Quantum Geometric Langlands vs.

Non-perturbative dualities in Sigma Models

Jörg Teschner

DESY Hamburg

Motivation: FZZ duality - (Fateev, A.B. and Al.B. Zamolodchikov)

Quantized motion of strings on the "cigar", $ds^2 = dr^2 + anh^2(r) d\theta^2$,

$$S = \int_{\Sigma} \frac{d^2z}{4\pi} \left(\partial_z \rho \partial_{\bar{z}} \rho + \tanh^2(\mathbf{b}\rho) \partial_z \theta \partial_{\bar{z}} \theta \right) = S_{\text{free}} + \int_{\Sigma} \frac{d^2z}{2\pi} e^{2\mathbf{b}\rho} \partial_z \theta \partial_{\bar{z}} \theta + \dots$$

⇔ (for large curvature) motion of strings under exponentially growing force field ("tachyon condensate").

$$S = \int_{\Sigma} \frac{d^2z}{4\pi} \left(\partial_z \rho \partial_{\bar{z}} \rho + \partial_z \theta \partial_{\bar{z}} \theta + \lambda \ e^{\frac{1}{b}\rho} \cos(k\tilde{\theta}) \right) \qquad b^2 = \frac{1}{k-2}$$

Note: Exponential interactions $\propto e^{2b\rho}$ vs. $e^{\frac{1}{b}\rho}$!!!

Example: The FZZ duality II

- This duality means that string quantum fluctuations modify geodesic motion into non-geometric propagation

 — mirror symmetry.
- **New** type of non-perturbative effect: $\mathcal{O}(\exp(-e^{1/b^2}))$.

Origin of FZZ duality

(Hikida, Schomerus): Combination of two dualities:

- Duality between the Cigar CFT and Liouville theory (Ribault, J.T.) —
 Quantum geometric Langlands correspondence
- Self-duality of Liouville theory (J.T.) —
 Modular duality of quantum Teichmüller theory

Origin of FZZ duality Ia: Duality Cigar - Liouville theory

What is **Liouville theory?**

$$S = \int_{\Sigma} \frac{d^2z}{4\pi} \left(\partial_z \phi \partial_{\bar{z}} \phi + 4\pi \mu e^{2b\phi} \right).$$

Basic observables: $V_{\alpha}(z,\bar{z})=e^{2\alpha\phi(z,\bar{z})}$. Theory fully characterized by correlation functions

$$\langle V_{\alpha_n}(z_n,\bar{z}_n)\dots V_{\alpha_1}(z_1,\bar{z}_1)\rangle$$

Related to uniformization of Riemann surfaces:

 $ds^2 = e^{2b\phi} dz d\bar{z}$ has constant negative curvature iff

 ϕ satisfies Liouville equation of motion.

 \Leftrightarrow

(classical/quantum) Liouville theory \Leftrightarrow (classical/quantum) Teichmüller theory.

Origin of FZZ duality Ib: Duality Cigar - Liouville theory

Explicit relation between correlation functions (Ribault, J.T.)

$$\left\langle \Phi_{m_{1}\bar{m}_{1}}^{j_{1}}(z_{1})\cdots\Phi_{m_{n}\bar{m}_{n}}^{j_{n}}(z_{n})\right\rangle_{\text{Cigar}} = \frac{2\pi^{3}b}{\pi^{2n}(n-2)!} \delta\left(\sum_{r=1}^{n}p_{r}\right) \delta_{\sum_{r=1}^{n}(m-\bar{m})} \prod_{r=1}^{n} N_{m_{r}\bar{m}_{r}}^{j_{r}} \\ \times \int_{C} d^{2}y_{1}\cdots d^{2}y_{n-2} K(z_{1},\ldots,z_{n}|y_{1},\ldots,y_{n-2}) \\ \times \left\langle V_{\alpha_{n}}(z_{n})\cdots V_{\alpha_{1}}(z_{1})V_{-\frac{1}{2b}}(y_{n-2})\cdots V_{-\frac{1}{2b}}(y_{1})\right\rangle_{\text{Liou}},$$

