysis

To further assess the likelihood constraints presented in the previ-

ous section, we also apply the bootstrap technique (see Section 2.2)

to our data.

We apply the bootstrap approach to the combined dataset of

33 stars, but unlike Section 5.1 we apply the LT90 approximation

(equation 6) when calculating the maximum likelihood. The boot-

strap computed the values of vesc and k that maximized equation

(9) using 5000 resamples of the original RAVE sample. Table 4

shows the resulting values of vesc and k for the two chosen priors

(see Appendix A).

When we compare the bootstrap interval with the likelihood

interval obtained in Section 5.1, we find that the interval is shifted

towards smaller vesc. This is consistent with what one would expect

for the bootstrap method, since (unlike the method described in

Section 5.1) the process of bootstrapping can result in values of vesc
that are smaller than the highest velocity star in the sample. This

is a consequence of the fact that the bootstrap approach accounts

for possible unreliable or inconsistent data. However, it is also im-

portant to note that the bootstrap mean values of k and vesc found

with both priors are identical, within standard errors, to those found

in the previous section using the non-bootstrap technique with the

LT90 prior. Figure 8 shows the bootstrap distributions and corre-

sponding confidence intervals calculated for k and vesc when each

prior is applied to equation (9). The dashed curves correspond to

Prior 1, while the solid curves correspond to Prior 2. The confi-

dence intervals obtained using Prior 2 are clearly smaller than that

from Prior 1, owing to the fact that Prior 2 contains more informa-

tion about our expectations of k.

As a result of our analyses with a simulated dataset (see Ap-

pendix A), we adopted the confidence regions from Prior 2, obtain-

ing the bootstrap 90 per cent confidence intervals 462 km s−1 <

vesc < 640 km s
−1 and 0.1 < k < 5.4.

2 Smith et al.

lar circle, the escape velocity contains information about the mass

exterior to the solar circle. Although one needs a model for this

mass distribution, the escape velocity (i.e. the local gravitational

potential) can be used as a constraint from which it is possible to

determine the total mass.

It is possible to use more distant measurements to investigate

the extent of the Galactic halo. Unfortunately, gas rotation curves

cannot be traced beyond the extent of gas in circular orbits, ∼ 20
kpc for the Milky Way. The task of tracing the rotation curve is also

complicated by the fact that velocities have to be accompanied by

distances (Binney & Dehnen 1997) and, in any case, our Galaxy

does not appear to have an extended HI disk. As a consequence,

most methods of probing the halo rely on satellites and globu-

lar clusters, whose velocities can be measured out to significantly

greater Galactocentric distances. Many authors have used the ve-

locities of the Milky Way’s satellite galaxies and globular clusters

in an attempt to constrain the total halo mass. Although numerous

papers have dealt with this subject (Little & Tremaine 1987; Zarit-

sky et al. 1989; Kulessa & Lynden-Bell 1992; Kochanek 1996),two

of the more recent ones to exploit the motions of satellite galaxies

and globular clusters have concluded the total mass of the halo to

be around 2 × 1012 M# : Wilkinson & Evans (1999) found a halo
mass of ∼ 1.9+3.6−1.7 × 10

12 M# by adopting a halo model which pro-

duces a flat rotation curve that is truncated beyond an outer edge;

whereas Sakamoto, Chiba & Beers (2003), using a halo potential

that gives a flat rotation curve, also included the velocities of field

horizontal-branch stars to find a total halo mass of 2.5+0.5−1.0×10
12 M#

or 1.8+0.4−0.7 × 10
12 M#, depending on whether or not the analysis in-

cludes Leo I. Another complementary approach that can be adopted

is to analyse the radial velocity dispersion profile of halo objects;

Battaglia et al. (2005; 2006) used this method to determine a total

mass of 0.5− 1.5× 1012 M# depending on the chosen model for the
halo profile (see also Dehnen, McLaughlin & Sachania (2006) for a

reanalysis of this dataset). The future for this field looks promising

with space missions such as Gaia (due for launch 2011; Perryman

et al. 2001; Wilkinson et al. 2006) and Space Interferometery Mis-

sion (due for launch ∼ 2015; Allen, Shao & Peterson 1998), since
such missions will be able to provide accurate proper motion infor-

mation to complement the existing radial velocity measurements;

with such high quality data it should be possible to determine the

mass of the MilkyWay to∼ 20 per cent (Wilkinson & Evans 1999).
One can see that the current results mentioned above still pro-

duce a factor of ∼ 2 uncertainty in the mass of the Milky Way, due
to the fact that the results are still model dependent and are hin-

dered by small number statistics concerning the relevant datasets.

Therefore it would be very valuable if one could provide tight con-

straints on the local escape velocity in order to pin down the grav-

itational potential at this point. As far back as the 1920s samples

of high velocity stars were being used to estimate the local escape

velocity (for example, Oort 1926; Oort 1928). As the 20th century

progressed, many papers refined the estimate of vesc (see Fich &

Tremaine [1991] for a review), culminating in the final decade with

the seminal work of Leonard & Tremaine (1990, hereafter LT90)

and the subsequent refinement by Kochanek (1996, hereafter K96).

These two papers concluded that, to 90 per cent confidence, the es-

cape velocity lies in the range 450 km s−1 < vesc < 650 km s
−1 and

489 km s−1 < vesc < 730 km s
−1, respectively. Their conclusions are

hampered by several problems: firstly, the paucity of high velocity

stars from which to estimate vesc; secondly the fact that biases were

introduced by selecting high velocity stars from proper-motion sur-

veys; and thirdly the uncertainty in the assumptions regarding the

underlying form of the tail of the velocity distribution. In this new

century the difficulties posed by the first two issues are to some

extent diminishing due to the large kinematically unbiased surveys

that are now underway or planned, such as RAdial Velocity Exper-

iment (RAVE; Steinmetz et al. 2006; see also Section 4.1), Sloan

Extension for Galactic Understanding and Exploration (SEGUE;

Beers et al. 2004) and Gaia (Perryman et al. 2001). The latter prob-

lem can be tackled through various methods; one such approach

could be to use predictions from cosmological simulations to esti-

mate the form of the velocity distributions. In this paper we shall

make use of the advancement afforded to us by the RAVE survey,

combined with the analysis of cosmological simulations, to refine

the determination of vesc.

The outline of this paper is as follows. In Section 2 we review

the analytical techniques that have been developed to constrain the

escape velocity from a sample of velocity measurements. Then in

the following section we assess various aspects of these techniques

using cosmological simulations. In particular we use the simula-

tions to estimate the expected shape of the tail of the velocity distri-

bution, which is a crucial ingredient in the escape velocityanalysis.

In Section 4 we present the data that we will use to constrain the

escape velocity and undertake some tests to ensure that these data

are reliable. Our new data come from the RAVE project (Steinmetz

et al. 2006), but are augmented with archival data from published

surveys. In Section 5 we present our results and in Section 6 we

consider some of the issues arising from or concerning these re-

sults; in particular, this latter section discusses the nature of our

high velocity stars (Section 6.1), the effect of the sample volume

on the recovery of the escape velocity (6.2), the possible contami-

nation from unbound stars (6.3) and also uses our new constraints

on vesc to investigate the total mass of the Galactic halo (6.4). In

Section 7 we conclude our paper with a brief summary.

2 ANALYSIS TECHNIQUES

2.1 Likelihood

The techniques that we apply in order to constrain the escapeveloc-

ity (vesc) are based on those established by LT90. They parametrize

the distribution of stellar velocities around vesc according to the fol-

lowing formula,

f (|v| | vesc, k) ∝ (vesc − |v|)k, |v| < vesc (1)

f (|v| | vesc, k) = 0, |v| ! vesc, (2)

where |v| is the speed of the star and k describes the shape of the
velocity distribution near vesc. Note that this approach is only valid

if the stellar velocities do indeed extend all the way to vesc. If there

is any truncation in the velocities then this approach will underes-

timate the true vesc.

Under the assumption that the Jeans theorem can be applied

to the the system, Equation (1) can be understood by considering

the distribution function for the energies of the stars, ε. Assuming

there is no anisotropy in the velocities, we can write the asymptotic

form of the distribution function as a power-law (K96),

f (ε) ∝ εk , where ε = −(Φ + |v|2/2), (3)

where Φ corresponds to the potential energy and |v|2/2 to the ki-
netic energy. Again k describes the shape of the velocity distribu-

tion near vesc. Clearly Φ = −v2esc/2, which results in the following
simple form for the asymptotic behaviour of the velocity distribu-

tion,

f (|v| | vesc, k) ∝ (v2esc − |v|
2)k = [(vesc − |v|)(vesc + |v|)]k. (4)

The RAVE Survey: Constraining the Local Galactic Escape Speed 9

Figure 4. Results from the follow-up work described in Section 4.3 for 12

of our high radial velocity RAVE stars. The horizontal axis shows the dif-

ference between the velocity as reported in the RAVE catalogue compared

to the weighted mean of all velocities taken during the follow-up campaign.

Note the good agreement between the two measurements. Typical errors

are ∼ 2 km s−1 for the RAVE catalogue and < 1 km s−1 for the follow-up
velocities.

servations (including the two binary stars). The total number of ob-

servations for each star varies from between one and four (see Table

3).

4.4 The final high-velocity RAVE sample

Given this high quality RAVE data, we are now able to construct a

final catalogue of high radial velocity stars. Since many of our stars

now have repeat observations, we choose to adopt the weighted

mean of all measurements as our definitive velocity, with the ex-

ception of the two binary stars for which we give our estimate

of the center of binary mass motion. These are tabulated in Ta-

ble 3 and the velocity distribution is shown in the inset of Fig.

6. In Fig. 5 we show how the radial velocities vary as a function

of Galactic longitude. This plot clearly shows the signature of the

Galactic disc and from this one can obtain an understanding of

why a value of vmin ≈ 250 km s−1 results in significant contami-
nation from the disc; if the mean rotational velocity of our sample

is close to zero (as we would like for a halo population), then there

should be an equal number of stars with positive and negative ra-

dial velocity for a given longitude. However, for l ≈ 270 there is
clearly a greater number of stars with radial velocities in the range

vr ∈ (−300,−250) compared to vr ∈ (250, 300), indicating contam-
ination by a rotating component. Note that this asymmetry is not

evident for stars with |vr| > 300 km s−1, which supports our choice
of vmin = 300 km s

−1.

Figure 5. The relation between radial velocity (corrected for Solar mo-

tion) and longitude for stars in the RAVE catalogue. Note that the sig-

nature of the disc is clearly visible. The horizontal lines correspond to

vr = −300,−250, 0,+250,+300 km s−1. The crosses simply denote stars
with |vr | > 250 km s−1.

4.5 Augmenting our high velocity sample with stars from

archival surveys

Since we would like our sample of stars to be as large as possible,

we incorporate additional stars from the Beers et al. (2000) cata-

logue of metal poor stars. It is important to note that this sample

is kinematically unbiased, which is important if we are to com-

bine datasets in this way. This sample is ideal since it contains

metal poor stars, which are preferentially halo stars. The Beers et

al. (2000) sample provides a total of 17 stars faster than 300km s−1,

once we have removed three stars for which the distance estimate

indicates that they are further than 5 kpc away (all of the retained

stars have distances of less than 2.5 kpc). These archival stars are

given in Table B1.

