DARK MATTER SEARCHES WITH ICECUBE

Carlos de los Heros Uppsala University

KAVLI INSTITUTE, 11 JUNE, 2013

THANKS IN ABSENTIA TO C. ROTT, M. DANNINGER, J. MILLER, R. REIMANN

- · ICECUBE IS COMPLETE: TAKING DATA WITH 86 STRINGS SINCE MAY 2011
- RESULTS FROM 2010/11 (79/86 STRINGS) ARE BEING RELEASED
- · ANALYSES ON 86 STRINGS IN THE PIPELINE
- \cdot The low-energy extension, DeepCore, useful to lower energy threshold to $\sim 10~\text{GeV}$

ALREADY USEFUL IN CONVERTING ICECUBE TO AN ALL-SKY DETECTOR:

ICECUBE REACHES THE SOUTHERN SKY (GALACTIC CENTER)

DOUBLES EXPOSURE OF THE DETECTOR FOR SOLAR DM SEARCHES

- * COMPETITIVE LIMITS ON DARK MATTER SEARCHES
- · ON THE HIGH-ENERGY SIDE: $V_{
 ho}$ ATMOSPHERIC NEUTRINOS

OBSERVATION OF O(100)TEV-PEV EVENTS

SENSITIVITY TO POINT SOURCES REACHING THE LEVEL WHERE A NON-OBSERVATION

CONSTRAINS MODELS (GRBs FOR EXAMPLE)

*SEVERAL "TARGET OF OPPORTUNITY" PROGRAMS WITH SATELLITES, CTAS AND GW DETECTORS WORKING

THE ICECUBE NEUTRINO TELESCOPE

<u>ATWD</u>: 3 CHANNELS. SAMPLING 300MHz,

 \underline{FADC} : sampling 40 MHz, capture 6.4 μs Dynamic range 500pe/15 nsec,

25000 PE/6.4 μs

- FLASHER BOARD: 12 controllable LEDs at 0° or 45°

- DARK NOISE RATE ~ 400 Hz
- · Local Coincidence rate ~ 15 Hz
- · DEADTIME < 1%
- · TIMING RESOLUTION ≤ 2-3 NS
- · Power consumption: 3W

Clock stability: $10^{-10} \approx 0.1$ nsec / sec Synchronized to GPS time every ≈ 5 sec at 2 ns precision

ICETOP: AIR SHOWER DETECTOR

Full detector veto capabilities

Complete detector → **full sky sensitivity** using IceCube outer strings as a veto

Define starting tracks == neutrinos

Complete detector → **full sky sensitivity** using IceCube outer strings as a veto

Define starting tracks == neutrinos

FULL DETECTOR VETO CAPABILITIES

Complete detector → **full sky sensitivity** using IceCube outer strings as a veto

Define starting tracks == neutrinos

FULL DETECTOR VETO CAPABILITIES

Complete detector → **full sky sensitivity** using IceCube outer strings as a veto

Define starting tracks == neutrinos

---> access to southern hemisphere, galactic center and all-year Sun visibility

IceCube is a 4π detector

FULL DETECTOR VETO CAPABILITIES

WIMPS

- ARISE IN EXTENSIONS OF THE STANDARD MODEL
- ASSUMED TO BE STABLE: RELICS FROM THE BIG BANG
- WEAK-TYPE XSECTION GIVES NEEDED RELIC DENSITY

$$\Omega_{\delta} h^2 \approx \frac{10^{-27}}{\langle \sigma_{ann} \, v \rangle_{fr}} \, \text{cm}^3 \, \text{s}^{-1}$$

- MASS FROM FEW GEV TO FEW TEV
- MSSM CANDIDATE: LIGHTEST NEUTRALINO,

$$\chi^{0}_{1} = N_{1}B + N_{2}W^{3} + N_{3}H^{0}_{1} + N_{4}H^{0}_{2}$$

- UED: LIGHTEST 'RUNG' IN THE KALUZA-KLEIN LADDER

SIMPZILLAS

- NON-THERMAL, NON-WEAKLY INTERACTING STABLE RELICS

A wealth of candidates from different theoretical models:

- dark baryons (primordial nucleosynthesis constraints)
- MACHOs BHs, neutron stars, white/brown dwarfs... (microlensing constraints)
- neutrinos (mass constraint)
- primordial Black Holes (cosmological constraints)
- Weakly Interacting Massive Particles

(LSPs from "x"MSSM, Kaluza-Klein modes...)