where

$$K(z_1, \dots, z_n | y_1, \dots, y_{n-2}) = \prod_{r < s \le n} (z_r - z_s)^{m_r + m_s + \frac{k}{2}} (\bar{z}_r - \bar{z}_s)^{\bar{m}_r + \bar{m}_s + \frac{k}{2}}$$

$$\prod_{a < b < n-2} |y_a - y_b|^k \prod_{r=1}^n \prod_{a=1}^{n-2} (z_r - y_a)^{-m_r - \frac{k}{2}} (\bar{z}_r - \bar{y}_a)^{-\bar{m}_r - \frac{k}{2}}.$$

Mathematics behind: Geometric Langlands correspondence

Origin of FZZ duality IIa: Self-duality of Liouville theory

Non-perturbative construction (J.T.) shows: Liouville theory is self-dual:

$$\langle V_{\alpha_n}(z_n,\bar{z}_n)\dots V_{\alpha_1}(z_1,\bar{z}_1)\rangle_{\mathbf{b},\mu} = \langle V_{\alpha_n}(z_n,\bar{z}_n)\dots V_{\alpha_1}(z_1,\bar{z}_1)\rangle_{\frac{1}{\mathbf{b}},\tilde{\mu}},$$

where

$$\pi \frac{\Gamma(b^{-2})}{\Gamma(1-b^{-2})} \tilde{\mu} = \left(\pi \frac{\Gamma(b^2)}{\Gamma(1-b^2)} \mu\right)^{\frac{1}{b^2}}.$$

Origin of self-duality of Liouville theory — Necessity

Renormalization of exponential interactions

$$S = \int_{\Sigma} \frac{d^2z}{4\pi} \left(\partial_z \phi \partial_{\bar{z}} \phi + 4\pi \mu e^{2b\phi} \right).$$

Consider term of n-th order in the perturbative expansion of Liouville theory,

$$\mu^n \int d^2u_1 \dots \int d^2u_n \, e^{2\mathbf{b}\phi(u_1,\bar{u}_1)} \dots e^{2\mathbf{b}\phi(u_n,\bar{u}_n)},$$

use OPE $e^{2b\phi(z,\bar{z})}e^{2b\phi(w,\bar{w})}\sim |z-w|^{-4b^2}e^{4b\phi(w,\bar{w})}$. Singular behavior comes from "clustering" of integration variables, similar to Dyson's integral:

$$\int_{S_1} dt_1 \dots dt_n \prod_{r < s} |t_r - t_s|^{-2b^2} = \left(\frac{2\pi}{\Gamma(1 - b^2)}\right)^n \Gamma(1 - nb^2),$$

i.e. Poles for rational b^2 , small denominator problem for irrational b^2 .

Note: Dual interaction $e^{2\frac{1}{b}\phi}$ produces similar singularities which might solve the problem — need **nonperturbative** construction of Liouville theory (J.T.).

Non-perturbative construction of Liouville theory –

quantum Teichmüller theory

What is quantum Teichmüller theory? (Fock; Checkov/Fock; Kashaev) Use uniformization to introduce coordinates on Teichmüller spaces,

One length variable l_e for each edge of triangulation Δ . Form cross-ratio $z_e = l_a + l_c - l_b - l_d$. Natural Poisson bracket from Teichmüller theory (Weil-Petersson):

 $\{z_e, z_f\} = n_{ef},$ where $n_{ef} \in \{\pm 2, \pm 1, 0\}$ determined by triangulation.

Quantization: Straightforward, operators z_e , $e \in \{edges \text{ of } \Delta\}$, relations

$$[z_e, z_f] = n_{ef},$$

realized on $\mathcal{H}(\Sigma) = L^2(\mathbb{R}^{3g-3+n})$.

Modular duality of quantum Liouville – Teichmüller theory

Key issue: Change of coordinate system \Leftrightarrow Change of triangulation.