This brings the total number of stars in our full augmented

sample to 33, which is a significant improvement on the number

of stars used in LT90 (15 stars with vr > 250 km s
−1) and K96 (10

stars with vr > 300 km s
−1).

The velocity distribution for this larger augmented sample is

shown in Fig. 6. Note that the inset of this figure compares the dis-

tribution of RAVE stars with the distribution of our archival stars

from Beers et al. (2000). The Kolmogorov-Smirnov test indicates

no significant discrepancy between these two distributions (14 per

cent probability that they come from different distributions), so

there is no inconsistency in combining the two data sets. In ad-

dition, similar to the RAVE sample (as was shown in Fig. 5), we

reassuringly find no correlation between radial velocity and Galac-

tic longitude. In Section 5 we check that the process of combining

datasets does not introduce any obvious bias by carrying out the

likelihood analysis on both the combined sample as well as a sam-

ple consisting solely of our 16 RAVE stars.
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Figure 7. The lower panel shows the 2-dimension likelihood contours that can be placed on the local escape velocity (vesc) and the shape of the velocity

distribution (k; see Section 2) from our combined high-velocity sample. The cross corresponds to the peak likelihood, while the contours denote 10 and 1

per cent of this peak likelihood value. The upper panel shows the likelihood distribution for vesc obtained by assuming a uniform prior on k ∈ [2.7, 4.7] (see
Section 3.1); the corresponding error bar shows the 90 per cent confidence interval. The dotted quantities show the results from a sample containing only the

high-velocity RAVE stars, i.e. a smaller sample of 16 stars.

the only difference is a general broadening of the contours. When

we apply the prior k ∈ [2.7, 4.7] we find that the 90 per cent con-
fidence interval becomes 496 < vesc < 655 km s

−1, with a median

likelihood of vesc = 556 km s
−1.

5.2 Bootstrap analysis

To further assess the likelihood constraints presented in the previ-

ous section, we also apply the bootstrap technique (see Section 2.2)

to our data.

We apply the bootstrap approach to the combined dataset of

33 stars, but unlike Section 5.1 we apply the LT90 approximation

(equation 6) when calculating the maximum likelihood. The boot-

strap computed the values of vesc and k that maximized equation

(9) using 5000 resamples of the original RAVE sample. Table 4

shows the resulting values of vesc and k for the two chosen priors

(see Appendix A).

When we compare the bootstrap interval with the likelihood

interval obtained in Section 5.1, we find that the interval is shifted

towards smaller vesc. This is consistent with what one would expect

for the bootstrap method, since (unlike the method described in

Section 5.1) the process of bootstrapping can result in values of vesc
that are smaller than the highest velocity star in the sample. This

is a consequence of the fact that the bootstrap approach accounts

for possible unreliable or inconsistent data. However, it is also im-

portant to note that the bootstrap mean values of k and vesc found

with both priors are identical, within standard errors, to those found

in the previous section using the non-bootstrap technique with the

LT90 prior. Figure 8 shows the bootstrap distributions and corre-

sponding confidence intervals calculated for k and vesc when each

prior is applied to equation (9). The dashed curves correspond to

Prior 1, while the solid curves correspond to Prior 2. The confi-

dence intervals obtained using Prior 2 are clearly smaller than that

from Prior 1, owing to the fact that Prior 2 contains more informa-

tion about our expectations of k.

As a result of our analyses with a simulated dataset (see Ap-

pendix A), we adopted the confidence regions from Prior 2, obtain-

ing the bootstrap 90 per cent confidence intervals 462 km s−1 <

vesc < 640 km s
−1 and 0.1 < k < 5.4.

2 Smith et al.

lar circle, the escape velocity contains information about the mass

exterior to the solar circle. Although one needs a model for this

mass distribution, the escape velocity (i.e. the local gravitational

potential) can be used as a constraint from which it is possible to

determine the total mass.

It is possible to use more distant measurements to investigate

the extent of the Galactic halo. Unfortunately, gas rotation curves

cannot be traced beyond the extent of gas in circular orbits, ∼ 20
kpc for the Milky Way. The task of tracing the rotation curve is also

complicated by the fact that velocities have to be accompanied by

distances (Binney & Dehnen 1997) and, in any case, our Galaxy

does not appear to have an extended HI disk. As a consequence,

most methods of probing the halo rely on satellites and globu-

lar clusters, whose velocities can be measured out to significantly

greater Galactocentric distances. Many authors have used the ve-

locities of the Milky Way’s satellite galaxies and globular clusters

in an attempt to constrain the total halo mass. Although numerous

papers have dealt with this subject (Little & Tremaine 1987; Zarit-

sky et al. 1989; Kulessa & Lynden-Bell 1992; Kochanek 1996),two

of the more recent ones to exploit the motions of satellite galaxies

and globular clusters have concluded the total mass of the halo to

be around 2 × 1012 M# : Wilkinson & Evans (1999) found a halo
mass of ∼ 1.9+3.6−1.7 × 10

12 M# by adopting a halo model which pro-

duces a flat rotation curve that is truncated beyond an outer edge;

whereas Sakamoto, Chiba & Beers (2003), using a halo potential

that gives a flat rotation curve, also included the velocities of field

horizontal-branch stars to find a total halo mass of 2.5+0.5−1.0×10
12 M#

or 1.8+0.4−0.7 × 10
12 M#, depending on whether or not the analysis in-

cludes Leo I. Another complementary approach that can be adopted

is to analyse the radial velocity dispersion profile of halo objects;

Battaglia et al. (2005; 2006) used this method to determine a total

mass of 0.5− 1.5× 1012 M# depending on the chosen model for the
halo profile (see also Dehnen, McLaughlin & Sachania (2006) for a

reanalysis of this dataset). The future for this field looks promising

with space missions such as Gaia (due for launch 2011; Perryman

et al. 2001; Wilkinson et al. 2006) and Space Interferometery Mis-

sion (due for launch ∼ 2015; Allen, Shao & Peterson 1998), since
such missions will be able to provide accurate proper motion infor-

mation to complement the existing radial velocity measurements;

with such high quality data it should be possible to determine the

mass of the MilkyWay to∼ 20 per cent (Wilkinson & Evans 1999).
One can see that the current results mentioned above still pro-

duce a factor of ∼ 2 uncertainty in the mass of the Milky Way, due
to the fact that the results are still model dependent and are hin-

dered by small number statistics concerning the relevant datasets.

Therefore it would be very valuable if one could provide tight con-

straints on the local escape velocity in order to pin down the grav-

itational potential at this point. As far back as the 1920s samples

of high velocity stars were being used to estimate the local escape

velocity (for example, Oort 1926; Oort 1928). As the 20th century

progressed, many papers refined the estimate of vesc (see Fich &

Tremaine [1991] for a review), culminating in the final decade with

the seminal work of Leonard & Tremaine (1990, hereafter LT90)

and the subsequent refinement by Kochanek (1996, hereafter K96).

These two papers concluded that, to 90 per cent confidence, the es-

cape velocity lies in the range 450 km s−1 < vesc < 650 km s
−1 and

489 km s−1 < vesc < 730 km s
−1, respectively. Their conclusions are

hampered by several problems: firstly, the paucity of high velocity

stars from which to estimate vesc; secondly the fact that biases were

introduced by selecting high velocity stars from proper-motion sur-

veys; and thirdly the uncertainty in the assumptions regarding the

underlying form of the tail of the velocity distribution. In this new

century the difficulties posed by the first two issues are to some

extent diminishing due to the large kinematically unbiased surveys

that are now underway or planned, such as RAdial Velocity Exper-

iment (RAVE; Steinmetz et al. 2006; see also Section 4.1), Sloan

Extension for Galactic Understanding and Exploration (SEGUE;

Beers et al. 2004) and Gaia (Perryman et al. 2001). The latter prob-

lem can be tackled through various methods; one such approach

could be to use predictions from cosmological simulations to esti-

mate the form of the velocity distributions. In this paper we shall

make use of the advancement afforded to us by the RAVE survey,

combined with the analysis of cosmological simulations, to refine

the determination of vesc.

The outline of this paper is as follows. In Section 2 we review

the analytical techniques that have been developed to constrain the

escape velocity from a sample of velocity measurements. Then in

the following section we assess various aspects of these techniques

using cosmological simulations. In particular we use the simula-

tions to estimate the expected shape of the tail of the velocity distri-

bution, which is a crucial ingredient in the escape velocityanalysis.

In Section 4 we present the data that we will use to constrain the

escape velocity and undertake some tests to ensure that these data

are reliable. Our new data come from the RAVE project (Steinmetz

et al. 2006), but are augmented with archival data from published

surveys. In Section 5 we present our results and in Section 6 we

consider some of the issues arising from or concerning these re-

sults; in particular, this latter section discusses the nature of our

high velocity stars (Section 6.1), the effect of the sample volume

on the recovery of the escape velocity (6.2), the possible contami-

nation from unbound stars (6.3) and also uses our new constraints

on vesc to investigate the total mass of the Galactic halo (6.4). In

Section 7 we conclude our paper with a brief summary.

2 ANALYSIS TECHNIQUES

2.1 Likelihood

The techniques that we apply in order to constrain the escapeveloc-

ity (vesc) are based on those established by LT90. They parametrize

the distribution of stellar velocities around vesc according to the fol-

lowing formula,

f (|v| | vesc, k) ∝ (vesc − |v|)k, |v| < vesc (1)

f (|v| | vesc, k) = 0, |v| ! vesc, (2)

where |v| is the speed of the star and k describes the shape of the
velocity distribution near vesc. Note that this approach is only valid

if the stellar velocities do indeed extend all the way to vesc. If there

is any truncation in the velocities then this approach will underes-

timate the true vesc.

Under the assumption that the Jeans theorem can be applied

to the the system, Equation (1) can be understood by considering

the distribution function for the energies of the stars, ε. Assuming

there is no anisotropy in the velocities, we can write the asymptotic

form of the distribution function as a power-law (K96),

f (ε) ∝ εk , where ε = −(Φ + |v|2/2), (3)

where Φ corresponds to the potential energy and |v|2/2 to the ki-
netic energy. Again k describes the shape of the velocity distribu-

tion near vesc. Clearly Φ = −v2esc/2, which results in the following
simple form for the asymptotic behaviour of the velocity distribu-

tion,

f (|v| | vesc, k) ∝ (v2esc − |v|
2)k = [(vesc − |v|)(vesc + |v|)]k. (4)
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Figure 4. Results from the follow-up work described in Section 4.3 for 12

of our high radial velocity RAVE stars. The horizontal axis shows the dif-

ference between the velocity as reported in the RAVE catalogue compared

to the weighted mean of all velocities taken during the follow-up campaign.

Note the good agreement between the two measurements. Typical errors

are ∼ 2 km s−1 for the RAVE catalogue and < 1 km s−1 for the follow-up
velocities.

servations (including the two binary stars). The total number of ob-

servations for each star varies from between one and four (see Table

3).

4.4 The final high-velocity RAVE sample

Given this high quality RAVE data, we are now able to construct a

final catalogue of high radial velocity stars. Since many of our stars

now have repeat observations, we choose to adopt the weighted

mean of all measurements as our definitive velocity, with the ex-

ception of the two binary stars for which we give our estimate

of the center of binary mass motion. These are tabulated in Ta-

ble 3 and the velocity distribution is shown in the inset of Fig.