Non-weakly Interacting Supermassive particles (Simpzillas)

- axions (too light+astrophysical constrains)
- many others
- ... + (alternative gravity theories)

DM-induced SM particles:

$$KK, \chi\chi,SS \rightarrow \begin{pmatrix} q\overline{q} \\ \ell^+\ell^- \\ W, Z, H \end{pmatrix} \rightarrow v, \gamma, e^+e^-, \overline{p}$$

Kaluza-Klein modes an additional useful channel:

$$\kappa\kappa \to \nu\nu$$

signature:

v excess over background from Sun/Earth/Galactic Halo/nearby galaxies

A lot of physics uncertainties involved:

- relic density calculations
- DM distribution in the halo
- velocity distribution
- χ,K,S properties (MSSM/UED...)
- interaction of χ ,K,S with matter (capture)
- self interaction (annihilation)

Look at objects where dark matter can have accumulated gravitationally over the evolution of the Universe

Sun, Earth, Galactic Halo/Center, dwarf spheroids

Atmospheric muons ~**O(10¹⁰) events/year** (downwards)

Atmospheric neutrinos ~O(104) events/year (all directions)

Solar Dark Matter Search with IceCube

ICE CLIBE

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - → Scattering cross-sections (SI & SD)

main analysis backgrounds:

atm. $v\sim O(10^3 \text{ triggering events/day})$

atm. $\mu \sim O(10^8 \text{ triggering events/day})$

searches from the Sun: neutrino energies at the detector

5000 GeV Neutralino → WW @ Sun

Simpzilla → tt @ Sun

: Indirect dark matter searches from the **Sun** are a low-energy analysis in neutrino telescopes: even for the highest DM masses, we do not get muons above few 100 GeV

Not such effect for the Earth and Halo (no v energy losses in dense medium)

IceCube-79 string analysis details

(PRL 110 (2013) 131302) ICECUBE

- Analysis for the whole year! Used 317 days livetime
 (151 days austral winter & 166 days austral summer)
- more than 60 billion recorded events
- At final level ~25000 signal-like events in 3 independent samples
- With DeepCore, analysis reaches neutrino energies of 10-20GeV

IceCube-79 string analysis details

Maximum Ilh-analysis

The observed angle to the Sun is fitted with *signal* and *background* pdf:s

Evaluate shape fit with loglikelihood rank (Feldman-Cousins) to construct confidence regions for the number of signal events μ**s**

$$R(\mu) = \frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})}$$

where *L* is the pdf product over the final sample

(Angle between event track & direction from the Sun)

$$f(\psi|\mu_{\rm s}) = \frac{\mu_{\rm s}}{n_{\rm obs}} f_S(\psi) + \left(1 - \frac{\mu_{\rm s}}{n_{\rm obs}}\right) f_B(\psi)$$
$$\mathcal{L}(\mu_{\rm s}) = \prod_{i=1}^{n_{\rm obs}} f(\psi_i|\mu_{\rm s})$$

analysis strategies in neutrino telescopes

$$\Psi_{\text{data'}} \Psi_{\text{bck}} \rightarrow N_{90} \longrightarrow \Gamma_{\nu\mu} \leq \frac{N_{90}}{V_{\text{eff}} \cdot t}$$