Generated from flips:

$$\begin{aligned} \mathbf{u}_{a'} = & (1+q\mathbf{u}_e)\mathbf{u}_a \\ \mathbf{u}_{d'} = & (1+q\mathbf{u}_e^{-1})^{-1}\mathbf{u}_d \end{aligned} \qquad \mathbf{u}_{e'} = \mathbf{u}_e^{-1} \qquad \begin{aligned} \mathbf{u}_{b'} = & (1+q\mathbf{u}_e^{-1})^{-1}\mathbf{u}_b \\ \mathbf{u}_{c'} = & (1+q\mathbf{u}_e)\mathbf{u}_c \end{aligned}$$

Need operator W_e on $\mathcal{H}(\Sigma)$ such that

$$\mathbf{W}_e^{-1} \cdot \mathbf{u}_a \cdot \mathbf{W}_e = (1 + q\mathbf{u}_e)\mathbf{u}_a \quad \text{etc.}.$$

Such an operator can be constructed as $W=W(u_e)$ if W(x) solves the functional equation

$$W(q^2x) = (1+qx)W(x).$$

Mathematical root of self-duality

We need to solve a simple quantum mechanics exercise. Given operators p, q, $[p,q]=(2\pi i)^{-1}$, construct representation of Weyl-algebra uv $=q^2$ vu, $q=e^{i\pi b^2}$, as $u=e^{2\pi bq}$, $v=e^{2\pi bp}$. Does there exist a unitary operator W on $L^2(\mathbb{R})$ such that

$$W^{-1} \cdot u \cdot W = u + v^{\frac{1}{2}} u v^{\frac{1}{2}} = (1 + qv)u$$
 ?

Try ansatz W=W(v). Rewrite $(W(v))^{-1}\cdot u\cdot W(v)=\frac{W(q^2v)}{W(v)}u$. The ansatz would solve the problem if function W would satisfy the functional equation

$$W(q^2x) = (1+qx)W(x).$$

This is solved formally by the power series

$$W_q(x) = \sum_{n=0}^{\infty} \frac{1}{(1-q^2)(1-q^4)\cdots(1-q^{2n})} (-qx)^n.$$

This series does not converge, small denominator problem !!!

Fortunately there is a better solution to the functional equation

$$W(q^2x) = (1+qx)W(x),$$

namely $W(e^{2\pi by}) = e_b(y)$, $e_b(y)$: self-dual quantum dilogarithm, defined by

$$\begin{split} e_{\boldsymbol{b}}(y) &= \exp\left(-\int_{\mathbb{R}+i0} \frac{dt}{4t} \, \frac{e^{-2ity}}{\sinh \boldsymbol{b} t \sinh \boldsymbol{b}^{-1} t}\right) \, . \\ &= \frac{W_q(x)}{W_{\tilde{q}}\left(x^{1/b^2}\right)} \quad \text{for } |q| < 1, \text{ where } \tilde{q} = e^{\pi i \boldsymbol{b}^{-2}} \, , \end{split}$$

Observation: Self-duality solves small denominator problem!

Main point:

Self-duality solves small denominator problem of Liouville theory!

Equivalence between Liouville theory and Teichmüller theory

Consider $\mathcal{T}_{g,n}$: Teichmüller space of Riemann surfaces with genus g and n conical singularities, deficit angles $\eta_k = b\alpha_k$. Teichmüller space has a Kähler structure. Let $\mathbf{m} = (m_1, \dots, m_{3g-3+n})$ be complex analytic coordinates for $\mathcal{T}_{g,n}$.

Claim (J.T.):

There exists a canonical Kähler quantization of $\mathcal{T}_{g,n}$, characterized by the deformed Bergmann kernel $B_{\Sigma}(\bar{\mathbf{n}}, \mathbf{m})$ (Karabegov \Rightarrow star product etc.). We then have

$$B_{\Sigma}(\bar{\mathbf{m}}, \mathbf{m}) = \langle V_{\alpha_n}(z_n, \bar{z}_n) \dots V_{\alpha_1}(z_1, \bar{z}_1) \rangle_{\Sigma_{\mathbf{m}}}$$

Bear in mind:

- Quantum Liouville theory build from quantum dilogarithm: self-dual
- Duality: Solution of **small denominator problems** coming from exponential interactions.