6. In Fig. 5 we show how the radial velocities vary as a function

of Galactic longitude. This plot clearly shows the signature of the

Galactic disc and from this one can obtain an understanding of

why a value of vmin ≈ 250 km s−1 results in significant contami-
nation from the disc; if the mean rotational velocity of our sample

is close to zero (as we would like for a halo population), then there

should be an equal number of stars with positive and negative ra-

dial velocity for a given longitude. However, for l ≈ 270 there is
clearly a greater number of stars with radial velocities in the range

vr ∈ (−300,−250) compared to vr ∈ (250, 300), indicating contam-
ination by a rotating component. Note that this asymmetry is not

evident for stars with |vr| > 300 km s−1, which supports our choice
of vmin = 300 km s

−1.

Figure 5. The relation between radial velocity (corrected for Solar mo-

tion) and longitude for stars in the RAVE catalogue. Note that the sig-

nature of the disc is clearly visible. The horizontal lines correspond to

vr = −300,−250, 0,+250,+300 km s−1. The crosses simply denote stars
with |vr | > 250 km s−1.

4.5 Augmenting our high velocity sample with stars from

archival surveys

Since we would like our sample of stars to be as large as possible,

we incorporate additional stars from the Beers et al. (2000) cata-

logue of metal poor stars. It is important to note that this sample

is kinematically unbiased, which is important if we are to com-

bine datasets in this way. This sample is ideal since it contains

metal poor stars, which are preferentially halo stars. The Beers et

al. (2000) sample provides a total of 17 stars faster than 300km s−1,

once we have removed three stars for which the distance estimate

indicates that they are further than 5 kpc away (all of the retained

stars have distances of less than 2.5 kpc). These archival stars are

given in Table B1.

This brings the total number of stars in our full augmented

sample to 33, which is a significant improvement on the number

of stars used in LT90 (15 stars with vr > 250 km s
−1) and K96 (10

stars with vr > 300 km s
−1).

The velocity distribution for this larger augmented sample is

shown in Fig. 6. Note that the inset of this figure compares the dis-

tribution of RAVE stars with the distribution of our archival stars

from Beers et al. (2000). The Kolmogorov-Smirnov test indicates

no significant discrepancy between these two distributions (14 per

cent probability that they come from different distributions), so

there is no inconsistency in combining the two data sets. In ad-

dition, similar to the RAVE sample (as was shown in Fig. 5), we

reassuringly find no correlation between radial velocity and Galac-

tic longitude. In Section 5 we check that the process of combining

datasets does not introduce any obvious bias by carrying out the

likelihood analysis on both the combined sample as well as a sam-

ple consisting solely of our 16 RAVE stars.
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Fig. 1.— Locations of high-mass star forming regions for which trigonometric parallaxes have

been measured. Parallaxes from 12 GHz methanol masers are indicated with dark blue dots and

those from H2O and SiO masers or continuum emission (Orion) are indicated with light green

dots. Distance error bars are indicated, but most are smaller than the dots. The Galactic center

(red asterisk) is at (0,0) and the Sun (red Sun symbol) at (0,8.5). The background is an artist’s

conception of Milky Way (R. Hurt: NASA/JPL-Caltech/SSC) viewed from the north Galactic pole

from which the Galaxy rotates clockwise. The artist’s image has been scaled to place the HMSFRs

in the spiral arms, some of which are labeled.
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Figure 2. Plot showing contours of the Likelihood function
(marginalised over ∆v) for a model with the GDII rotation curve,
and the DB98 v!. There is clearly a strong correlation between
the values found for v0 and R0. Contours are drawn at likelihood
differing from the maximum likelihood ∆L = 0.25, 0.5, 1, 2.

the output of the Metropolis algorithm. With this approxi-
mation, the integral over parameters becomes analytic.

The Metropolis algorithm yields a set of points in pa-
rameter space which sample p(data|Model). Principal com-
ponent analysis of this sample yields the eigenvectors and
eigenvalues of K.

3 RESULTS

We first investigate models in which the masers are at rest
with respect to their host stars (i.e., vm = 0).

Table 1 gives the peak likelihoods of our models, as
well as the best-fitting parameters and the corresponding
uncertainties. The best-fitting value of v0 varies in the range
(200− 279) kms−1, and that of R0 between 6.7 and 8.9 kpc.
As Fig. 2 illustrates, v0 and R0 are strongly correlated with
the result that v0/R0 is confined to the relatively narrow
range 29.9 − 31.6 kms−1 kpc−1.

When v! is a free parameter, the best-fitting values of
U! and W! are close to the DB98 values, and essentially
independent of the form of the rotation curve, whereas V!

varies in the range 16.5− 19.5 kms−1. Similarly, when v! is
fixed at the DB98 value and vSFR is a free parameter, only
vφ,SFR takes a value that is far removed from that which
one would naively expect – it moves in the range −11.0 to
−14.8 kms−1. Thus the data suggest either that the Sun
is circulating significantly faster than the circular speed, or
that the hmsfr have an appreciable rotational lag.

The fits are almost perfectly degenerate between v!

and vSFR: they constrain only the difference between these
velocities. However, we shall argue in Section 4 that signif-
icantly non-zero values of vSFR are physically implausible,

so here we focus on what can be inferred about v! given
vSFR = 0. In view of the degeneracy between v! and vSFR

we do not report results obtained when both v! and vSFR

are varied.
When vSFR = 0, the peak likelihood is higher when v!

is fixed to the B09 value than when it is fixed to the DB98
value. To assess the significance of this increase in likelihood,
we calculate the ratio of the evidences for the two models as
described in Section 2.3.2

p(DB98|data)
p(B09|data)

"

8

<

:

2 × 10−4 for α = 0
1 × 10−4 α variable
4 × 10−4 GDII.

(9)

Thus regardless of the adopted rotation curve, the data
strongly favour upward revision of V! from 5.2 kms−1 to
11 km s−1.

When v! is a free parameter, the peak likelihood of the
B09 model is surpassed at yet larger values of V!. To de-
termine whether the increase in likelihood that occurs when
v! is set free from the B09 value, we again calculate the rel-
evant ratio of the evidences. Since the two models now differ
in whether v! is fixed or free, the priors on the components
of v! now become relevant (cf eq. 8). We have adopted
∆U! = ∆V! = ∆W! = 100 km s−1. With these values we
have

p(B09|data)
p(v! free|data)

"

8

<

:

5 for α = 0
0.6 α variable
40 GDII.

(10)

Therefore under these assumptions the increase in likelihood
attained on setting v! free from the B09 value is not statis-
tically significant. The ratio of evidences for the case when
v! is set to the DB98 value or is set free is

p(DB98|data)
p(v! free|data)

"

8

<

:

8 × 10−4 for α = 0
7 × 10−5 α variable
0.01 GDII.

(11)

Therefore, even with a generous choice of ∆U!, etc., the
data reject the possibility that the Sun has the DB98 value
of v!. Reducing the widths ∆U!, etc., of the priors on v!

would strengthen the case against the DB98 value of v!.
The choice of ∆U! ∼ 100 kms−1 is reasonably gen-

erous, and it is sensible to ask what value of ∆U!, etc.,
would bring p(B09|data)/p(v! free|data) down to unity. In
the case where the GDII rotation curve is used, it would
require a reduction to a value ∆U! ∼ 30 kms−1 – this is
smaller than is reasonable given that the value for V! found
when it is allowed to vary is already ∼ 15 kms−1 greater
than the canonical DB98 value.

It is worth noting that the case for setting v! free from
either the DB98 value of the B09 value is weakest when the
best-motivated rotation curve is adopted – the GDII curve.

The lowest values of both v0 and R0 are found for the
models with the DB98 value of v!, and vSFR set to zero.
Both v0 and R0 take larger values for models with the B09
value of v!, and larger still for models with either v! or
vSFR allowed to vary. The lowest values of v0 and R0 for the
models in which the peculiar velocities are allowed to vary
are 232 kms−1 and 7.7 kpc respectively.

Fig. 3 suggests a reason why the value of v! or vSFR

in the model has such a large impact on the best fitting
values of v0 and R0. It shows the residual velocities of the

McMillan & Binney 2009Reid et al. 2009
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Figure 6. The vertical W velocities of the giants as a function of absolute

magnitude in the local and cone samples.

Figure 7. The vertical W velocities as a function of metallicity in the local

and cone samples.

information from Tycho-2 it is very important that the full trans-

formations (rather than the first-order approximations) from the Ty-

cho instrumental VT and BT colours into the standard Johnson V

and B − V are used. This approach which was used in obtaining the

B − V colours given in the Hipparcos catalogue is as described in

section 1.3 and appendix 4 of Volume 1 of the catalogue. We note

that use of the first-order relations can lead to biases of up to 0.05 in

the B − V colour, which is insufficiently accurate for testing sample

completeness. For the HD catalogue, which is reported by Flynn &

Freeman (1993) as complete to V = 9.2 and extending to about V

= 10.5 with decreasing completeness, we confirm that the sample is

indeed complete to V = 9.2. For the Eriksson and Oddie catalogues,

we find that they are indeed complete to V = 11.0.

4 S U R FAC E M A S S D E N S I T Y D E T E R M I NAT I O N

We adopt a disc model similar to the one used in Holmberg & Flynn

(2000) to analyse the data. The basic model is shown in table 1

(and described in Section 3) of Holmberg & Flynn (2000): it is

of the type introduced by Bahcall (1984a,b,c), in which the disc

is represented by a set of massive, kinematically isothermal com-

ponents, tracing young stars, old stars, stellar remnants and gas.

The Poisson–Boltzmann equations are solved simultaneously and

the density falloff of each component computed. The difference be-

tween the model used here and the old one is that a thick-disc compo-

nent is explicitly included with a local density of 0.007 M" pc−3,

and a velocity dispersion of 37 km s−1. The density and velocity

dispersions of the appropriate thin-disc components are reduced ac-

cordingly, to keep the total local density and velocity distributions

in line with the bounds determined by Holmberg & Flynn (2000).

Some properties of our basic mass model are as follows: local mass

density ρ 0 = 0.102 M" pc−3, local disc mass surface density " =

52.8 M" pc−2, and total local mass surface density within 1.1 kpc

of the Galactic midplane " z1.1 = 70.6 M" pc−2. The resulting Kz

force law of the model is shown in Fig. 8.

Fig. 9 shows a comparison between the measured velocity distri-

bution in the cone sample and the expected distribution, for which

σ W = 26 km s−1. The expected distribution is computed from the

combination of the mass model and the velocity distribution in the

plane of the disc (as outlined in detail in FF). The good agree-

ment between the measured and calculated distributions is an indi-

cation that the local and the cone sample are members of the same

tracer population and well suited for the determination of the mass

density.