Experimentally obtained quantity: allowed number of signal events still compatible with background, at 90% confidence level

$$\Gamma_{\nu\mu}(m_\chi) = \Gamma_{\rm A} \cdot \frac{1}{4 \, \pi R_\oplus^2} \! \int_0^{m_\chi} \! \sum \, B_{\chi\chi \to X} \! \left(\frac{dN_\nu}{dE_\nu} \right) \\ \times \, \sigma_{\nu+N\to\mu+\dots}(E_\nu | E_\mu \!\!\!> \!\!\!\! E_{\rm thr}) \, \rho_{\rm N} \, dE_\nu$$
 Use model to convert to a muon flux
$$\phi_\mu(E_\mu \!\!\!> E_{\rm thr}) = \frac{\Gamma_{\rm A}}{4\pi D_\odot^2} \int_{E_{\rm thr}}^{\infty} {\rm d}E_\mu \frac{{\rm d}N_\mu}{{\rm d}E_\mu}$$

Solar WIMP search results (observed events)

13/05/13 Matthias Danninger IPA 2013 8

Solar WIMP search results (cross-section limit)

- → most stringent SD cross-section limit for most models
- → complementary to direct detection search efforts
- → Different astrophysical & nuclear form-factor uncertainties

SEARCHES FROM THE SUN: COMPLEMENTARITY WITH COLLIDER RESULTS

Assume (ie. model dependent) effective quark-DM interaction,

$$\lambda^2/\Lambda^2 (\overline{q}\gamma_5\gamma_\mu q)(\overline{\chi}\gamma_5\gamma^\mu \chi)$$

and look for monojets in $p\bar{p}$ collisions,

$$p\overline{p} \rightarrow \chi \overline{\chi} + jet$$

(as opposed to the SM process $pp \rightarrow Z+jet$ and $pp \rightarrow W+jet$)

Constrains from monojet searches at the TeVatron:

90% CL neutralino-p Xsection limit

Universal Extra Dimensions:

$$n\frac{\lambda}{2} = 2\pi R$$
, $n\frac{h}{2p} = 2\pi R \implies p = n\frac{h}{4\pi R}$

$$E^{2} = p^{2}c^{2} + m_{o}^{2}c^{4} = n^{2}\frac{1}{R^{2}}c^{2} + m_{o}^{2}c^{4} = m_{n}^{2}c^{4}$$

 $n=1 \rightarrow Lightest Kaluza-Klein mode, B¹$

good DM candidate

90% CL LKP-p Xsection limit vs LKP mass

SIMPZILLAS (Superheavy DM)

- Produced **non-thermally** at the end of inflation through vacuum quantum fluctuations or decay of the inflaton field
- strong Xsection (simply means non-weak in this context)
- m from $\sim 10^4$ GeV to 10^{18} GeV (no unitarity limit since production non thermal)

$$S+S \rightarrow t \bar{t}$$
 w^+
 v, \bar{q}
 b

 $2.8 \times 10^5 \sqrt{m_{\rm X/12}}$ tops per annihilation

$$\frac{dN}{dE_{\nu}} \propto \frac{E_{\nu} + \mathrm{m_{W}}}{\sqrt{(E_{\nu} + \mathrm{m_{t}})[(E_{\nu} + \mathrm{m_{t}})^{2} - \mathrm{m_{t}}^{2}][(E_{\nu} + \mathrm{m_{W}})^{2} - \mathrm{m_{t}}^{2}]}}} \frac{10^{-\frac{2}{2}}}{\frac{10^{-2}}{2}} = \frac{E_{\nu} \text{ at center of the Sun}}{E_{\nu} \text{ at detector}}$$

$$N_s(m_{\rm \scriptscriptstyle X},\sigma_{\rm \scriptscriptstyle XN}) = N_t \cdot BR_{\rm \scriptscriptstyle W} \cdot \Gamma_A(m_{\rm \scriptscriptstyle X},\sigma_{\rm \scriptscriptstyle XN}) \cdot T \cdot \int \frac{dN_\nu}{dE} \, A_{eff} \, dE$$

90% CL simpzilla-p Xsection limit vs simpzilla mass

DM SEARCHES FROM THE SUN: SECLUDED DARK MATTER

Secluded dark matter

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} + \mathcal{L}_{mediator}$$

DM annihilates into mediator, $\chi\chi\to\varphi\varphi{\to}SM$ with $m_\varphi^{}={\it O}(GeV)$

 φ is long lived, escapes the Sun and decays into $\mu^+\mu^-$ in or near the detector

→ signature: two closely separated muon tracks (~ 1m)

look for stopping pairs of tracks in order to further reduce the background.