The duality Liouville-Cigar: q-Geometric Langlands I

Cigar comes from $\widehat{\mathfrak{sl}}_2$ -WZNW model via coset construction.

 $\widehat{\mathfrak{sl}}_2$ -WZNW model: Conformal field theory with current algebra symmetry $\widehat{\mathfrak{sl}}_{2,k} \times \widehat{\mathfrak{sl}}_{2,k}$,

- Observables: $\Phi^j(\mu|z)$,
- Correlation functions: $\langle \Phi^{j_n}(\mu_n|z_n) \dots \Phi^{j_1}(\mu_1|z_1) \rangle$

$$\left\langle \Phi^{j_n}(\mu_n|z_n)\cdots\Phi^{j_1}(\mu_1|z_1)\right\rangle_{\widehat{\mathfrak{sl}}_2} = \frac{\pi b}{2(-\pi)^n} \delta^{(2)}\left(\sum_{i=1}^n \mu_i\right) |\Theta_n|^2 \left\langle V_{\alpha_n}(z_n)\cdots V_{\alpha_1}(z_1)V_{-\frac{1}{2b}}(y_{n-2})\cdots V_{-\frac{1}{2b}}(y_1)\right\rangle_{\text{Liou}}$$

- Function Θ_n : explicitly known, simple.
- Variables μ_r related to y_1, \dots, y_{n-2}, u via $\sum_{i=1}^n \frac{\mu_i}{t z_i} = u \frac{\prod_{j=1}^{n-2} (t y_j)}{\prod_{i=1}^n (t z_i)}$.
- Identification of parameters: $b^2 = (k-2)^{-1}$, $\alpha_i = b(j_i+1) + 1/b$.

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands II

Similar relation holds for the holomorphic/antiholomorphic building blocks of correlation functions on a Riemann surface X — the **conformal blocks**.

Liouville conformal blocks parameterized by monodromy representation of additional degenerate field $V_{-1/2b}(z)$ inserted into the conformal blocks: Local system λ .

The Liouville- $\widehat{\mathfrak{sl}}_2$ -WZNW correspondence assigns to each Liouville conformal block a solution Ψ_{λ} to the KZ-equations:

$$(k-2)\partial_{m_r}\Psi_{\lambda} = \mathcal{D}_r\Psi_{\lambda}, \quad \mathcal{D}_r: \text{ Differential operator on } \mathrm{Bun}_G.$$

For $k \to 2$: Degeneration into eigenvalue equation $\mathcal{D}_r \Psi_{\lambda} = E_r(\lambda) \Psi_{\lambda}$ for quantized **Hitchin Hamiltonians** \mathcal{D}_r . System of these eigenvalue equations $\Leftrightarrow \mathcal{D}$ -module \mathcal{E}_{λ} .

So the Liouville- $\widehat{\mathfrak{sl}}_2$ -correspondence gives G=SL(2)-case of correspondence:

Local systems
$$\lambda$$
 in LG \longleftrightarrow $\mathcal{D} ext{-modules }\mathcal{E}_{\lambda}$ on Bun_G

That's the geometric Langlands correspondence (Beilinson, Drinfeld...)!

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands III

The Liouville- $\widehat{\mathfrak{sl}}_2$ -WZNW correspondence is rich enough to reproduce geometric Langlands duality in the limit $k \to 2$:

Consider left hand side – Liouville conformal block

$$\langle \Psi_{\alpha_n}(z_n)\cdots\Psi_{\alpha_1}(z_1)\Psi_{-\frac{1}{2b}}(y_{n-2})\cdots\Psi_{-\frac{1}{2b}}(y_1)\rangle_{\text{Liou}}$$

Insert extra degenerate field to probe intermediate representations:

$$\psi(t) \equiv \left\langle \Psi_{-\frac{1}{2b}}(t)\Psi_{\alpha_n}(z_n)\cdots\Psi_{\alpha_1}(z_1)\Psi_{-\frac{1}{2b}}(y_{n-2})\cdots\Psi_{-\frac{1}{2b}}(y_1) \right\rangle_{\text{Liou}}$$