Fig. 10 shows a comparison between the local and the cone lumi-

nosity functions (LFs). The luminosity function of the cone K giants

appears to be quite consistent with being drawn from the same LF as

the local K giants. This is in consideration of the much larger typical

error in the absolute magnitudes (0.35 mag in the cone compared to

0.05 mag for the local giants), and the fact that the cone sample is

magnitude-rather than volume-limited. Under the assumption that

the LFs are the same, then from the measured local density of the

K giants and the predicted density falloff of the giants in a partic-

ular model of the disc mass, we can compute the number of giants

which should appear in the cone survey. This can be compared to the

actual number of observed giants and the model evaluated. In the

manner of FF we ran a series of Monte Carlo simulations of observa-

tions of stars in the cone samples, taking into account observational

Figure 8. The Kz force law resulting from the basic mass model.
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within 1.1 kpc of the midplane, with 56 ± 6 M! pc−2 as the total

disc contribution, compared to 53 M! pc−2 in visible material. This

is in excellent agreement with the analysis of K dwarfs, for which

Kuijken & Gilmore (1991) estimated the total mass within 1.1 kpc

as K z1.1 = 71 ± 6 M! pc−2.
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within 1.1 kpc of the midplane, with 56 ± 6 M! pc−2 as the total

disc contribution, compared to 53 M! pc−2 in visible material. This

is in excellent agreement with the analysis of K dwarfs, for which

Kuijken & Gilmore (1991) estimated the total mass within 1.1 kpc

as K z1.1 = 71 ± 6 M! pc−2.
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Visible matter

Dynamical matter

A dark matter disc in the Milky Way J. I. Read

(a) (b) (c) (d)

Figure 1: (a): The accreted stars (red) and dark matter (blue) at the end of a simulation where the LMC

satellite merged at ! = 10o to the Milky Way stellar disc; the black contours show the underlying Milky

Way stellar distribution. (b): The corresponding velocity distribution in v" (rotation velocity) at the solar

neighbourhood; the underlying Milky Way dark matter halo is shown in green. (c): The dark matter disc

to dark matter halo density ratio #DDISC/#HALO as a function of height above the disc plane (also for 8 <
R< 9 kpc), for LMC merging at ! = 10o,20o,40o and LLMC at ! = 10o to the Milky Way disc plane. (d):

The satellite-disc inclination angle ! as a function of time; the lines are truncated when the satellite is fully

accreted.

disc inside a spherical halo, as detailed in [10]. We chose three models for our satellite, but present

just two here: LMC with vmax = 60 km/s, and LLMC with vmax = 80 km/s; these were set up as

scaled versions of our MW model. We chose a wide range of initial inclination angles to the disc

from ! = 10−60o, one retrograde orbit, and range of pericentres and apocentres. The simulations

were evolved using the collisionless tree-code, PkdGRAV [14]. The final evolved systems were

mass and momentum centred using the ‘shrinking sphere’ method described in [11], and rotated

into their moment of inertia eigenframe with the z axis perpendicular to the disc.

The results are shown in Figure 1. The left panel shows the accreted stars (red) and dark

matter (blue) at the end of a simulation where the LMC satellite merged at ! = 10o to the disc.

Both the stars and the dark matter have settled into accreted discs. The middle panel shows the

corresponding velocity distribution in v" (rotation velocity) at the solar neighbourhood (a cylin-

der 8 < R < 9 kpc, |z| < 0.35 kpc). The underlying dark matter halo is shown in green and is not

rotating; the accreted stars and dark matter (red and blue) have kinematics similar to that of the un-

derlying stellar disc (black). The right panel shows the dark matter disc to dark matter halo density

ratio #DDISC/#HALO as a function of height above the disc plane for selected merger simulations,

as marked. As the satellite impact angle ! is increased, the satellite contributes less material to a

dark disc. For ! = 40o, the density at the solar neighbourhood is nearly flat with z and less than

a tenth of the underlying halo density; there is correspondingly less rotation in this simulation.

Summing over the expected number and mass of mergers, we find that the dark disc contributes

∼ 0.25− 1 times the non-rotating halo density at the solar position [10]. It is important to stress

that all satellites regardless of their initial inclination have some accreted material that is focused

into the disc plane (see Figure 1), right panel. As such, we expect that the accreted dark and stellar

discs will comprise several accreted satellites; the most massive low-inclination mergers being the

most important contributors.

The accreted stellar disc shares similar kinematics to the dark disc. Depending on assumptions

about the mass to light ratio of accreted satellites, these accreted stars can make up ∼ 10− 50%

3

Constrains contribution from a ``dark matter disk”
Read, Bruch, et al. 2009
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How much dark matter in your coffee cup? 
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Example with SDSS stars and escape velocity constraints. 

Metropolis-hastings method determine Galactic model parameters
[Dehnen & Binney 1998, Widrow et al. 2008, Catena & Ullio 2009, Strigari & Trotta 2009]

Strigari & Trotta in prep.



Constraining WIMPs w/o astrophysics

Anne Green, JCAP 0807:005,2008

103-105 kg/day exposure for Ge

Shan, arXiv:0903.4320 [hep-ph]

Low mass WIMPs more 
strongly constrained
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Figure 3: Distribution of the maximum likelihood WIMP mass, mχ, and cross-section, σχ−p, for
3 years of exposure in a 100 kg XENON experiment, for mχ = 20, 100, 500GeV and σχ−p = 10−8

pb. The inner (full) and outer (dashed) lines represent the 68% and 95% CL region respectively. The
crosses denote the theoretical input parameters (σχ−p, mχ).

much heavier than the nucleus mass (∼ 100 GeV for Xenon), mr ∼ mN , and is therefore
independent of the WIMP mass. This is clearly reflected in the uncertainties at 68% and
95% CL in figure 3 for a 500 GeV WIMP.

2.4 Influence of astrophysical/background assumptions

As mentioned before, a significant uncertainty (of the order of 8− 10%) exists for the largely
used values of the sun’s circular velocity around the Galactic Center (GC), as well as the
various background forms we could expect in direct detection experiments. In this respect,
it would be interesting to examine how the previous results are altered in the case where v0

is actually included in the fitting procedure, letting it vary within the given margin of error.
As far as background events are concerned, it is quite difficult to perform a general

study valid for every detector. Neutron backgrounds, which are in fact the most difficult to
distinguish from signal events, are usually taken to come from three sources (see also [13]):

• Cosmic muon - induced neutrons, which are not in general considered to cause much
nuisance.

• Neutrons from the detector’s surrounding rock.

• Neutrons coming from contamination of the detector itself or surrounding

materials.
As we said, it is difficult to model in general neutron backgrounds, as they are mostly

determined by the specific location in which every experiment is situated, as well as by the
specific shielding configuration adopted by each collaboration. Two widely studied forms of
neutron backgrounds are the case of a constant one, which seems to be quite well-motivated
by an experimental point of view and can resemble to a heavy WIMP’s signal, and an
exponential one which apart from its theoretical motivation is also interesting as it gets to

– 6 –
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Figure 1: The fractional deviation of the WIMP mass limits from the input mass, (mlim! −m
in
! )/min! , for

exposures E = 3×103,3×104 and 3×105kgday and input cross-section "p = 10−8 pb for the benchmark

SuperCDMS like detector. The solid (dotted) lines are the 95% (68%) confidence limits.

events for a given experiment, Nexpt, is drawn from a Poisson distribution with mean # . We Monte

Carlo generate Nexpt events from the input energy spectrum, from which the maximum likelihood

mass and cross-section for that experiment are calculated. Finally we find the (two-sided) 68% and

95% confidence limits on the WIMP mass from the maximum likelihood masses.

3. Results and discussion

The accuracy with which theWIMPmass could be measured by thebenchmark SuperCDMS [5]

like Ge detector described above is shown in Fig. 1. With exposures of E = 3× 104 and 3×

105 kgday it would be possible to measure the mass of a light, m! ∼ O(50GeV), WIMP with an

accuracy of roughly 25% and 10% respectively. For heavy WIMPs (m! $ 100GeV) even with a

large exposure it will only be possible to place a lower limit on the mass. For very light WIMPs,

m! < O(20GeV), the number of events above the detector energy threshold would be too small to

allow the mass to be measured accurately.

The number of events detected is directly proportional to both the exposure and the cross-

section, therefore these quantities have the greatest bearing on the accuracy of the WIMP mass

determination.

The energy threshold, Eth, and the maximum energy, Emax, above which recoils are not de-

tected/analysed also affect the accuracy with which the WIMP mass can be determined. Increasing

Eth (or decreasing Emax) not only reduces the number of events detected, but also reduces the range

of recoil energies and the accuracy with which the characteristic energy of the energy spectrum,

3

3

FIG. 1: 1σ error ellipses for mχ and D if mχ = 100 GeV,
σSI

p = 10−44 cm2, and ρχ = 0.3 GeV cm−3. Upper left: Fore-
casted errors for 2015-era (yellow) and 2020-era (black) ex-
periments with flat priors on all parameters. Upper center:
Error ellipses assuming a 10% mass prior, flat priors on all
other parameters, for 2015-era experiments. The magenta
ellipse represents errors obtained with the toy WARP experi-
ment and the mass prior, the blue corresponds to the toy LUX
experiment, the red to the toy XENON1T experiment, and
the green to the toy SuperCDMS Phase B. The yellow ellipse
represents errors for the joint analysis of all experiments with
the mass prior. Upper right: Error ellipses with the 10% mass
prior for 2020-era experiments. The blue represents the toy
LUX/ZEP experiment, green for the toy SuperCDMS Phase
C, and magenta for a hypothetical 10-ton argon experiment.
The yellow ellipse shows the errors obtained in a joint analysis
of all three experiments with the mass prior. Lower panels:
Error ellipses if the local dark-matter DF is fixed.

free parameters in the 2020-era experiments. Assuming
a fixed local dark-matter DF will yield significant biases
in mχ and D as well as unrealistically small error bars
[16].

In Fig. 2, I show the 1σ uncertainties in the velocity
parameters. As in Fig. 1, I show the errors for each ex-
periment analyzed with the 10% mass prior for the 2015-
and 2020-era experiments, as well as the errors if all ex-
periments are analyzed together with the mass prior. The
broad degeneracy between vlag and vrms in each exper-
iment is broken since the direction of the degeneracy is
different in each experiment. In the joint analysis, the
uncertainties in the velocity parameters are only slightly
reduced with the addition of the 10% mass prior than if
mχwere a completely free parameter.

In Figs. 3 and 4, I show 1σ uncertainties for differ-
ent, “stream-like” velocity parameters but with the same
particle physics parameters as in Figs. 1 and 2. If
vlag = vrms = 30 km s−1, most nuclear recoils are low in
energy. Thus, experiments such as XENON1T or LUX
which have low energy thresholds are necessary to char-
acterize the velocity and particle-physics parameters, al-

FIG. 2: 1σ errors in the velocity parameters. Left: Errors
obtained in a joint analysis of all 2015-era (yellow) and 2020-
era (black) experiments with flat priors on all parameters.
Center: Error ellipses for each 2015-era experiment analyzed
with a 10% mass prior. The yellow ellipse shows the errors for
the joint analysis. Right: Errors for the 2020-era experiments
and a 10% mass prior. Experiments the same as for Fig. 1.

though high-threshold experiments are not constraining
(this is why the argon experiments are missing on the
plot). In Fig. 3, the 2015-era experiments do a better
job of constraining parameters than the 2020-era exper-
iments because of the lower threshold of XENON1T, al-
though constraints on D are still weak, even with the
mass prior. However, the mass prior significantly im-
proves constraints in vrms.