DM SEARCHES FROM THE GALACTIC HALO

Look for an excess of events in the on-source region w.r.t. the off-source:

IC22: observed on-source: 1367 evts

observed off-source: 1389 evts

Need expected neutrino flux from SUSY and halo model. Limit on the self annihilation cross section:

$$\phi_{\nu} = \frac{dN}{dE \, dA_{eff} \, dt \, d\Omega} = \frac{1}{2} \frac{1}{4\pi} \langle \sigma \nu \rangle J_{\Omega} R_{SC} \frac{\rho_{SC}^2}{m_{\chi}^2} \frac{dN_{\nu}}{dE}$$

DM SEARCHES FROM THE GALACTIC HALO

Look for an excess of events in the on-source region w.r.t. the off-source:

IC22: observed on-source: 1367 evts

observed off-source: 1389 evts

Need expected neutrino flux from SUSY and halo model. Limit on the self annihilation cross section:

$$\phi_{v} = \frac{dN}{dE \, dA_{eff} \, dt \, d\Omega} = \frac{1}{2} \frac{1}{4\pi} \underbrace{\sigma \, v} \underbrace{\int_{\Omega} R_{SC}}_{\text{max}} \underbrace{\frac{\rho_{SC}^{2}}{dN_{v}}}_{\text{dE}} \frac{dN_{v}}{dE}$$

$$\text{measure}$$

$$\text{CONSTRAIN}$$

$$\text{model}$$

$$\text{line of sight (los) integral}$$

$$\text{particle physics}$$

DM SEARCHES FROM THE GALACTIC HALO: MULTIPOLE ANALYSIS

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}} P_{\ell}^{m}(\cos(\theta)) \exp(\mathrm{i}m\phi)$$

$$a_{\ell}^{m} = \int_{\Omega} \mathrm{d}\Omega f(\theta, \phi) Y_{\ell}^{m*}(\theta, \phi)$$

$$f(\theta, \phi) = \sum_{i=1}^{N_{\nu}} \delta(\theta - \theta_i) \cdot \delta(\phi - \phi_i)$$

$$D^{2} = \frac{1}{\sum w_{\ell}^{m}} \sum_{\ell=1}^{\ell_{\max}} \sum_{m=1}^{\ell} \operatorname{sign}\left(\mathscr{A}_{\ell}^{m}\right) w_{\ell}^{m} \left(\frac{\mathscr{A}_{\ell}^{m} - \left\langle \mathscr{A}_{\ell, \operatorname{atm}}^{m} \right\rangle}{\sigma\left(\mathscr{A}_{\ell, \operatorname{atm}}^{m}\right)}\right)^{2}$$

SEARCHES FROM THE GALACTIC CENTER

Look for an excess of events in the on-source region w.r.t. the off-source

on-source region below the horizon: need to veto downgoing μ s.

Use central strings of detector as fiducial volume, surrounding layers as veto. Only from IC40 this is possible.