It satisfies

$$\left(\partial_t^2 - \langle\!\langle T(t) \rangle\!\rangle\right) \psi(t) = 0, \qquad \langle\!\langle T(t) \rangle\!\rangle \equiv \left\langle T(t) \Psi_{-\frac{1}{2b}}(t) \dots \right\rangle / \left\langle \Psi_{-\frac{1}{2b}}(t) \dots \right\rangle$$

Limit $k \to 2 \Rightarrow$ oper, differential operator of the form $\partial_t^2 + \sum_{m=1}^n \left(\frac{\delta_m}{(t-z_m)^2} + \frac{c_m}{t-z_m} \right)$.

For $g \ge 0$: Conf. blocks parameterized by 3g-3+n parameters: Same as for space of **opers**!

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands IV

Generalize left hand side to

$$\langle \Psi_{\alpha_n}(z_n) \cdots \Psi_{\alpha_1}(z_1) \Psi_{-\frac{b}{2}}(q_n) \cdots \Psi_{-\frac{b}{2}}(q_1) \Psi_{-\frac{1}{2b}}(y_{n-2}) \cdots \Psi_{-\frac{1}{2b}}(y_1) \rangle_{\text{Liou}}$$

This is mapped to

$$\langle \Phi^{j_n}(\mu_n|z_n)\cdots\Phi^{j_1}(\mu_1|z_1)\Phi^{\frac{1}{2}}(\nu_n|x_n)\cdots\Phi^{\frac{1}{2}}(\nu_1|x_1)\rangle_{\widehat{\mathfrak{sl}}_2}$$

For $k \to 2$ we now get family of differential operators, for g = 0:

$$\partial_t^2 + \sum_{m=1}^n \left(\frac{\delta_m}{(t-z_m)^2} + \frac{H_m}{t-z_m} \right) + \sum_{m=1}^n \left(\frac{3}{4(t-q_m)^2} + \frac{p_m}{t-q_m} \right) ,$$

where $H_m = H_m(\mathbf{z}, \mathbf{q}, \mathbf{p})$ (Garnier system).

In general $(g \ge 0)$ we get 6g - 6 + 2n complex parameters, as many parameters as space of local systems has!

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands V

Electric Hecke operators:

Insertion of
$$\Psi_{-\frac{1}{2b}}(t)$$
 in $\left\langle \dots \right\rangle_{\mathrm{Liou}}$ \Leftrightarrow Insertions of $\int d\mu \, \Phi^{-\frac{k}{2}}(\mu|t)$ in $\left\langle \dots \right\rangle_{\widehat{\mathfrak{sl}}_2}$

- Compatible with Hecke-action in terms of bundle modifications.
- Relates conformal blocks with different amount of winding number violation.
- Reproduces Hecke eigenvalue property for $k \to 2$ since $\Psi_{-\frac{1}{2b}}(t)$ then factors out.

Magnetic Hecke operators:

Insertion of
$$\Psi_{-\frac{b}{2}}(t)$$
 in $\big<\dots\big>_{ ext{Liou}} \Big| \Leftrightarrow \Big|$ Insertions of $\Phi^{\frac{1}{2}}(x|t)$ in $\big<\dots\big>_{\widehat{\mathfrak{sl}}_2}$

How about Hecke eigenvalue property for $k \neq 2$?

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands VI

Recall: quantum Liouville theory \Leftrightarrow quantum **Teichmüller theory**.

On the level of conformal blocks this means

$$\left[\, \mathcal{H}_{ ext{Liou}}(\Sigma) \,,\, \pi_{ ext{Liou}}(\Sigma) \,
ight] \, \, \simeq \left[\, \mathcal{H}_{ ext{Teich}}(\Sigma) \,,\, \pi_{ ext{Teich}}(\Sigma) \,
ight]$$

- $\left[\mathcal{H}_{\mathrm{Liou}}(\Sigma), \pi_{\mathrm{Liou}}(\Sigma)\right]$ Hilbert space of conformal blocks with natural mapping class group representation,
- $\left[\mathcal{H}_{\mathrm{Teich}}(\Sigma), \pi_{\mathrm{Teich}}(\Sigma)\right]$ space of states of quantum Teichmüller theory with natural mapping class group representation,

How is **Hecke** action represented in quantum Teichmüller theory?