In Fig. 4, I show constraints assuming vlag =
400 km s−1 and vrms = 30 km s−1. In this case, the typ-
ical nuclear recoil is large (e.g., Eq. (2)), so experiments
with high thresholds or large analysis windows (typical
of germanium and argon experiments) are best able to
constrain parameters. I find that without mass priors,
the degeneracy between mχ and D is large for 2015-era
experiments, but that the velocity parameters are better
constrained. For the 2020-era experiments, the uncer-
tainties on the velocity parameters are tiny even without
mass priors. Constraints on all parameters (except vrms)
improve significantly with the LHC-inspired mass prior.

There are three takeaway points from this initial study.
1) It is possible to glean both particle physics and astro-
physics inferences about dark matter by analyzing exper-
iments together if a signal is seen in at least one. 2) It is
only possible to do this by doing a joint analysis of the
experiments. Each experiment has its own degeneracies,
which are broken by combining the analysis of multiple
experiments. Thus, having many different dark-matter
experiments is a necessary condition for being able to
extract both particle physics and astrophysics properties
of dark matter from data. 3) Dark-matter experiments
are the only probes of the local dark-matter DF. As we
understand in simulations what drives the evolution of
the local dark-matter DF, it should be possible to learn
something about the evolutionary history of the Milky
Way from the local dark-matter velocity distribution as

A. Peter, arXiv:0910.4765v1



Counts Ge (events/yr)

P
ro

b
a

b
ili

ty
0 100 200

0

0.2

0.4

0.6

0.8

1

Counts
S
 Xe (events/yr)

P
ro

b
a
b
ili

ty

0 100 200
0

0.2

0.4

0.6

0.8

1

Ton scale detectors

Example MCMC run with SDSS stars and escape velocity constraints. 
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Projections

Approx. 300 (100) events for 50 (500) GeV  WIMP
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FIG. 2: Reconstruction of mχ, σSI
p under various assumptions: dark matter halo parameters fixed to assumed values (solid,

black), marginalizing over baseline halo model (filled/green), marginalizing over conservative halo model (filled/blue). In all
cases inner and outer contours represent 68% and 95% c.l. limits. The red diamond gives the true value. The left panel is for
a 50 GeV WIMP mass, the right panel assumes a 500 GeV WIMP (In the right panel, we only show 68% c.l. for the case of
fixed galactic parameters for clarity). The lower (upper) solid black contours illustrate the bias in the reconstruction assuming
incorrect values for the local dark matter density a factor of 2 above (below) the true value.

component [23] may be considered. Further one may ac-
count for the non-Maxwellian velocity distribution [24],
and a multi-component spectral fit to the WIMP and
astrophysical background spectra may be incorporated
[25, 26]. An analysis along these lines will be crucial to
interpret the limits and measurements from forthcoming
direct detection experiments.
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with six sets of observational data: the inner and outer Galactic rotation curves, the Oort

constants, the mass at large radii, the local vertical force, and the line-of-sight velocity dis-
persion in Baade’s window. The advantage of our models is that they not only describe the
potential-density pair for the Galaxy but also, the underlying DF. We therefore have the

ability to examine the stability of our Galactic models using N-body simulations, an issue
that is often ignored (but see Sellwood (1985) and Fux (1997)).

For the most part, we adopt Dehnen & Binney’s choice of observational data though we
include more complete observations of the line-of-sight dispersion in the bulge region as well

as photometric data from the COBE satellite. We also present what we believe to be a more
balanced treatment of the likelihood function. Most significantly, we bring to the problem

the powerful tools of Bayesian statistics and MCMC. These tools allow us to map out PDFs
of both input parameters and derived quantities.

Though our model represents an axisymmetric, equilibrium system, it is susceptible to
non-axisymmetric instabilities and therefore provides a natural starting point for numerical

studies of galactic dynamics. An N-body realization of the model can be easily generated
from the DF and then used as the initial conditions for a numerical simulation.

The Milky Way models in our MCMC series all satisfy the observational constraints
but vary considerably in their structural properties. We simulate a selection of twenty-five

models which span a wide range in Toomre Q (Toomre 1964) and Goldreich-Tremaine X
(Goldreich & Tremaine 1978, 1979) parameters and find that a bar develops in virtually all

of the cases. The onset of the bar instability can occur immediately or after several Gyr,
depending on the model.

We present the model in Section 2, review the observational constraints in Section 3, and
provide a summary of the essentials of Bayesian statistics and the MCMC method in Section

4. We discuss some preliminaries including our choice of prior probabilities, in Section 5. We
present the results of our MCMC analysis in Section 6 and the results of our bar formation
simulations in Section 7. In Section 8 we summarize our main conclusions and speculate on

how we might improve upon and extend the models and MCMC analysis.

2. GALACTIC MODELS

We consider axisymmetric, collisionless systems whose DF is of the form

f (E , Lz , Ez) = fdisk (E , Lz, Ez) + fbulge (E) + fhalo (E) (1)

– 6 –

density profile is well approximated by the R1/4-law (de Vaucouleurs 1948). The bulges of

late-type galaxies are found to have surface brightness profiles which follow the more general
Sersic law,

Σ(r) = Σ0e
−b(R/Re)1/n

, (5)

with Sersic index n between 0.6 and 2 (Andredakic, Peletier, & Balcells 1995; Courteau, de Jong, & Broeils
1996). Likewise, dark matter halos may have density profiles more general than the NFW

form. Since the work of Navarro, Frenk & White (1996), there has been considerable debate
over the actual form of halo density profiles. Moore et al. (1999) find evidence in their sim-

ulations for steeper cusps (ρ ∝ r−1.5). More recently, Navarro et al. (2004) conclude that
the logarithmic slope of the halo density profiles decreases steadily with radius though their
results are still consistent with equation 4. On the observational front, the rotation curves

of dark matter-dominated low surface brightness galaxies appear to favour constant density
cores (Moore 1994; Flores & Primack 1994; McGaugh & de Blok 1998; van den Bosch et al.

2000) though this interpretation of the data is being challenged on a number of fronts.

For our new models, we begin by choosing target density profiles, ρ̃bulge and ρ̃halo, for

the bulge and halo. Assume, for the moment, that the system is spherically symmetric.
Through the Abel integral transform,

fi (E) =
1√
8π2

∫ E

0

d2ρ̃i

dΨ2
total

dΨtotal√
E − Ψtotal

i = bulge or halo , (6)

(Binney & Tremaine 1987), we can construct bulge and halo DFs which yield the target
density profiles. In the case of an isolated halo or bulge, Ψtotal is the potential derived from

ρ̃halo or ρ̃bulge and equation 6 reduces to the usual expression for the DF of a spherically
symmetric system with isotropic velocities. The DF for a system following the Sersic law

was found with this method by Ciotti (1991). DFs for NFW halos were found by Zhao
(1997), Widrow (2000), and Lokas & Mamon (2000). For a composite system or one with
an external potential, one simply replaces the Ψ derived from ρ̃i with the total gravitational

potential. Tremaine et al. (2002) used this method to derive DFs for bulges with central
black holes by setting Ψtotal = Ψbulge + GMblackhole/r.

Equation 6 is only valid for spherically symmetric systems, a condition violated once a

disk is included. Our approach is to use a spherical approximation (essentially, the monopole
term of a spherical harmonics expansion) for the disk potential in evaluating Ψtotal. We stress
that equation 6 is used to construct fhalo(E) and fbulge(E), not to solve for Ψ(R, z) and ρ(R, z).

We can use fhalo(E) and fbulge(E) in equation 1 even though the composite system is not
spherically symmetric; A DF of the form f = f(E) yields an equilibrium system in any time-

Solve poisson equation for each component and sum to get the total potential

Stability requires integrand to be 
a monotonic function of energy

Example spherical and 
axisymmetric disk
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model (see below). The potential from this component is clearly non-spherical, though it

may be fairly accurately modeled by a spherical distribution that has the same mass interior

to a Galactocentric radius r = R. The spherically-symmetric disk potential is taken as

φdisk = −GMdisk(1 − e−r/bdisk )/r, where the total disk mass is Mdisk = 5 × 1010 M#. The peak
circular velocity for the spherical fit to the disk potential at ∼ 2bdisk is ∼ 15% less than the

circular velocity of the exponential disk and asymptotes to! 5% of the true mass distribution

for large radii [12]. For the dark matter halo we take a five parameter model,

ρ(r) =
ρ0

(r/r0)a[1 + (r/r0)b](c−a)/b
. (1)

The escape velocity, vesc, and the circular velocity at the solar radius, v0, are determined from

the combined potential of the three components.

As is the case with any parametric model, the results we present will likely vary if the

model is not an accurate description of the true Galaxy. As such, we view our analysis as

means of estimating uncertainties and bias on key dark matter parameters for a well-defined,

though perhaps simplified, MWmodel, and acknowledge that the above model provides a first

step towards consideration of a wider range of Galactic models in this context. For example,

to better model observations [13] triaxial models for the MW halo may be considered which

increase the dark matter density in the disk. However, on the theoretical side there are

uncertainties to the predictedMWhalo shape, e.g. simulations suggest that adding gas cooling

tends to make halos more spherical [14].

2.2. Stellar Kinematics

From the above parametric model for the Galaxy, we simulate stellar kinematics data which

we then employ to determine the accuracy with which the particle properties of the dark matter

and its astrophysical distribution can be reconstructed. Our synthetic data sample consists of

2000 stars distributed uniformly with Galactocentric radii in the range 5 − 40 kpc, similar to
the distribution in recent Sloan Digital Sky Survey measurements [11]. The distance, d, from

a halo star to the Sun is given by d2 = r2 + r2# − 2 r r# cos θ, so that the line-of-sight velocity
to the star is ḋ = ṙ(r/d − r# cos θ/d) + r r# θ̇ sin θ/d. Here θ is the spherical polar angle and
r# = 8.5 kpc is the distance from the Sun to the Galactic center, which we keep fixed. The

line-of-sight velocity dispersion is defined as the average of ḋ2 over the solid angle in Galactic

coordinates, σ2
los
≡ 〈ḋ2〉. Performing this average gives [15],

σlos =
√

1 − A(r)β(r)σr, (2)

where

A(r) =
r2 + r2#

4r2
−
(r2 − r2#)

2

8r3r#
ln

∣

∣

∣

∣

∣

r + r#

r − r#

∣

∣

∣

∣

∣

. (3)

The velocity anisotropy parameter is β(r) = 1 − σ2θ/σ
2
r , which we assume to be constant as a

function of radius.