IC40: observed on-source: 798842 evts observed off-source: 798819 evts

Same strategy as in the galactic halo analysis:

$$rac{d\Phi}{dE} = rac{<\sigma_A v>}{2} J(\psi) rac{R_{sc}
ho_{so}^2}{4\pi m_\chi^2} rac{dN}{dE}$$
Measure

SUSY

DM SEARCHES FROM NEARBY DWARF GALAXIES

- dwarf galaxies: high mass/light ratio
- → high concentration of DM in the halos
- known location. Distributed both in the north and southern sky.
 - Point-like search techniques: stacking
 - known distance -> determination of absolute annihilation rate if a signal is detected
- same expected neutrino spectra as for the galactic center/halo
- IceCube results from various sources

Same strategy as in the galactic halo analysis:

$$\phi_{\nu} = \frac{dN}{dE \, dA_{eff} \, dt \, d\Omega} = \frac{1}{2} \frac{1}{4\pi} \langle \sigma \, \nu \rangle J_{\Omega} R_{SC} \frac{\rho_{SC}^2}{m_{\chi}^2} \frac{dN_{\nu}}{dE}$$

- · we have 1 km³ of ice instrumented with optical modules
- · we can detect flavours (muon tracks, e/τ cascades)
- · we can define through-going, starting and contained tracks
- · we cover a wide neutrino energy range, from O(10) GeV to PeV
- · we can look at all the sky (at once and continuously)

..... if you have a model of exotic physics that involves neutrinos, we can probe it

- Depth dependence of λ_{eff} and λ_{abs} from in situ LEDs
- Ice below 2100 m in DeepCore fiducial region very clear

• $<\lambda_{eff}> \sim 47$ m, $<\lambda_{abs}> \sim 155$ m

• Constant temperature ~ -35C

Compare observed number of events n and predicted number θ for each model, taking into account error σ_{ϵ} on acceptance:

$$\mathcal{L}_{\text{num}}(n|\theta) = \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \int_{0}^{\infty} \frac{(\epsilon\theta)^{n} e^{-\epsilon\theta}}{n!} \exp\left[-\frac{1}{2} \left(\frac{1-\epsilon}{\sigma_{\epsilon}}\right)^{2}\right] d\epsilon. \tag{1}$$

From this, construct a modified p-value as

$$p(n) = \frac{p_{\text{signal+BG}}(n)}{p_{\text{BG}}(n)} = \frac{\sum_{n_i \le n} \mathcal{L}_{\text{num}}(n_i | \theta_{\text{signal+BG}})}{\sum_{n_i \le n} \mathcal{L}_{\text{num}}(n_i | \theta_{\text{BG}})}$$
(2)

Can now say immediately, for a single point, that the point is excluded at a confidence level of 1 - p.

Assuming preliminary (conservative) estimate of IC-86 effective area

- X Only partial goodness of fit, no measure of convergence, no idea how to generalise to regions or whole space.
- * Frequency/density of models in IN/OUT scans means essentially nothing.

Full unbinned likelihood with number (\mathcal{L}_{num}), spectral (\mathcal{L}_{spec}) and angular (\mathcal{L}_{ang}) parts

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$
(3)

theory

with Number of lit channels (energy estimator)

$$\mathcal{L}_{\text{spec},i}(N_i, \Xi) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal} + \text{BG}}} \frac{dP_{\text{BG}}}{dN_i}(N_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal} + \text{BG}}} \int_0^\infty E_{\text{disp}}(N_i | E_i') \frac{dP_{\text{signal}}}{dE_i'}(E_i', \Xi) dE_i'$$
and
$$\text{SUSY parameters}$$
(4)

and

$$\mathcal{L}_{\text{ang},i}(\cos\phi_i) = \frac{\theta_{\text{BG}}}{\theta_{\text{signal}+\text{BG}}} \frac{dP_{\text{BG}}}{d\cos\phi_i}(\cos\phi_i) + \frac{\theta_{\text{signal}}}{\theta_{\text{signal}+\text{BG}}} PSF(\cos\phi_i|1)$$
 (5)

Event arrival angle

full statistical SUSY analysis in IceCube

Example of what we want in the end (work for IC86 in progress):

SD nuclear scattering cross-section in the CMSSM with IceCube-22 events

- x Contours Indicate 1σ and 2σ credible regions
- Shading+contours indicate relative probability only, not overall goodness of fit
- Scans performed with modified SuperBayes 1.5.1 and unreleased DarkSUSY