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands VII

- Insertion of $\Psi_{-\frac{1}{2b}}(t)$ translates into operator: $\mathbf{H}_t: \mathcal{H}_{\mathrm{Teich}}(\Sigma) \to \mathbb{C}^2 \otimes \mathcal{H}_{\mathrm{Teich}}(\Sigma)$.
- Variation of t generates **quantum local system**, collection of operators M_{γ} : $\mathbb{C}^2 \otimes \mathcal{H}_{\text{Teich}}(\Sigma) \to \mathbb{C}^2 \otimes \mathcal{H}_{\text{Teich}}(\Sigma)$ for all generators γ of the fundamental group.
- The operators M_{γ} , $M_{\gamma'}$ do not commute unless $\gamma \circ \gamma' = 0$.
- Natural bases for $\mathcal{H}_{\mathrm{Teich}}(\Sigma)$ are defined by choosing max. set \mathcal{C} of nonintersecting closed curves (pants decomposition) and requiring that

$$\mathsf{M}_{\gamma} \cdot \Psi_a = (M_a \otimes \mathrm{id}) \, \Psi_a \,, \qquad \forall \gamma \in \mathcal{C} \,,$$

where M_a is a 2×2-matrix.

This is mapped to the corresponding property of the $\widehat{\mathfrak{sl}}_2$ -conformal blocks —

quantum Hecke eigenvalue property!

The duality Liouville - $\widehat{\mathfrak{sl}}_2$ -WZNW: q-Geometric Langlands VIII

We see that:

quantum Teichmüller theory: proper home for **quantum local systems** (operators on $\mathcal{H}(\Sigma)$ corresponding to representations of the fundamental group).

So quantum geometric Langlands \leftrightarrow

quantum local systems λ in LG \longleftrightarrow Hecke eigen- $\mathcal D$ -modules on Bun_G

Concluding remarks

Note that **self-duality** of Liouville theory allows us to continue the q-geometric Langlands correspondence to the left:

$$\mathfrak{sl}_{2,k_m}-\mathsf{WZNW}$$
 model \longleftrightarrow q-Teichmüller theory \longleftrightarrow $\widehat{\mathfrak{sl}}_{2,k_e}-\mathsf{WZNW}$ model

$$(k_m-2) = b^2 = (k_e-2)^{-1}$$
.

On the left we see local systems emerging in the limit $k_e \to 2 \Leftrightarrow k_m \to \infty$ very naturally:

$$\partial_A \equiv \partial_t - \langle \langle J(t) \rangle \rangle, \qquad \langle \langle J(t) \rangle \rangle \equiv \frac{\langle J(t) \dots \rangle_{\mathfrak{sl}_{2,km}}}{\langle \operatorname{id} \dots \rangle_{\mathfrak{sl}_{2,km}}},$$

The local system defined by this connection is an operator on the space of conformal blocks in general, but becomes classical for $k_m \to \infty$.

- ⇒ **Explanation** of geometric Langlands from
 - $\widehat{\mathfrak{sl}}_2$ -WZNW-Liouville duality
 - Modular duality of quantum Teichmüller theory

Higher rank

There exists generalization of (quantum) Teichmüller theory where the role of $PSL(2,\mathbb{R})$ is taken by a real reductive group $G_{\mathbb{R}}$ (Fock, Goncharov).

The main result is the construction of an assignment

$$\mathcal{F}_{G,b}: \Sigma \mapsto \left[\mathcal{H}_{G,b}(\Sigma), \pi_{G,b}(\Sigma)\right],$$

where b is a (deformation) parameter and $\pi_{G,b}(\Sigma)$ is a representation of the mapping class group of Σ .

Fock and Goncharov show that

$$\mathcal{F}_{G,b} = \mathcal{F}_{L_{G,b}-1}$$

Modular duality and Langlands duality are deeply related !!!