Assuming that the dark matter halo and the tracer population of halo stars are in

equilibrium, the radial jeans equation for the intrinsic, or statistical, dispersion σr is

d(ρ&σ
2
r )

dr
+
2ρ&σ

2
rβ(r)

r
= −Gρ&

dφ

dr
, (4)
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As mentioned, the formula for NaI has instead a weighting factor for each of the two

nuclei. For a given detector and distribution function the value of A follows. To
compute g as defined in eq. (3.3) the appropriate choice of integration variable are,

in the isotropic case,

g(v′) = 2π v′
∫ π

0

dα sinα
Fdm(E)
ρ0

E = Ψ(R0)−
1

2

(

v′2 + 2 cosα v′v⊕ + v
2
⊕

)

, (3.6)

while in the anisotropic case,

g(v′) = 2 v′
∫ 2π

0

dψ

∫ π

0

dη sin η
Fdm(Q)
ρ0

Q = Ψ(R0)−
1

2

(

v′
2 + 2 sinψ sin η v′v⊕ + v

2
⊕

)

−

−R
2
0

2r2a

(

v′
2 sin2 η + 2 sinψ sin η v′v⊕ + v

2
⊕

)

. (3.7)

4. Results

4.1 Isotropic velocity distributions

We first consider distribution functions with isotropic velocity dispersions. In figure 1
we plot with a solid line the function g(v′) defined above in case of a NFW profile,

assuming the galactocentric distance to be R0 = 8 kpc and Θ0 as derived from
eq. (3.4). There are two solid lines in the figure; the one which is higher at the peak
refers to the function g in December, while the second one is appropriate for June.

As shown in the previous Section, the amplitude A of the annual modulation is
proportional to the difference between June and December of the integral of g above

the value vmin, which in turn depends on the energy deposited in the detector and
WIMP and nucleus masses. As a visual aid to identify which are the relevant portions
of the curves in each case, we plot in the figure the value of vmin for a Germanium

detector and a few values of Q andMχ (e.g. vmin(Q = 30 keV,Mχ = 60 GeV) is given
by the abscissa of the point at the intersection between the horizontal dotted line

labeled Q = 30 keV and the vertical dotted line labeled Mχ = 60 GeV). Analogous
plots for Na and I are given in figures 3 and 4.

In figure 2 we plot the predicted annual-modulation amplitude as a function of
Q, for this NFW profile, for a Germanium detector and for four sample values for the
WIMP mass. As known from previous analyses, the modulation amplitude changes

sign going to higher values of the deposited energy. At least for low-mass WIMPs,
the largest values of A correspond to the largest displayed value of Q. Note however
that at such large Qs the differential rate is almost negligible (being suppressed by
the form factor F).

7

Algorithm

– 33 –

Fig. 10.— (Upper panel) The distribution of Vlos as a function of Galactocentric distance,
r, for the entire sample of halo BHB stars. (Lower panel) The velocity dispersion, σlos, as a
function of Galactocentric distance. A best fit exponentially falling relationship is plotted.

– 32 –

Fig. 9.— (Upper panel) The distribution of metallicities, [Fe/H], as a function of apparent
magnitude, for the entire sample of halo BHB stars. (Lower panel) The distribution of line-
of-sight velocities, corrected to the GSR, for the entire sample of BHB stars. A Gaussian of

width σ = 105 km s−1 centered on the local standard of rest is shown for reference.

Xue et al., 2008Generate los velocity data sets and 
analyze with spherical jeans equation

MW potential given by bulge, 
(spherical) disk, and halo components

Free parameters: 
1) Bulge scalelength
2) Velocity anisotropy of stars
3) 5 parameter DM halo model
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Reconstructing WIMP Properties in Direct Detection Experiments
Including Galactic Dark Matter Distribution Uncertainties
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1Kavli Institute for Particle Astrophysics and Cosmology,
Stanford University, Stanford, California 94305-4085, USA

2Imperial College London, Astrophysics Group, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

We present a new method for determining Weakly Interacting Massive Particle (WIMP) properties
in future tonne scale direct detection experiments which accounts for uncertainties in the Milky
Way (MW) smooth dark matter distribution. Using synthetic data on the kinematics of MW
halo stars matching present samples from the Sloan Digital Sky Survey, complemented by local
escape velocity constraints, we demonstrate that the local dark matter density can be constrained
to ∼ 20% accuracy. For low mass WIMPs, we find that a factor of two error in the assumed local
dark matter density leads to a severely biased reconstruction of the WIMP spin-independent cross
section that is incorrect at the 15σ level. We show that this bias may be overcome by marginalizing
over parameters that describe the MW potential, and use this formalism to project the accuracy
attainable on WIMP properties in future 1 tonne Xenon detectors. Our method can be readily
applied to different detector technologies and extended to more detailed MW halo models.

Introduction– The detection of dark matter via elas-
tic scatterings in underground detectors is a foremost
goal of experimental physics in the coming years. Up-
per limits on the spin-independent WIMP-nucleon cross
section [1, 2, 3] are now beginning to carve into the
parameter space of the constrained Minimal Supersym-
metric Standard Model (cMSSM) [4, 5], which provides
a well-motivated theoretical framework for the dark mat-
ter. Favored MSSSM parameter space is expected to be
fully probed as future detectors reach the tonne scale.

A robust interpretation of the experimental limits (or
signals) from detectors requires an understanding of un-
certainties associated with the distribution of dark mat-
ter in the Milky Way (MW), specifically in the vicinity
of the solar neighborhood. Though long regarded a nui-
sance in the prediction of scattering event rates [6], the
potential for the uncertainty in the local dark matter dis-
tribution to bias the reconstruction of the WIMP mass
and cross section has yet to be fully quantified.

Here we study how well, in a realistic scenario, forth-
coming direct detection experiments can do in recon-
structing the WIMP mass and cross section, accounting
for an uncertain smooth component of the dark matter
distribution, which is independently constrained using
spectroscopic observations of distant halo stars [7, 8]
and measurements of the escape speed near the solar cir-
cle [9]. We quantify the bias introduced in the recon-
struction of WIMP properties when the uncertainty in
the MW halo model is neglected. The results we present
are specifically focused on the spin-independent WIMP-
nucleon cross section, but are otherwise independent of
the specific particle physics framework.

Milky Way Halo– Rates in direct detection experi-
ments are proportional to the dark matter density at the
solar radius. However the potential at the solar radius
is likely dominated by baryons, so a self-consistent ap-
proach must model the combined potentials of baryons
and dark matter. Disk stars on circular orbits trace
the local potential [10], and the dark matter contribu-

tion may be determined via continuation of constraints
at large radii and under the assumption of a smooth dark
matter density profile. This approach is of course sub-
ject to systematic uncertainties in the parameterization
of the halo potential, though it provides a starting point
for understanding the relative contributions from each of
the key MW mass components. As we argue here, even
a simplified MW model already represents a very consid-
erable improvement in bringing under control systematic
errors in reconstructed WIMP properties.

We consider a MW halo model that includes a central
bulge, disk, and dark halo [9, 11]. The bulge is mod-
eled as a spherically-symmetric potential, φbulge(r) =
−GMbulge/(r + c0), with c0 ∼ 0.6 kpc and a total mass
Mbulge = 1.5 × 1010 M!. The disk surface density is
taken of the form Σ(R) ∝ e−bdisk/R, with R the cylin-
drical coordinate for the axially-symmetric disk and its
scalelength is bdisk % 4 kpc. The potential from this
component is clearly non-spherical, though it may be
fairly accurately modeled by a spherical distribution that
has the same mass interior to a Galactocentric radius
r = R. The spherically-symmetric disk potential is taken
as φdisk = −GMdisk(1−e−bdisk/r)/r, where the total disk
mass is Mdisk = 5× 1010 M!. The peak circular velocity
for the spherical fit to the disk potential at ∼ 2bdisk is
∼ 15% less than the circular velocity of the exponential
disk and asymptotes to <∼ 5% of the true mass distribu-
tion for large radii [12]. For the dark matter halo we take
a five parameter model, ρ(r) = ρ0

(r/r0)a[1+(r/r0)b](c−a)/b .

The escape velocity, vesc, and the circular velocity at the
solar radius, v0, are determined from the combined po-
tential of the three components.

As is the case with any parametric model, the results
we present will likely vary if the model is not an accurate
description of the true Galaxy. As such, we view our anal-
ysis as means of estimating uncertainties and bias on key
dark matter parameters for a well-defined, though per-
haps simplified, MW model, and acknowledge that the
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We present a new method for determining Weakly Interacting Massive Particle (WIMP) properties
in future tonne scale direct detection experiments which accounts for uncertainties in the Milky
Way (MW) smooth dark matter distribution. Using synthetic data on the kinematics of MW
halo stars matching present samples from the Sloan Digital Sky Survey, complemented by local
escape velocity constraints, we demonstrate that the local dark matter density can be constrained
to ∼ 20% accuracy. For low mass WIMPs, we find that a factor of two error in the assumed local
dark matter density leads to a severely biased reconstruction of the WIMP spin-independent cross
section that is incorrect at the 15σ level. We show that this bias may be overcome by marginalizing
over parameters that describe the MW potential, and use this formalism to project the accuracy
attainable on WIMP properties in future 1 tonne Xenon detectors. Our method can be readily
applied to different detector technologies and extended to more detailed MW halo models.

Introduction– The detection of dark matter via elas-
tic scatterings in underground detectors is a foremost
goal of experimental physics in the coming years. Up-
per limits on the spin-independent WIMP-nucleon cross
section [1, 2, 3] are now beginning to carve into the
parameter space of the constrained Minimal Supersym-
metric Standard Model (cMSSM) [4, 5], which provides
a well-motivated theoretical framework for the dark mat-
ter. Favored MSSSM parameter space is expected to be
fully probed as future detectors reach the tonne scale.

A robust interpretation of the experimental limits (or
signals) from detectors requires an understanding of un-
certainties associated with the distribution of dark mat-
ter in the Milky Way (MW), specifically in the vicinity
of the solar neighborhood. Though long regarded a nui-
sance in the prediction of scattering event rates [6], the
potential for the uncertainty in the local dark matter dis-
tribution to bias the reconstruction of the WIMP mass
and cross section has yet to be fully quantified.

Here we study how well, in a realistic scenario, forth-
coming direct detection experiments can do in recon-
structing the WIMP mass and cross section, accounting
for an uncertain smooth component of the dark matter
distribution, which is independently constrained using
spectroscopic observations of distant halo stars [7, 8]
and measurements of the escape speed near the solar cir-
cle [9]. We quantify the bias introduced in the recon-
struction of WIMP properties when the uncertainty in
the MW halo model is neglected. The results we present
are specifically focused on the spin-independent WIMP-
nucleon cross section, but are otherwise independent of
the specific particle physics framework.

Milky Way Halo– Rates in direct detection experi-
ments are proportional to the dark matter density at the
solar radius. However the potential at the solar radius
is likely dominated by baryons, so a self-consistent ap-
proach must model the combined potentials of baryons
and dark matter. Disk stars on circular orbits trace
the local potential [10], and the dark matter contribu-

tion may be determined via continuation of constraints
at large radii and under the assumption of a smooth dark
matter density profile. This approach is of course sub-
ject to systematic uncertainties in the parameterization
of the halo potential, though it provides a starting point
for understanding the relative contributions from each of
the key MW mass components. As we argue here, even
a simplified MW model already represents a very consid-
erable improvement in bringing under control systematic
errors in reconstructed WIMP properties.

We consider a MW halo model that includes a central
bulge, disk, and dark halo [9, 11]. The bulge is mod-
eled as a spherically-symmetric potential, φbulge(r) =
−GMbulge/(r + c0), with c0 ∼ 0.6 kpc and a total mass
Mbulge = 1.5 × 1010 M!. The disk surface density is
taken of the form Σ(R) ∝ e−bdisk/R, with R the cylin-
drical coordinate for the axially-symmetric disk and its
scalelength is bdisk % 4 kpc. The potential from this
component is clearly non-spherical, though it may be
fairly accurately modeled by a spherical distribution that
has the same mass interior to a Galactocentric radius
r = R. The spherically-symmetric disk potential is taken
as φdisk = −GMdisk(1−e−bdisk/r)/r, where the total disk
mass is Mdisk = 5× 1010 M!. The peak circular velocity
for the spherical fit to the disk potential at ∼ 2bdisk is
∼ 15% less than the circular velocity of the exponential
disk and asymptotes to <∼ 5% of the true mass distribu-
tion for large radii [12]. For the dark matter halo we take
a five parameter model, ρ(r) = ρ0

(r/r0)a[1+(r/r0)b](c−a)/b .

The escape velocity, vesc, and the circular velocity at the
solar radius, v0, are determined from the combined po-
tential of the three components.

As is the case with any parametric model, the results
we present will likely vary if the model is not an accurate
description of the true Galaxy. As such, we view our anal-
ysis as means of estimating uncertainties and bias on key
dark matter parameters for a well-defined, though per-
haps simplified, MW model, and acknowledge that the

Metropolis-hastings method determines 

parameters, subject to escape velocity constraints
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FIG. 2: The velocity distribution function for the various halo models.

of the following quantity,

g(v′) = 2πv′
∫

dα sinαf(v)/vdv (14)

which is the astrophysical contribution to the direct detection event rate, assuming an isotropic and spherically
symmetric distribution function. The solid black curve shows this quantity assumption a standard maxwellian velocity
distribution,

f(v) ∝ exp[−(v̄ + v̄e)
2/v2

c ], (15)

where vc is the circular velocity. The Hernquist (red-dotted) model is truncated at the escape velocity of the halo.
The results in Fig. 3 also indicate that the event rate spectrum may be very different depending on the dark matter

halo model. What sets the shape of these spectra for each halo model? This question may be answered by noting
that the astrophysical contribution to the direct detection event rate may be written simply as an integral of the dark
matter distribution over a given energy range,

∫ ε
0 f(ε′)dε′. The lower limit of this integral corresponds to the escape

velocity, while the upper limit is determined by vmin and thus the observed recoil energy (Recall that the binding
energy is ε = −v2

min/2 + Ψ(R"), and that the minimum velocity is related to the observed recoil energy through
vmin = (εmN/2µ2)1/2). Thus for a fixed potential there is a direct mapping between binding energy and observed
recoil energy.

The left panel of Figure 4 shows this relation between the binding energy and the observed recoil energy for each
of the three halo models in Fig. 3. At the lowest plotted recoil energy there is a ∼ 25% difference in the binding
energies between the given models, with the NFW model giving the highest binding energy and the Einasto model
the lowest. Though the binding energy, and thus the upper limit to the integral

∫ ε
0 f(ε′)dε′, is larger in the NFW

model, the event rate is lower because of the lower phase space density for the NFW model relative to the Einasto
and Hernquist models.

5

Quantity Einasto NFW Hernquist Isothermal

α 0.2 – – —

(r−2)r0 (kpc) 12 21 30 0.1

(ρ−2)ρ0(M"/kpc3) 5 × 106 8 × 106 5.5 × 106 5 × 1010

a,b – 1 1 0,2

c – 3 4 2

ρ(R0) (GeV cm−3) 0.38

Vc (km s−1) 211

TABLE I: Caption of halo parameters
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FIG. 2: The velocity distribution function for the various halo models.

of the following quantity,

g(v′) = 2πv′
∫

dα sinαf(v)/vdv (14)

which is the astrophysical contribution to the direct detection event rate, assuming an isotropic and spherically
symmetric distribution function. The solid black curve shows this quantity assumption a standard maxwellian velocity
distribution,

f(v) ∝ exp[−(v̄ + v̄e)
2/v2

c ], (15)

where vc is the circular velocity. The Hernquist (red-dotted) model is truncated at the escape velocity of the halo.
The results in Fig. 3 also indicate that the event rate spectrum may be very different depending on the dark matter

halo model. What sets the shape of these spectra for each halo model? This question may be answered by noting
that the astrophysical contribution to the direct detection event rate may be written simply as an integral of the dark
matter distribution over a given energy range,

∫ ε
0 f(ε′)dε′. The lower limit of this integral corresponds to the escape

velocity, while the upper limit is determined by vmin and thus the observed recoil energy (Recall that the binding
energy is ε = −v2

min/2 + Ψ(R"), and that the minimum velocity is related to the observed recoil energy through
vmin = (εmN/2µ2)1/2). Thus for a fixed potential there is a direct mapping between binding energy and observed
recoil energy.

The left panel of Figure 4 shows this relation between the binding energy and the observed recoil energy for each
of the three halo models in Fig. 3. At the lowest plotted recoil energy there is a ∼ 25% difference in the binding
energies between the given models, with the NFW model giving the highest binding energy and the Einasto model
the lowest. Though the binding energy, and thus the upper limit to the integral

∫ ε
0 f(ε′)dε′, is larger in the NFW

model, the event rate is lower because of the lower phase space density for the NFW model relative to the Einasto
and Hernquist models.
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Event rate spectra: Anisotropic models
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FIG. 5: The event rate assuming the same models as in Fig. 3. Each curve the parameters have been chosen so that the dark
matter halo has a mass ∼ 1012 M!. In the left panel, the dot-dot-dashed curves show the rate for an isotropic maxwellian
distribution circular velocities 240, 220, and 200 km s−1, from top to bottom on the left. The right panel assumes similar
circular velocities and the triaxial parameter q = 0.5. In all cases the target is Xe and the form facto is included.

C. Effects of the Form Factor

The calculations above have neglected the effects of the form factor corrections for the cross section. This corrections
is of course energy dependent and will alter the shapes of the recoil spectra. We now examine whether these corrections
will spoil the dependence on the form of the dark matter halo distribution function.

The results for Xe including the form factor are shown in the left panel of Fig. 3. As is seen the event rates are
reduced at high energy, and the event rates are reduced overall, but the relative difference in the shapes of the spectra
between models persists.

D. Comparison to isotropic and triaxial models

The above method can be compared to the method in Ref. [5], which assumed that the distribution function of dark
matter is given by an isotropic gaussian distribution. This calculation is similar to the standard formalism given in
Ref. [18]. The left panel of figure 5 shows this comparison. As shown in Fig. 5, for an isotropic maxwellian distribution,
increasing in the circular velocity has the effect of enhancing the event rate at low recoil energies. Increasing the local
density of dark matter has the simple effect of normalizing these rates, in the formalism of Ref. [18].

Can the results in Fig. 3 be mimicked with a triaxial MW halo distribution? To further explore this effect we
consider the parameterization of the triaxial velocity distribution from Ref. [19]. The rates for this distribution,
assuming q = 0.5 and that the Sun is on the long axis of major axis, are shown in the right panel of Fig. 5. For a fixed
q, the increase in the circular velocity has the effect of increasing the event rate at low energies, similar to the case
of the isotropic maxwellian distribution. In the triaxial case, the rates are enhanced at low recoil energies relative to
the same circular velocities for the isotropic case.

VII. ANISOTROPIC AND SPHERICAL DISTRIBUTION FUNCTION

Of course the assumption of isotropy and spherical symmetry is likely an approximation to the distribution function
of the dark matter in the Milky Way. We now discuss some simple extensions to the spherical and isotropic model
and discuss the resulting effect on the event rate spectrum.

We assume a distribution function of the form

f(E, L) = L−2βfE(E), (16)
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There is good evidence from N-body simulations that the velocity distribution in the outer parts of halos is

radially anisotropic, with the kinetic energy in the radial direction roughly equal to the sum of that in the two

tangential directions. We provide a simple algorithm to generate such cosmologically important distribution

functions. Introducing rE(E), the radius of the largest orbit of a particle with energy E, we show how to write

down almost trivially a distribution function of the form f (E, L) = L−1g(rE ) for any spherical model – including

the ‘universal’ halo density law (Navarro-Frenk-White profile). We in addition give the generic form of the

distribution function for any model with a local density power-law index α and anisotropy parameter β and

provide limiting forms appropriate for the central parts and envelopes of dark matter halos. From those, we

argue that, regardless of the anisotropy, the density falloff at large radii must evolve to ρ ∼ r−4 or steeper

ultimately.

PACS numbers: 95.35.+d, 98.62.Gq

I. INTRODUCTION

N-body experiments now can reliably follow the collapse

and violent relaxation of dark matter halos from initial con-

ditions. This has led to the discovery of regularities in the

phase space distribution of dark matter [e.g., 1], even though

the final state is not completely independent of initial con-

ditions. This is important because it suggests that there is a

generic functional form for the distribution function (DF) that

describes the physics of violent relaxation, albeit with some

cosmic scatter [2].

For example, Hansen and Moore [3, see also 4] have found

that the density power index is correlated with the anisotropy

parameter β = 1− 〈v2
T
〉/(2〈v2

r 〉) [5]. Here, 〈v2
r 〉 and 〈v2

T
〉 are the

radial and the tangential velocity second moments. For a wide

range of cosmological simulations, they demonstrate that the

dark matter follows the equation of state β ≈ 1−1.15(1−α/6)

where α is the density power index (i.e., ρ ∼ r−α). In the very

center, dark matter halos are roughly isotropic (β ≈ 0) with

α ≈ 1. In the outer parts, violent relaxation produces a density

profile that asymptotically becomes ρ ∼ r−4 [6] or ρ ∼ r−3 [7],

for which the anisotropy parameter β ≈ 0.5 accordingly.

If violent relaxation proceeded to completion, then equipar-

tition would enforce equal kinetic energy in each direction and

the velocity distribution would be isotropic [8]. This appears

to be the case only at the centers of numerical simulations.

Particles with large apocenters respond only weakly to the

fluctuating gravitational field. Throughout most of the halo,

this gives rise to an end point for which the kinetic energy

in the radial direction is roughly equal to the sum of that in

the two tangential directions. This seems to be supported not

only by the numerical simulations but also by the observation

of stars in elliptical galaxies [9], whose kinematics is also gov-

erned by the collisionless Boltzmann equation with the gravi-
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tational potential. The purpose of this paper is to give the DF

of the dark matter which has this property.

There has been much work on isotropic DFs [see 5] of grav-

itating systems. These are fine for the inner parts. On the other

hand, there has been much less work on DFs suitable for the

radially anisotropic outer parts of the dark matter halos. In

particular, a number of the suggestions in the literature for

anisotropic DFs [e.g., 10, 11, 12, 13] are unsuitable, as they

yield overwhelming radial anisotropy (β → 1) in the outer

parts, which is inconsistent with the simulations. While there

exist some suggestions on the form of anisotropic DFs with a

more flexible behavior of β [e.g., 14, 15], recovering such DFs

for most density profiles is often analytically intractable [16,

but see 17 for a special case].

II. DISTRIBUTION FUNCTIONS WITH β = 1/2

The widely used ansatz for a DF of a spherical system with

constant anisotropy (parameterized by β) is

f (E, L) = L−2β fE (E) (1)

where E = ψ − v2/2 is the binding energy per unit mass, L =

rvT is the specific angular momentum, and ψ is the relative

potential. Integration of the DF over the velocity gives

ρ = r−2β (2π)3/2Γ(1 − β)
2βΓ(3/2 − β)

∫ ψ

0

(ψ − E)1/2−β fE(E) dE. (2)

The unknown function fE(E) then can be recovered from the

integral inversion formula [13, 18];

fE (E) =
2β(2π)−3/2

Γ(1 − λ)Γ(1 − β)
d

dE

∫ E

0

dψ

(E − ψ)λ
dnh

dψn
(3)

where h = r2βρ is expressed as a function ofψ, and n = ((3/2−
β)) and λ = 3/2− β− n are the integer floor and the fractional

part of 3/2 − β. This includes Eddington’s formula [19] for

the isotropic DF as a special case (β = 0). The expression for
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and violent relaxation of dark matter halos from initial con-

ditions. This has led to the discovery of regularities in the

phase space distribution of dark matter [e.g., 1], even though

the final state is not completely independent of initial con-

ditions. This is important because it suggests that there is a

generic functional form for the distribution function (DF) that

describes the physics of violent relaxation, albeit with some

cosmic scatter [2].

For example, Hansen and Moore [3, see also 4] have found

that the density power index is correlated with the anisotropy

parameter β = 1− 〈v2
T
〉/(2〈v2

r 〉) [5]. Here, 〈v2
r 〉 and 〈v2

T
〉 are the

radial and the tangential velocity second moments. For a wide

range of cosmological simulations, they demonstrate that the

dark matter follows the equation of state β ≈ 1−1.15(1−α/6)

where α is the density power index (i.e., ρ ∼ r−α). In the very

center, dark matter halos are roughly isotropic (β ≈ 0) with

α ≈ 1. In the outer parts, violent relaxation produces a density

profile that asymptotically becomes ρ ∼ r−4 [6] or ρ ∼ r−3 [7],

for which the anisotropy parameter β ≈ 0.5 accordingly.

If violent relaxation proceeded to completion, then equipar-

tition would enforce equal kinetic energy in each direction and

the velocity distribution would be isotropic [8]. This appears

to be the case only at the centers of numerical simulations.

Particles with large apocenters respond only weakly to the

fluctuating gravitational field. Throughout most of the halo,

this gives rise to an end point for which the kinetic energy

in the radial direction is roughly equal to the sum of that in

the two tangential directions. This seems to be supported not

only by the numerical simulations but also by the observation

of stars in elliptical galaxies [9], whose kinematics is also gov-

erned by the collisionless Boltzmann equation with the gravi-
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tational potential. The purpose of this paper is to give the DF

of the dark matter which has this property.

There has been much work on isotropic DFs [see 5] of grav-

itating systems. These are fine for the inner parts. On the other

hand, there has been much less work on DFs suitable for the

radially anisotropic outer parts of the dark matter halos. In

particular, a number of the suggestions in the literature for

anisotropic DFs [e.g., 10, 11, 12, 13] are unsuitable, as they

yield overwhelming radial anisotropy (β → 1) in the outer

parts, which is inconsistent with the simulations. While there

exist some suggestions on the form of anisotropic DFs with a

more flexible behavior of β [e.g., 14, 15], recovering such DFs

for most density profiles is often analytically intractable [16,

but see 17 for a special case].

II. DISTRIBUTION FUNCTIONS WITH β = 1/2

The widely used ansatz for a DF of a spherical system with

constant anisotropy (parameterized by β) is

f (E, L) = L−2β fE (E) (1)

where E = ψ − v2/2 is the binding energy per unit mass, L =

rvT is the specific angular momentum, and ψ is the relative

potential. Integration of the DF over the velocity gives

ρ = r−2β (2π)3/2Γ(1 − β)
2βΓ(3/2 − β)

∫ ψ

0

(ψ − E)1/2−β fE(E) dE. (2)

The unknown function fE(E) then can be recovered from the

integral inversion formula [13, 18];

fE (E) =
2β(2π)−3/2

Γ(1 − λ)Γ(1 − β)
d

dE

∫ E

0

dψ

(E − ψ)λ
dnh

dψn
(3)

where h = r2βρ is expressed as a function ofψ, and n = ((3/2−
β)) and λ = 3/2− β− n are the integer floor and the fractional

part of 3/2 − β. This includes Eddington’s formula [19] for

the isotropic DF as a special case (β = 0). The expression for
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N-body experiments now can reliably follow the collapse

and violent relaxation of dark matter halos from initial con-

ditions. This has led to the discovery of regularities in the

phase space distribution of dark matter [e.g., 1], even though

the final state is not completely independent of initial con-

ditions. This is important because it suggests that there is a

generic functional form for the distribution function (DF) that

describes the physics of violent relaxation, albeit with some

cosmic scatter [2].

For example, Hansen and Moore [3, see also 4] have found

that the density power index is correlated with the anisotropy

parameter β = 1− 〈v2
T
〉/(2〈v2

r 〉) [5]. Here, 〈v2
r 〉 and 〈v2

T
〉 are the

radial and the tangential velocity second moments. For a wide

range of cosmological simulations, they demonstrate that the

dark matter follows the equation of state β ≈ 1−1.15(1−α/6)

where α is the density power index (i.e., ρ ∼ r−α). In the very

center, dark matter halos are roughly isotropic (β ≈ 0) with

α ≈ 1. In the outer parts, violent relaxation produces a density

profile that asymptotically becomes ρ ∼ r−4 [6] or ρ ∼ r−3 [7],

for which the anisotropy parameter β ≈ 0.5 accordingly.

If violent relaxation proceeded to completion, then equipar-

tition would enforce equal kinetic energy in each direction and

the velocity distribution would be isotropic [8]. This appears

to be the case only at the centers of numerical simulations.

Particles with large apocenters respond only weakly to the

fluctuating gravitational field. Throughout most of the halo,

this gives rise to an end point for which the kinetic energy

in the radial direction is roughly equal to the sum of that in

the two tangential directions. This seems to be supported not

only by the numerical simulations but also by the observation

of stars in elliptical galaxies [9], whose kinematics is also gov-

erned by the collisionless Boltzmann equation with the gravi-
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tational potential. The purpose of this paper is to give the DF

of the dark matter which has this property.

There has been much work on isotropic DFs [see 5] of grav-

itating systems. These are fine for the inner parts. On the other

hand, there has been much less work on DFs suitable for the

radially anisotropic outer parts of the dark matter halos. In

particular, a number of the suggestions in the literature for

anisotropic DFs [e.g., 10, 11, 12, 13] are unsuitable, as they

yield overwhelming radial anisotropy (β → 1) in the outer

parts, which is inconsistent with the simulations. While there

exist some suggestions on the form of anisotropic DFs with a

more flexible behavior of β [e.g., 14, 15], recovering such DFs

for most density profiles is often analytically intractable [16,

but see 17 for a special case].

II. DISTRIBUTION FUNCTIONS WITH β = 1/2

The widely used ansatz for a DF of a spherical system with

constant anisotropy (parameterized by β) is

f (E, L) = L−2β fE (E) (1)

where E = ψ − v2/2 is the binding energy per unit mass, L =

rvT is the specific angular momentum, and ψ is the relative

potential. Integration of the DF over the velocity gives

ρ = r−2β (2π)3/2Γ(1 − β)
2βΓ(3/2 − β)

∫ ψ

0

(ψ − E)1/2−β fE(E) dE. (2)

The unknown function fE(E) then can be recovered from the

integral inversion formula [13, 18];

fE (E) =
2β(2π)−3/2

Γ(1 − λ)Γ(1 − β)
d

dE

∫ E

0

dψ

(E − ψ)λ
dnh

dψn
(3)

where h = r2βρ is expressed as a function ofψ, and n = ((3/2−
β)) and λ = 3/2− β− n are the integer floor and the fractional

part of 3/2 − β. This includes Eddington’s formula [19] for

the isotropic DF as a special case (β = 0). The expression for

,

In this model, enhanced event 
rates imply circular orbits



Neutrino Coherent Scattering
ν ν

Freedman 1974 PRD, Tubbs & Schramm 1975 

Fundamental prediction of the Standard Model, but not yet detected

Cross Section: σ ~ Gf2 Qw2 Eν2 F(Q2)2

Qw2 = N - (1- 4sin2 θw)ZWeak charge:

Coherence condition: [three-momentum] x [nuclear radius] ≤ 1

Implies sensitivity to neutrinos ~ 10 MeV
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Figure 3. Number of events above a threshold recoil kinetic energy for four target
nuclei. For both the diffuse supernova and atmospheric event rates, the sum of all
contributing neutrino flavors are shown.

thresholds in the area of ∼ 5 keV; as is seen dropping the threshold below this energy

will lead to a significantly increased 8B signal.
As an additional note, the analysis above just accounts for neutrino-nucleus

coherent scattering. In principle it would also be possible to detect these same fluxes

via neutrino-electron elastic scatterings [8]. For this channel the largest rate is to due

the solar pp reaction. For example, from pp scatterings on Xe a flat spectrum of electron

recoil events is expected at ∼ 0.1 events per ton-yr with energies up to ∼ 600 keV.

3. Implications for WIMP-Nucleon Cross Section Constraints

In the absence of backgrounds the expected upper limit on the WIMP-cross section

simply scales linearly with the detector. For example a ten times greater exposure

will imply a ten times stronger upper limit on the cross section. In the presence of

backgrounds, however, the projected limits on the cross section must be modified.

Dodelson [26] has provided a simple formalism for estimating the upper limit on the

Ne Ar

Neutrino Backgrounds/Signals

Flux of Atmospheric Neutrinos 9

where φp(A) is the flux of primary protons (nuclei of mass A) outside the influence

of the geomagnetic field and Rp(A) represents the filtering effect of the geomag-

netic field. Free and bound nucleons are treated separately because propagation

through the geomagnetic field depends on magnetic rigidity (total momentum

divided by total charge) whereas particle production depends to a good approxi-

mation on energy per nucleon. A proton of rigidity R (GV) has total energy per

nucleon E(GeV ) =
√

R2 + m2
p whereas the corresponding relation for helium is

E(GeV/A) =
√

R2/4 + m2
p.

The neutrinos come primarily from the two-body decay modes of pions and

kaons and the subsequent muon decays. The decay chain from pions is

π± → µ± + νµ(νµ) (4)

↘

e± + νe(νe) + νµ(νµ),

with a similar chain for charged kaons. When conditions are such that all particles

decay, we therefore expect

νµ + ν̄µ

νe + ν̄e
∼ 2, (5)

νµ/ν̄µ ∼ 1 and νe/νe ∼ µ+/µ−.

Moreover, the kinematics of π and µ decay is such that roughly equal energy is

carried on average by each neutrino in the chain.

2.1 Early calculations

The early calculations used the relation between muons and neutrinos implied

by Eq. 4. The idea is to parameterize the pion production spectrum in the

atmosphere to fit an observed flux of muons. In this way, the primary spectrum

Strigari, NJP 2009
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Figure 3. Number of events above a threshold recoil kinetic energy for six target
nuclei. For both the diffuse supernova and atmospheric event rates, the sum of all
contributing neutrino flavors are shown.



Conclusion

• Assuming WIMPs are detected, over 100 
events likely needed to determine mass 

• ``Best way to determine the dark matter 
velocity distribution is to measure it directly” 
-H. Nelson, yesterday

• Era of ``Dark Matter Astronomy” close?


